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Abstract 12 

The truncation artifact in magnetic resonance (MR) images is a line of abnormal signal intensity that 13 

occurs parallel to an interface between tissues of markedly different signal intensity. In order to 14 

demonstrate the truncation artifact in sagittal images of the canine spinal cord and the effect of 15 

changing spatial resolution, we conducted an experimental in vitro study. A section of fixed canine spinal 16 

cord was imaged using a 1.5T magnet. Spatial resolution was increased by increasing the acquisition 17 

matrix and reconstruction matrix, producing series of T2-weighted images with the following pixel sizes: 18 

A, 1.6mm (vertical) x 2.2mm (horizontal); B, 1.2mm x 1.7mm; C, 0.8mm x 1.1mm; D, 0.4mm x 0. 6mm. 19 

Plots of mean pixel value across the cord showed variations in signal intensity compatible with 20 

truncation artifact, which appeared as a single, wide central hyperintense zone in low resolution images 21 

and as multiple narrower zones in high spatial resolution images. Even in images obtained using the 22 

highest spatial resolution available for the MR system, the edge of the spinal cord was not accurately 23 

defined and the central canal was not visible. The experiment was repeated using an unfixed spinal cord 24 

specimen with focal compression applied to mimic a pathologic lesion. Slight hyperintensity was 25 

observed within the spinal cord at the site of compression although the cord was normal histologically. 26 

Results of this study suggest that caution should be applied when interpreting hyperintensity affecting 27 

the spinal cord in T2-weighted sagittal images of clinical patients because of the possibility that the 28 

abnormal signal could represent a truncation artifact.  29 

  30 



3 
 

Introduction 31 

The truncation artifact (also known as Gibbs’ artifact) in magnetic resonance (MR) images is a line of 32 

abnormal signal intensity that occurs parallel to an interface between tissues of markedly different 33 

signal intensity.1,2 It has been observed in MR images of various anatomic structures in humans, 34 

including the brain, spinal cord, and articular cartilage.3-5  In dogs, a truncation artifact may be observed 35 

in T2-weighted (T2w ) sagittal images of the spine as a single or multiple hyperintense lines 36 

superimposed on the spinal cord6-8 (Figure 1).  Based on the hyperintensity, shape and position of this 37 

truncation artifact, it has been suggested that it could potentially be misinterpreted as a sign of a dilated 38 

central canal or a syrinx.3,6 All MR sequences are subject to truncation artifact. In T1w images, the 39 

truncation artifact appears as a hypointense band superimposed to the parenchyma of the spinal cord.  40 

Truncation artifacts cannot be eliminated completely from MR images because they occur as a 41 

consequence of the Fourier transformation used to construct the digital image from the signals obtained 42 

from a volume of tissue. Digital images contain a finite number of pixels, each with a finite dynamic 43 

range, and represent an approximation of the true signal intensity originating in tissues. Particularly at 44 

boundaries of tissues with markedly different signal intensities (e.g. tissue-fluid interfaces in T2w 45 

images), data are necessarily truncated in k-space, causing misrepresentation of signal intensities either 46 

side of the boundary.2,4,5,9  Although it cannot be eliminated, the truncation artifact can be minimized by 47 

increasing spatial resolution (decreasing the pixel size), by applying pre-reconstruction filters (e.g. 48 

Hamming or Tukey) or by using post-processing optimization techniques (e.g. the Total Variation 49 

method) .9, 10, 11  50 

The present study had two aims:  1, to demonstrate the truncation artifact in MR images of the normal 51 

canine spinal cord, including the effect on its appearance of changing spatial resolution; 2, to 52 

demonstrate variations in the appearance of the truncation artifact within the spinal cord at a site of 53 
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compression.   54 

