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Abstract 16 

Diagnostic imaging is essential for diagnosis and management of many common 17 

problems, but imaging is not 100% accurate and does not always benefit the patient in the 18 

way intended. When assessing the need for imaging of a patient, the probability that the 19 

patient has a morphological lesion, the accuracy of the imaging test, and the likelihood of a 20 

beneficial impact on the patient must all be considered. Few imaging tests are sufficiently 21 

accurate that they enable a diagnosis to be ruled in or out; instead the result of imaging only 22 

modifies the probability of a diagnosis.  23 

 24 

Potential problems with excessive use of imaging tests include false positive 25 

diagnoses, incidentaloma and overdiagnosis, all of which may contribute to a negative benefit 26 

to the patient. Clinicians must be selective in their use of imaging studies for their patients, 27 

use existing clinical information when interpreting images and sensibly apply the results of 28 

imaging in the context of the needs of individual patients. There is a need for more clinical 29 

research to assess the impact of diagnostic imaging studies for veterinary patients with 30 

common conditions to help clinicians make decisions conducive to optimal patient care.  31 

 32 

Keywords: Accuracy; Diagnostic imaging; Overdiagnosis; Screening; Staging  33 
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Introduction 34 

In the 21st century, veterinary radiologists are able to utilise a wider range of 35 

diagnostic modalities and their services are in greater demand than ever before. Radiography 36 

has been the mainstay of diagnostic imaging for decades, but ultrasonography (US), 37 

computed x-ray tomography (CT) and magnetic resonance imaging (MRI) are now in routine 38 

use in veterinary referral hospitals throughout the world. These cross-sectional imaging 39 

modalities eliminate the problem of superimposition that affects radiography and therefore 40 

enable clearer depiction of anatomy and clearer depiction of morphological abnormalities that 41 

alter anatomy. As a result, cross-sectional imaging modalities are inherently better detectors 42 

of disease than radiography and are useful complementary methods of imaging patients.  43 

 44 

To many, it will seem obvious that imaging is essential for diagnosis and 45 

management of many common problems, such as a fracture; however, while this is true, it 46 

must be recognised that imaging is not 100% accurate and does not always benefit the patient 47 

in the way intended. For example, not all fractures are detected by imaging, results of 48 

imaging sometimes suggest a fracture when none is present and fractures are not always 49 

correctly distinguished from other bone lesions. These limitations in clinical use of diagnostic 50 

imaging reflect variations in the nature of disease, imperfections in imaging technology and 51 

errors made by those interpreting images. Furthermore, even when each link in the imaging 52 

chain is strong, there may be limited benefit to the individual patient because imaging was 53 

unnecessary, the abnormalities detected required no treatment, selection of optimal treatment 54 

did not depend on the results of imaging or the results of imaging lead to incorrect patient 55 

management decisions (Lamb and David, 2012).  56 

 57 
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In medicine, an ‘indication’ is a valid reason to use a diagnostic test or treatment. 58 

There are three questions that a clinician needs to answer in order to determine whether 59 

imaging is indicated for a patient (Weinstein et al., 2005):  60 

 61 

1. What is the probability that this patient has a morphological lesion?  62 

2. How accurate is the imaging test being considered?  63 

3. Are the results of imaging likely to have a beneficial impact on patient management? 64 

 65 

The indication for imaging is strongest when the answers to these questions are high, 66 

high, yes; however, multiple combinations of answers are possible. When a patient is 67 

considered unlikely to have a morphological lesion, the indication for imaging is weak and 68 

serious consideration should be given to not performing imaging. 69 

 70 

Probability 71 

An assessment by a clinician of the probability that a patient has an abnormality, 72 

condition or specific diagnosis occurs early in a typical clinical encounter. Based on the 73 

patient's history and clinical signs, it may be possible to estimate the likelihood of a 74 

diagnosis, which is its pre-test probability. Diagnostic tests, including imaging studies, do not 75 

generally prove or disprove a diagnosis; instead the result of a test modifies the pre-test 76 

probability of a diagnosis, converting it into the post-test probability. When speaking about 77 

results of diagnostic tests, a positive result is abnormal and a negative result is normal 78 

(Guyatt, 2006). Positive test results increase the probability of diagnosis (post-test probability 79 

> pre-test probability) whereas negative test results decrease the probability of diagnosis 80 

(post-test probability < pre-test probability) (Fig. 1).  81 

 82 
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It should be noted that if – based on the history and clinical signs – the pre-test 83 

probability of a specific diagnosis is very low, it will remain low even if the result of a 84 

diagnostic test for that diagnosis is positive, and if the pre-test probability is very high, it will 85 

remain high even if the diagnostic test result is negative. An imaging example of this 86 

principle is CT for pulmonary metastasis. CT is clearly a more sensitive test for pulmonary 87 

nodules that radiography (Nemanic et al., 2006), but if the pre-test probability of metastasis is 88 

high because the patient has a malignant neoplasm with known tendency for pulmonary 89 

metastasis (e.g. canine long-bone osteosarcoma) a negative thoracic CT does not rule out 90 

metastasis (Fig. 2). Key point: post-test probability partly depends on pre-test probability. 91 

 92 

Estimating the pre-test probability is a challenge for clinicians (Attia et al., 2004) 93 

and many clinicians do not take prevalence of disease into account when interpreting test 94 

results (Agoritsas et al., 2011). Clinicians tend to rely on their perceptions of what conditions 95 

are more likely but, in theory, it should be possible to determine the prevalence of all the 96 

important conditions in the population of animals that are registered with a particular 97 

veterinary practice, and to use that information to estimate pre-test probability because, at the 98 

start of a consultation, the likelihood that the patient has disease X (pre-test probability) will 99 

be equal to the prevalence of disease X in the population of animals that use that practice. 100 

With computerised medical records, these data are retrievable and work to do this has started 101 

(O'Neill et al., 2014a, b).  102 

 103 

Diagnostic imaging modalities (with the exception of scintigraphy) depict 104 

morphology and enable detection of diseases that alter normal morphology. When 105 

considering pre-test probability of disease as a prelude to selection of an imaging test, it is the 106 

likelihood of morphological lesions that is most relevant. Although signs of certain functional 107 
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disorders may sometimes be detected by imaging, many animals with functional disorders 108 

such as endocrinopathies, immune-mediated conditions, renal insufficiency or diarrhoea have 109 

none or non-specific morphological changes, hence the results of imaging are likely to be 110 

negative (Leib et al., 2012).  111 

 112 

Role of clinical history 113 

For all types of diagnostic testing, the pre-test probability partly determines the post-114 

test probability. In the case of diagnostic imaging, pre-test probability is also liable to 115 

influence the result because radiologists use their estimate of the pre-test probability when 116 

interpreting diagnostic images. Although it is possible to report radiographs, CT or MRI 117 

studies without knowledge of the patient, this is not advisable in a clinical setting. Only with 118 

knowledge of the patient and their clinical signs can the radiologist judge the adequacy of the 119 

images obtained, account for anatomical variants (which is particularly important in 120 

veterinary medicine), interpret the likely meaning of a negative study and answer any specific 121 

questions raised by the primary clinician. Furthermore, knowing the history makes it more 122 

likely that a radiologist will detect a relevant abnormality and less likely that they will 123 

overinterpret a normal feature of the images (Berbaum et al., 1986; Berbaum et al., 1993; 124 

Peterson, 1999; Loy and Irwig, 2004). Radiologists use information about the patient as a 125 

guide ‘diagnostic schema’ that enables them to weigh possible interpretations against the pre-126 

test probability of disease (Wood, 1999). Similarly, having access to a patient’s prior images 127 

or imaging reports can significantly increase a radiologist’s confidence, facilitate new 128 

observations and may result in more specific diagnosis (Aideyan et al., 1995).  129 

 130 

Accuracy  131 

Detection of disease 132 
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When using a diagnostic test with binary results (i.e. positive or negative), there are 133 

four possible outcomes because the patient may or may not have the disease and the test 134 

result could be positive or negative. These possibilities may be illustrated by a 2 x 2 table 135 

(Table 1).  136 

 137 

False negative results occur when a disease or condition is present, but is not 138 

detected. In diagnostic imaging, this is liable to occur if images are obtained of the wrong 139 

body part, images are poor quality, or if the lesion is too small to be resolved. False positive 140 

results occur if a patient that does not have the disease under investigation has a test result 141 

that is interpreted as positive for that disease. In diagnostic imaging, this is liable to occur if 142 

technically poor images are obtained that mimic an abnormality, an anatomical variant is 143 

misinterpreted as abnormal or signs of an unrelated subclinical condition are misinterpreted 144 

as the cause of clinical signs (Fig. 3). Trainees in radiology are particularly prone to false 145 

positive errors, possibly because they lack sufficient knowledge of radiographic anatomy 146 

and/or have an unrealistically high expectation that the images will be abnormal (Lamb et al., 147 