 55 

Material and methods 56 

First part of the study 57 

To conduct the in vitro experiment, the spinal cord was removed intact from the fresh cadaver of a 58 

client –owned 7 year old, 26 kg male Boxer dog, humanely euthanized for reasons unrelated to this 59 

study. Owner consent was obtained to perform necropsy and obtain tissues from the cadaver, for 60 

research purposes.. The dura mater was removed and the spinal cord with attached pia mater and 61 

fragments of arachnoid was cut into three sections of approximately equal length and fixed in 10% 62 

neutral-buffered formalin. To simulate the spinal cord surrounded by cerebrospinal fluid (CSF), the 63 

cervical section of the spinal cord was submerged in formalin in a plastic tray and placed on a phased-64 

array spinal coil within the bore of a 1.5T magnet (Intera Pulsar System, Philips Medical Systems, 65 

Reigate, UK). Turbo spin-echo (TSE) sequences were used to obtain sagittal T2w (T2w) images with the 66 

following settings:  echo time 120ms, repetition time 3154ms, 10 signals averaged, and field of view 67 

102mm (vertical) x 159mm (horizontal long axis) x 26mm (right to left). A default ringing pre-68 

reconstruction filter was used to reduce truncation artifact on the images obtained.  Spatial resolution 69 

was progressively increased by increasing the acquisition matrix and reconstruction matrix, producing 70 

series of T2w images with the following pixel sizes: A, 1.6mm (vertical) x 2.2mm (horizontal); B, 1.2mm x 71 

1.7mm; C, 0.8mm x 1.1mm; D, 0.4mm x 0. 6mm.  Slice thickness was 1.8mm for each series. Series B 72 

used the default spatial resolution settings used at our institution for acquiring T2w TSE sagittal images 73 

of the spine of clinical canine patients of similar size to the cadaver used. Series D represented the 74 

highest spatial resolution available on this MR system. Transverse images of the spinal cord were also 75 

acquired using the same spatial resolution as series A.  76 



5 
 

For each series (A-D), sagittal MR images of the spinal cord were viewed at native resolution (i.e. not 77 

interpolated) and a 6-pixel wide region of interest (ROI) was selected from the central portion of the 78 

spinal cord that was parallel to the horizontal axis of the image. The ROI was placed over the same part 79 

of the cord in each image. This ROI was re-windowed so that the minimum pixel value was 0 and the 80 

maximum was 255, and the mean pixel value was calculated for each line of pixels across the spinal 81 

cord. A graph of pixel value was produced for each scan and aligned with the corresponding image of 82 

the spinal cord (Figure 2).  83 

Following MR imaging, representative hematoxylin and eosin-stained histologic sections of the spinal 84 

cord were prepared and reviewed. The height and width and of the spinal cord and the sagittal diameter 85 

of the central canal were measured using an eyepiece graticule. 86 

Second part of the study 87 

An unfixed section of the cervical spinal cord from the fresh cadaver of a client-owned 5 year old, 30 kg 88 

male Greyhound dog was submerged in physiologic saline in a plastic tray. Owner consent was obtained 89 

to perform necropsy and obtain tissues from the cadaver, for research purposes. Two empty 5 ml plastic 90 

syringe barrels placed on either side of the spinal cord and held together using elastic bands were used 91 

to create focal compression of the spinal cord. Sagittal T2w images were obtained with the following 92 

settings:  echo time 120ms, repetition time 3085ms, 10 signals averaged, and field of view 69mm 93 

(vertical) x 106mm (horizontal long axis) x 22mm (right to left). Four images series with the following 94 

pixel sizes were obtained: series A2, 1.6mm (vertical) x 2.3mm (horizontal); series B2, 1.1mm x 1.5mm; 95 

series C2, 0.8mm x 1.1mm; series D2, 0.4mm x 0.5mm. Slice thickness was 1.8mm for each series.  96 

 97 

Results 98 

First part of the study 99 
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A broad zone of increased signal, compatible with a truncation artifact, was evident along the midline of 100 

the spinal cord in all T2w TSE sagittal images. The zones of abnormal signal intensity associated with 101 

truncation artifact within the spinal cord and in the surrounding saline were relatively wider (up to 102 