2007). Within increasing experience, radiologists become more accurate mainly because they 148 

make fewer false positive errors (Lamb et al., 2011).  149 

 150 

The sensitivity of a test is defined as the proportion of affected patients that have a 151 

positive test result. Sensitivity = true positive (TP)/(TP + false negative [FN]). A highly 152 

sensitive test gives a positive result in nearly all diseased subjects. Specificity is defined as 153 

the proportion of unaffected patients that have a negative test result. Specificity = true 154 

negative (TN)/(TN + false positive [FP]). A test of high specificity gives a negative result in 155 

most patients without the disease.  156 

 157 
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Sensitivity and specificity are often calculated in papers describing the results of 158 

imaging in clinical patients, but it should be emphasised that these indices do not represent 159 

intrinsic properties of the test in question. Estimates of sensitivity and specificity will vary 160 

because of differences in the definition of the disease, the way the imaging is performed, and 161 

the characteristics of patients with and without the target disease (Whiting et al., 2004). For 162 

example, patients attending primary care practices will generally have disease at an earlier 163 

stage than patients at referral practices, which may mean a test is less sensitive when it is 164 

used in primary care practices. Similarly, investigators sometimes collect subjects for study in 165 

a way that maximises the differences between affected and unaffected groups, for example, 166 

by using healthy individuals (such as dogs volunteered by their owners) as the unaffected 167 

group. This could be valid for ‘Phase 1’ research, which aims to identify tests with potential 168 

clinical utility, but the results will not be applicable to a clinical setting in which all test 169 

subjects are patients (Sackett and Haynes, 2002). For ‘Phase 2’ studies intended to estimate 170 

diagnostic test accuracy in clinical patients, the unaffected group should be subjects who are 171 

similar to the affected group in all aspects except their diagnosis (Guyatt, 2006). Key point: 172 

interpreting reported values for sensitivity and specificity of a diagnostic test requires 173 

knowledge of the patients and methods used to derive these estimates. 174 

 175 

Few imaging tests have both high sensitivity and high specificity. One example is 176 

US for pregnancy diagnosis in farm animals (Hansen and Christiansen, 1976; Davey, 1986). 177 

Knowing that a test has high sensitivity or specificity helps us to use it more effectively in 178 

practice. Although it seems obvious that a highly sensitive test could be used to detect 179 

disease, the most powerful way to take advantage of a test with high sensitivity is to use a 180 

negative result to rule out disease. For example, bone scintigraphy is considered to be a 181 

highly sensitive test for stress fracture in human athletes; this means it is positive in virtually 182 
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all affected individuals, and obtaining a normal (negative) bone scan in a lame athlete rules 183 

out the possibility of stress fracture (Kanstrup, 1997). Conversely, tests of very high 184 

specificity can be used to rule in a diagnosis. The terms SpPIn (for a snsitive test, a negative 185 

result can rule a diagnosis out) and SnNOut (for a test of high specificity, a positive result can 186 

rule a diagnosis in) were designed to help practitioners memorise these principles. 187 

 188 

There are no published examples of veterinary imaging tests that are convincing 189 

SnNOuts. On the contrary, there are numerous well-documented examples of insensitive 190 

imaging studies, including – all in dogs – radiography for pulmonary nodules (Nemanic et al., 191 

2006), extended ventrodorsal radiographs for hip dysplasia (Lust et al., 2001), radiography 192 

for fragmented medial coronoid process (Snaps et al., 1997), US for inflammatory bowel 193 

disease (Rudorf et al., 2005), US for gastrointestinal ulceration (Pastore et al., 2007) and MRI 194 

for meningoencephalitis (Lamb et al., 2005). Examples of veterinary imaging tests that may 195 

be considered SpPIns are tibial compression radiography for cranial cruciate ligament injuries 196 

in dogs (de Rooster et al., 1998) and US for congenital portosystemic shunts in dogs (Lamb, 197 

1996).  198 

 199 

The problem of the ‘Rule out’ 200 

A diagnosis that has been ruled out has a probability that is not significantly 201 

different from zero. Clinicians frequently speak of the need to rule out a diagnosis in their 202 

patients and differential diagnoses are sometimes labelled ‘rule-outs’. This terminology 203 

implies that the process of diagnosis depends on testing to prove that certain conditions are 204 

not present and that when a condition cannot be ruled out, it may be the diagnosis. Although 205 

this seems like a logical process, it is not suitable for medical diagnosis, for several reasons: 206 

first, most diagnostic tests are not sufficiently sensitive that a negative result produces a post-207 
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test probability approaching zero; second, if the pre-test probability is very high, it will 208 

remain high even if after a sensitive diagnostic test has produced a negative result; third, 209 

sequential testing to rule out a series of conditions will inevitably be inefficient compared to 210 

testing to rule in the condition considered most likely based on consideration of the patient’s 211 

history and signs. Following a process of sequential rule outs has been criticised as a 212 

defensive-medicine-minded approach adopted by clinicians relatively unconcerned about 213 

burdening their patients with the wrong diagnosis (Jha, 2014). In contrast, patients (and their 214 

owners and health insurance companies) expect and deserve a more selective approach by a 215 

clinician exercising their clinical judgment and seeking to rule in the diagnosis they consider 216 

most likely.  217 

 218 

Predictive value of a test 219 

Knowing the sensitivity and specificity of a test is of limited value in clinical 220 

practice because these indices have no direct diagnostic meaning (Moons and Harrell, 2003). 221 

Sensitivity is the probability of a patient having a positive test result if they have a disease; 222 

however, clinicians usually want to know the probability of their patient having disease if the 223 

test result is positive or negative. The likelihood that the result of a diagnostic test is a true 224 

reflection of the disease status of the patient is known as the predictive value:  positive 225 

predictive value = TP/TP+FP; negative predictive value = TN/TN+FN. 226 

 227 

Predictive value is markedly affected by the prevalence (pre-test probability) of 228 

disease. Intuitively, one might expect that a negative test result always makes the diagnosis 229 

unlikely, but this is not possible if the pre-test probability is high. Similarly, positive 230 

predictive value is low when the prevalence is low, even for tests of high specificity (Fig. 4). 231 

Unless the prevalence of disease is relatively high, a positive test result is likely to be a false 232 
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positive. The positive predictive value of a test can be maximised by using the test selectively 233 

in those patients considered most likely to have the target condition. A well-known, non-234 

imaging example of this principle is use of blood tests for hyperadrenocorticism in dogs 235 

(Kaplan et al., 1995). If a blood test for hyperadrenocorticism (such as ACTH-stimulation 236 

test) is used in all dogs presented with polydipsia, this will include many dogs with 237 

conditions other than hyperadrenocorticism, such as renal insufficiency and diabetes, hence  238 

the pre-test probability of hyperadrenocorticism  will be low and a large proportion of 239 

positive test results will be false positives; however, if testing for hyperadrenocorticism is 240 

reserved for dogs that have polydipsia and other signs of hyperadrenocorticism (e.g. 241 

hepatomegaly, pendulous abdomen, alopecia), the pre-test probability of 242 

hyperadrenocorticism  will be higher and a larger proportion of positive test results will be 243 

true positives. Key point: selective use of diagnostic testing in patients produces results with 244 

higher predictive value than non-selective testing 245 

 246 

Likelihood ratios 247 

In clinical practice, it is useful to be able to estimate how much a test result affects 248 

the probability of disease. Sensitivity and specificity do not provide this information and 249 

although predictive values do enable estimates of the probability of a disease, they depend 250 

greatly on pre-test probability, which cannot be known precisely. Likelihood ratios represent 251 

a useful alternative index for summarising the accuracy of diagnostic tests. Likelihood ratio is 252 

the ratio between pre- and post-test odds of disease:  pre-test odds of disease x likelihood 253 

ratio = post-test odds of disease. 254 

 255 

When the likelihood ratio associated with a positive test result (PLR) is high (>10), a 256 

positive result greatly increases the probability of the target condition. Conversely, when the 257 
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likelihood ratios associated with negative test results (NLR) are low (<0.1) a negative result 258 

markedly decreases the probability of the target condition.  259 

 260 

The strength of the association between an imaging sign and pathology can be 261 

usefully expressed using likelihood ratios. For example, in dogs with chronic nasal signs, one 262 

of the main aims of radiography is to distinguish the two principal differential diagnoses: 263 

rhinitis and neoplasia. Based on data in a case-control study of dogs with nasal disease 264 

(Russo et al., 2000), the radiographic signs most strongly associated with rhinitis are nasal 265 

structures that look normal  (LR 3.3, 95% confidence interval 1.4–7.7) and intranasal lucent 266 

foci (LR 3.3, 95% confidence interval  1.7–6.4) whereas the radiographic signs most strongly 267 

associated with nasal neoplasia are lysis of bone around margins of nasal cavity (LR 10.3, 268 

95% confidence interval 3.4–31.2) and soft tissue/fluid opacity in the ipsilateral frontal sinus 269 