2mm) in images acquired at lower resolution (Figure 3). With increasing spatial resolution the zones of 103 

abnormal signal intensity became narrower and less intense, so that the apparent outer border of the 104 

spinal cord became more clearly defined. The abnormal signal within the spinal cord appeared as a 105 

single, wide central zone in low resolution scan images and as multiple narrower zones in images with 106 

higher spatial resolution. In transverse images of the spinal cord acquired using the same spatial 107 

resolution as scan A, multiple concentric zones of abnormal signal intensity were evident. Compared to 108 

a gross section of the cord, the apparent diameter of the spinal cord in transverse images was greater 109 

and the central canal was not visible (Figure 4).  No spinal cord lesions were identified pathologically.  110 

Second part of the study 111 

In the areas where the spinal cord was not compressed the truncation artifact had a similar appearance 112 

in both sagittal and transverse images to that described in the first part of the study. In the lower 113 

resolution images (series A2, B2, C2) concentric truncation artifacts emanating from the two syringe 114 

barrels overlapped the spinal cord, impeding evaluation of the signal intensity of the spinal cord at the 115 

site of compression (Figure 5A-C). In the highest resolution images (series D2), the spinal cord at the site 116 

of compression had slightly increased signal intensity, apparently as a result of merging of hyperintense 117 

lines associated with truncation artifact (Figure 5D). This appearance may be compared with the 118 

increased signal that observed at sites of spinal cord compression in clinical patients (Figure 6).  119 

 120 

Discussion 121 

In low resolution MR images, the central hyperintense zone caused by the truncation artifact is much 122 
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wider than the central canal. Within increasing spatial resolution, the hyperintensity associated with the 123 

truncation artifact appeared as multiple parallel zones in both sagittal and transverse images. This 124 

variation is compatible with previous experimental results that showed the truncation artifact to be a 125 

function of resolution relative to the dimensions of the object being imaged.3 Constructive interference 126 

between the signal intensity waveforms produced on each side of an object can produce different 127 

numbers of peaks and troughs depending on the separation of the two borders of the object and the 128 

pixel size of the image.3 Similarly, reduced cord diameter at sites of compression alters the appearance 129 

of the truncation artifact from multiple hyperintense zones into a single broad zone, as observed in the 130 

second part of study. In sagittal T2w images of the cervical spine of clinical patients, variation of the 131 

truncation artifact may also account for the hyperintensity observed in the spinal cord where it narrows 132 

at a site of compression; the abnormal signal intensity identified on this sequence should therefore be 133 

interpreted with caution.  134 

The truncation artifact should be easy to recognize when it appears as multiple lines, but when it 135 

appears as a single hyperintensity it may be more difficult to distinguish from a lesion. This pitfall has 136 

been noted in MR images of articular cartilage4, the menisci of the knee12 and the spinal cord, in which a 137 

linear truncation artifact could be confused with hydromyelia or syringohydromyelia.3 In a study of dogs 138 

with cervical disc disease, occurrence of the truncation artifact was thought to contribute to 139 

interobserver variations.7 Although truncation artifacts are encountered in other MR sequences, it is the 140 

fact that they appear hyperintense when superimposed on neural tissues in T2w images that is 141 

problematic because most neural lesions are also hyperintense in T2w images. When uncertainty exists 142 

about whether a hyperintensity affecting the spinal cord may represent a lesion, additional imaging is 143 

indicated. For example, increasing spatial resolution (by increasing matrix size and/or decreasing field of 144 

view) will reduce the magnitude of the artifact.6 If the image matrix is asymmetrical, aligning the critical 145 

boundary perpendicular to the higher frequency axis (usually the frequency-encoding direction) will 146 
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diminish the truncation artifact.2 Obtaining images in a different plane, such as transverse images, 147 

should also be considered if this reduces imaging across a boundary between tissues of markedly 148 