(LR 4.9, 95% confidence interval 2.3–10.7). Of these signs, lysis of bone around margins of 270 

the nasal cavity has the highest likelihood ratio and, therefore, may be considered the most 271 

accurate sign for distinguishing rhinitis and nasal neoplasia.  272 

 273 

What is the accuracy of veterinary imaging studies? 274 

In a systematic review of 5936 articles published in the period 1976-2006, only 88 275 

contained sufficient data to assess the diagnostic performance of imaging studies (Lamb, 276 

2008a). These 88 articles described 103 studies involving a range of imaging modalities and 277 

target conditions, with widely varying sensitivities and specificities. Excluding studies of 278 

pregnancy diagnosis, the median sensitivity was 78% (range 0-100%) and specificity 92% 279 

(range 33-100%). PLR was >10 in 21 (27%) studies and NLR was <0.1 in 13 (17%), and 280 

only 8 (10%) diagnostic imaging tests had both high PLR and low NLR. For most imaging 281 
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tests for which performance data are available, sensitivity and specificity are only moderate, 282 

hence it appears that few imaging tests could be used to rule in or rule out a diagnosis.  283 

 284 

What is the accuracy of veterinary imaging studies that employ measurements? 285 

In a recent systematic review of veterinary imaging tests that employ measurements, 286 

the median sensitivity was 77% (range 38-99%), specificity was 82% (range 50-99%), PLR 287 

was 4.1 (1-103) and NLR was 0.29 (0.01-1) (Lamb and Nelson, 2015). These moderate 288 

values for sensitivity and specificity primarily reflect the fact that the normal size ranges for 289 

many anatomical structures are very wide, hence there is marked overlap between normal and 290 

pathologic ranges. This overlap is particularly marked in dogs, which exhibit exceptionally 291 

wide phenotypic variation compared to other animals. Even for anatomical structures that 292 

would not be expected to vary greatly with conformation, wide normal size ranges may be 293 

observed. For example, abdominal lymph nodes in dogs are variable in size and number in 294 

CT images (Beukers et al., 2013), which complicates interpretation of size in clinical patients. 295 

Furthermore, the association between lymph node size and presence of nodal metastasis is 296 

relatively weak, hence assessment of lymph node size alone is insufficient for accurate 297 

clinical staging of neoplasia. When a significant risk of lymphatic metastasis exists in a 298 

patient, cytologic or histologic examination of regional lymph nodes is indicated regardless 299 

of the size of those nodes (Williams and Packer, 2003).  300 

 301 

There is a tendency among clinicians to assume that making measurements of 302 

structures in diagnostic images will increase diagnostic accuracy, particularly for 303 

inexperienced observers; however, there is no evidence that this is true.  For example, two 304 

studies found that observers making radiologic measurements of the heart in dogs with 305 

suspected cardiac disease and the small intestinal diameter in dogs with suspected intestinal 306 
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obstruction were no more accurate than when they relied on subjective assessment alone 307 

(Lamb et al., 2000; Ciasca et al., 2013). These findings applied equally to experienced and 308 

inexperienced observers (Lamb et al., 2000; Ciasca et al., 2013). In general, emphasis on 309 

measurements is unwarranted because the pathologic effects of disease are invariably 310 

multiple and optimal radiographic interpretation depends on assessment of all the possible 311 

ways in which the image may be abnormal.  312 

 313 

Strength of imaging-pathological correlations 314 

A judgement that diagnostic images are abnormal constitutes a positive test result, 315 

but that represents only a superficial summary of the meaning of the images, which 316 

invariably show morphological features representing the abnormality. Reports of imaging 317 

studies always include a description of abnormalities according to six possible morphological 318 

‘Roentgen’ signs:  number, size, shape, position and margination. The remaining sign is 319 

signal amplitude, which is depicted as the grey level in the image. This sign is modality-320 

specific: we speak about opacity for radiography, echogenicity for US, density or attenuation 321 

for CT and intensity for MRI.  322 

 323 

One of the goals of diagnostic imaging is to enable specific diagnosis based on 324 

correctly deducing the pathological nature of a lesion from its imaging signs. This works 325 

quite well at the macroscopic level, where imaging signs frequently correspond closely to the 326 

changes found at surgery or necropsy. If a radiologist reports a fracture, a mass, pulmonary 327 

consolidation, pleural or peritoneal fluid or presence of calculi, the surgeon or pathologist 328 

will frequently find that abnormality on gross inspection. Particularly with cross-sectional 329 

imaging there is the potential for relatively detailed imaging-pathological correlations. For 330 

example, a recent study found that features of CT images of canine adrenal neoplasms 331 
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correlated well with pathological features including vascular invasion, pseudoencapsulation, 332 

haemorrhage and necrosis (Gregori et al., 2015).  333 

 334 

Less good correlations may be expected when attempting to deduce microscopic 335 

features of lesions, such as the type of cells in a mass, from the imaging signs. This problem 336 

is illustrated by recent studies attempting to correlate patterns of contrast accumulation in CT 337 

images of hepatic masses with their histological diagnosis (Fukushima et al., 2012; Kutara et 338 

al., 2014; Jones et al., 2016). The rationale for this approach is that benign hepatic masses 339 

containing relatively well-differentiated hepatocytes will tend to enhance most strongly in 340 

early post-contrast images because of their relatively abundant arterial blood flow and lack of 341 

necrotic or haemorrhagic components, whereas malignant hepatic masses will tend to out-342 

grow their blood supply and have a significant necrotic component, so enhance less. 343 

However, marked enhancement in early post-contrast images was found to occur both with 344 

malignant neoplasms, such as hepatocellular carcinoma, and with non-malignant lesions, 345 

such as hepatic adenoma and nodular hyperplasia (Fukushima et al., 2012; Kutara et al., 346 

2014; Jones et al., 2016). Fundamentally, the histologic diagnosis of these hepatic lesions is 347 

based on cellular architectural features that occur on a scale far below that depicted in CT 348 

images. Furthermore, the histologic features used by pathologists for diagnosis of hepatic 349 

masses exist in a spectrum of severity in which the boundaries between well-differentiated 350 

hepatocellular carcinoma and adenoma, and between adenoma and nodular hyperplasia, are 351 

not always clearly defined.  Consequently, links between imaging signs, which primarily 352 

represent non-specific macroscopic features, and histologic diagnoses will be tenuous (Fig. 353 

5). To date, no consistent differences in quantitative or categorical CT data between 354 

malignant and non-malignant hepatic masses have been identified, hence diagnosis still relies 355 

on histology.  356 
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 357 

Impact 358 

Clinical studies often focus on the accuracy of diagnostic imaging; however, the 359 

ultimate standard of the usefulness of a diagnostic test is not its accuracy, but whether it 360 

improves patient outcomes (Guyatt et al., 2006; Sistrom, 2009). Tests with the greatest 361 

diagnostic impact are available for all patients that need testing, inexpensive, sufficiently 362 

accurate that other tests become unnecessary and lead to improved patient outcomes.  363 

 364 

Although it may be assumed that newer, more advanced imaging techniques are 365 

better than radiography because they are more sensitive, this does not mean that patients 366 

automatically benefit from the introduction of new technology. For example, in veterinary 367 

practices with CT, few dogs or cats have survey radiography to investigate nasal signs 368 

because they have CT instead. A CT scan of the head may be done more quickly, provides a 369 

more detailed depiction of most lesions and may be interpreted with more confidence than a 370 

series of radiographs; however, differentiating rhinitis from nasal neoplasia is based on the 371 

same criteria as for survey radiography, hence the diagnostic accuracy of CT is similar 372 

(Saunders and van Bree, 2003; Saunders et al., 2003; Tromblee et al., 2006; Karnik et al., 373 

2009). Furthermore, imaging of the nasal cavity in a referral setting is invariably followed by 374 

endoscopy, nasal flushing or biopsy for definitive diagnosis, and this is true for patients 375 

having radiography or CT. The additional benefit of CT for dogs or cats with chronic nasal 376 

signs may be negligible if the remainder of the diagnostic work-up is unchanged.  377 

 378 

Few veterinary studies provide good evidence of benefits to patients occurring as a 379 

result of diagnostic imaging. We looked for evidence of improved outcomes for canine spinal 380 

patients having MRI, which has largely replaced myelography in small animal practice 381 
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(Naude et al., 2008; Robertson and Thrall, 2011). A retrospective cross-sectional study was 382 

done of 107 dogs with non-ambulatory thoracolumbar spinal disease that had myelography or 383 

MRI during a period when MRI was available only 2 days per week, hence choice of imaging 384 

was primarily determined by day of admission rather than patient factors or clinician 385 

preference. Outcome variables included length of hospitalisation, change in neurological 386 

grade, total cost of hospitalisation and mortality. No significant association was found 387 

between type of imaging and any outcome variables except cost of hospitalisation, which was 388 