different signal intensity; however, for the spinal cord, sagittal, dorsal, and transverse images will be 149 

affected by truncation artifacts to a similar degree because the critical spinal cord-CSF boundary cannot 150 

be avoided.  151 

In the present study, images were acquired of fixed spinal cord so that measurements based on MR 152 

images could be directly compared to measurements from histologic specimens without errors 153 

introduced by shrinkage of tissues during fixation. One disadvantage of this approach is that the signal 154 

intensity of the fixed spinal cord in T2w images is reduced compared to the cord in vivo because of 155 

removal of water during fixation. This likely reduces visibility of internal anatomy (i.e. grey-white matter 156 

boundary), but should not significantly affect the truncation artifact, which depends primarily on the 157 

spinal cord-CSF boundary rather than internal signal variations. In conclusion, caution should be applied 158 

when interpreting hyperintensity affecting the spinal cord in T2w sagittal images of clinical patients 159 

because of the possibility that the abnormal signal could represent a truncation artifact. 160 
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Legends 201 

Figure 1. Example of a truncation artifact mimicking the central canal in a T2w sagittal image of the 202 

caudal cervical and cranial thoracic spine of a dog with surgically-confirmed thoracolumbar 203 

intervertebral disc extrusion (not shown). A centrally-located hyperintense line (arrowheads) within the 204 

thoracic spinal cord is suggestive of the central canal, but cranial to the first thoracic vertebra it splits 205 

into two lines; therefore, this line cannot represent the central canal.  206 

 207 

  208 
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Figure 2. Representative T2w sagittal image of fixed spinal cord, region selected for determination of 209 

average pixel value, and corresponding graph of pixel value across the spinal cord.  210 

 211 

  212 
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Figure 3. Examples of T2w MR images of fixed spinal cord obtained with the following pixel sizes: A, 213 

1.6mm (vertical) x 2.2mm (horizontal); B, 1.2mm x 1.7mm; C, 0.8mm x 1.1mm; D, 0.4mm x 0. 6mm. The 214 

abnormal signal within the spinal cord that represents the truncation artifact appears as a single, wide 215 

central zone in low spatial resolution images (A & B) and as multiple narrower zones in images with 216 

higher spatial resolution (D).   217 

 218 

  219 
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Figure 4. A) Transverse image of the spinal cord acquired using the same spatial resolution as series A. 220 

Multiple concentric, alternating zones of increased and decreased signal intensity are evident, 221 

representing truncation artifact associated with the curved spinal cord-fluid interface. B) Corresponding 222 

section of the cord. In the MR image, the spinal cord appears larger in diameter and the central canal is 223 

not visible.  224 

 225 

 226 

  227 
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Figure 5. Examples of T2w MR images of unfixed, focally compressed spinal cord in a saline bath 228 

obtained with the following pixel sizes: A, 1.6mm (vertical) x 2.3mm (horizontal); B, 1.1mm x 1.5mm; C, 229 

0.8mm x 1.1mm; D, 0.4mm x 0.5mm. In the lower resolution images (A-C), concentric truncation 230 

artifacts emanating from the two syringe barrels overlap the spinal cord, impeding evaluation of its 231 

signal intensity at the site of compression. In the highest resolution image (D), the spinal cord at the site 232 

of compression had slightly increased signal intensity, apparently as a result of convergence of 233 

hyperintense truncation artifacts arising from the dorsal and ventral surfaces of the cord.  234 

 235 

  236 



17 
 

Figure 6. T2w sagittal image of the cervical spine of a dog with surgically-confirmed intervertebral disc 237 

extrusion at C4/5.At the site of disc extrusion (arrowhead) the cord is displaced dorsally and is narrowed 238 

compatible with compression and is relatively hyperintense. Although this hyperintensity could 239 

represent a spinal cord lesion, it is possible that it is formed by the convergence of hyperintense 240 

truncation artifacts arising from the dorsal and ventral surfaces of the cord.  241 

 242 