£670 higher on average for dogs that had MRI (Parry et al., 2010). Hence, although MRI may 389 

be considered advantageous compared to myelography because it is non-invasive and 390 

provides superior anatomical detail, no beneficial effect on outcome of dogs with non-391 

ambulatory thoracolumbar spinal disease was found. 392 

 393 

In these examples, introduction of CT or MR has no apparent impact. It is also 394 

possible to identify clinical scenarios in which imaging applied with good intentions has a 395 

negative impact on patients.  396 

 397 

Screening 398 

Diagnostic testing is done because of clinical suspicion of disease in an individual 399 

patient (or group of patients) whereas screening implies using a test in individuals considered 400 

at risk for disease, but not showing any clinical signs (Brawley and Kramer, 2005). The aim 401 

of screening is generally to identify affected individuals before they develop clinical signs, 402 

and the potential benefit is easier and/or more effective treatment of the disease, which has 403 

been detected at an earlier stage than it would otherwise have been. This, in turn, may lead to 404 

reduced morbidity and mortality. The best documented example of screening based on 405 

imaging is mammography to detect breast cancer in women (Welch and Frankel, 2011; 406 
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Gotzsche and Jorgensen, 2013). Although there are relatively few screening programmes for 407 

companion animals (e.g. radiography for hip dysplasia), screening for subclinical disease 408 

occurs in health programmes for healthy geriatric animals and in comprehensive work-ups for 409 

sick animals.  410 

 411 

Screening is usually done when the prevalence of disease is low in the population 412 

and the pre-test probability of diagnosis is low in each individual being tested. For this 413 

reason, a positive result is likely to be a false positive unless the specificity of the screening 414 

test is unusually high (Lamb, 2008b). Screening tests have great potential for harm because of 415 

the morbidity that follows unnecessary further testing or treatment of individuals with false 416 

positive results (Gotzsche and Jorgensen, 2013). Key point: the benefit of screening can be 417 

determined only by a randomised clinical trial. 418 

 419 

For example, the finding of neoplasia at necropsy in 23% old dogs with primary 420 

brain tumours prompted a recommendation that screening tests (to look for additional 421 

tumours) should be performed before imaging the brain (of dogs with suspected intracranial 422 

neoplasia) (Snyder et al., 2006). Clinicians should be cautious about routinely following this 423 

recommendation. In a dog presenting only with neurological signs referable to the brain, 424 

logic dictates that the most likely outcomes of screening the rest of the body will be a 425 

negative result or a positive result that represents an unrelated, clinically silent lesion. Despite 426 

the obvious possibility that the clinically silent lesion may never cause clinical signs, the 427 

tendency in such cases is to investigate the new lesion and withhold or delay further work-up 428 

and/or treatment for the original condition, which risks increased mortality. The least likely 429 

outcomes of screening the rest of the body of this patient will be a distant lesion that explains 430 

the neurological signs or an unrelated lesion that is considered so serious that it contra-431 
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indicates further work-up. Hence, it should be evident that screening a dog with suspected 432 

intracranial neoplasia is more likely to have a negative impact (because of waste of resources 433 

and increased mortality) than to benefit the patient (by improving outcome for the presenting 434 

complaint). Concentrating on the problem for which the patient presented is preferable to 435 

screening for unrelated disease.  436 

 437 

Staging neoplasia 438 

The results of staging in a patient with cancer should carry a prognostic meaning that 439 

helps predict the likely outcome; however, the World Health Organisation stage does not 440 

necessarily correlate with outcome measures in veterinary patients (Flory et al., 2007). Also, 441 

as more sensitive imaging modalities are used for staging neoplasia, signs of nodal or distant 442 

metastasis are identified in a larger proportion of patients than those staged previously using 443 

less sensitive imaging, such as radiography alone. This effect, known as stage inflation (Flory 444 

et al., 2007), is a problem because it confounds comparisons between results of clinical trials, 445 

which may undermine decisions by clinicians managing patients with neoplasia.  446 

 447 

CT has higher sensitivity for pulmonary nodules than radiography (Nemanic et al., 448 

2006), hence it is recommended for staging animals with malignant neoplasms liable to 449 

metastasise to the lung; however, caution is necessary when interpreting pulmonary CT 450 

images of such patients because lack of visible nodules does not rule out the possibility of 451 

metastasis and because a pulmonary nodule could represent a benign lesion unrelated to the 452 

primary neoplasm. There are limited veterinary data on this subject, but in children with 453 

cancer pulmonary nodules that represent benign or incidental findings cannot be reliably 454 

distinguished from malignant nodules without biopsy (Absalon et al., 2008). Finding large 455 

numbers of pulmonary nodules at CT is associated with malignancy (Absalon et al., 2008), 456 
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but finding a solitary nodule is problematical. For nodules that are not amenable to biopsy, it 457 

is usual to repeat the CT after a period of time to look for changes (Libby et al., 2004). Lack 458 

of enlargement of a nodule supports a diagnosis of ‘non-malignant’.  459 

 460 

A similar problem occurs when examining the liver for signs of metastasis in dogs 461 

with abdominal neoplasia. The high prevalence of benign hepatic lesions in older dogs means 462 

that a hepatic nodule could easily represent a benign, incidental finding rather than a 463 

metastasis (Clendaniel et al., 2014). Similarly, although multiple hepatic lesions might be 464 

assumed to be more likely to represent metastasis than a solitary lesion (Cuccovillo and 465 

Lamb, 2002; Clendaniel et al., 2014), this is not a safe assumption (Levinson et al., 2009).  466 

 467 

Staging of patients with malignant neoplasms should be done based on knowledge of 468 

the usual biological behaviour of the neoplasm. For example, the large majority of canine 469 

long-bone osteosarcomas metastasise to the lung and a small proportion metastasise to the 470 

regional lymph nodes, so the lungs and lymph nodes should be examined in affected dogs. In 471 

contrast, metastasis to abdominal organs, such as the liver or kidneys, is rare (pre-test 472 

probability is very low), so there is no more than a weak indication to examine the abdominal 473 

organs (Wallace et al., 2013). Pursuing a weak indication can be counter-productive. Use of 474 

abdominal imaging in dogs with long-bone osteosarcomas is far more likely to produce 475 

incidental findings than signs of metastasis, which leads to unnecessary additional work-up, 476 

over-diagnosis and reduced survival time (Sacornrattana et al., 2013).  477 

 478 

The problem of the ‘incidentaloma’ 479 

One of the drawbacks of using imaging for screening or staging patients is the 480 

occurrence of incidental findings, i.e. abnormalities without associated clinical signs (Fig. 6). 481 
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It can be difficult to decide if a finding is likely to be incidental or relevant, particularly in 482 

patients with non-specific or vague clinical signs, and whether or not to pursue it with further 483 

diagnostic tests, such as biopsy (Aspinall et al., 2013). Liaison between the primary clinician 484 

and the radiologist is essential when considering what to do next. Incidental findings 485 

complicate a diagnostic work-up, can confuse the clinician and/or animal owner and can 486 

contribute to increased morbidity and costs without any corresponding benefit to the patient.  487 

 488 

In a recent study, potentially incidental findings were reported in 77% cats without 489 

respiratory signs that had thoracic CT, for example, to look for metastasis or as part of a 490 

comprehensive medical work-up (Lamb and Jones, 2016). The most prevalent finding was 491 

pulmonary collapse, which was likely exacerbated by sedation or anaesthesia for CT, but 492 

clinically silent bronchial lesions and space-occupying lesions were also observed frequently. 493 

Another well-recognised example of incidentaloma is the occurrence of hyperplastic nodules 494 

of the liver, spleen or adrenal glands in dogs (Stowater et al., 1990; Myers, 1997; Warren-495 

Smith et al., 2012; Cook et al., 2014). The prevalence of both hyperplastic nodules and 496 

neoplasia increases with age (Myers, 1997), hence distinguishing these conditions is most 497 

often a problem encountered when managing older dogs.  498 

 499 

Overdiagnosis 500 

Overdiagnosis refers to diagnosis of disease that may never cause clinical signs 501 

during a patient's lifetime. The diagnosis may be correct but, if a lesion never causes any 502 

clinical signs, it is irrelevant. For example, diagnosis of malignancy is sometimes based on 503 

subtle histological abnormalities, such as capsular invasion. In tumours that metastasise 504 

infrequently, the rationale for labelling such tumours as ‘cancer’ on this basis is questionable 505 

(Williams, 2000). Using the term cancer for a tumour unlikely to cause significant harm to 506 
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the patient widens the definition of cancer and is one type of overdiagnosis (Moynihan et al., 507 

2012).  508 

 509 

Overdiagnosis leads to reclassification of normal individuals as diseased and 510 

reclassification of patients presenting with one condition as patients with multiple conditions. 511 

Use of advanced imaging contributes to overdiagnosis by detecting ever smaller 512 

abnormalities. Prevention of overdiagnosis requires mature judgement by clinicians and 513 

specific measures, such as raising thresholds for disease (Moynihan et al., 2012). 514 

Overdiagnosis is recognised as a growing problem in medicine, but there are currently no 515 

veterinary studies of this subject.   516 

 517 

Conclusions 518 

It is important that clinicians are selective in their use of imaging studies for their 519 

patients, that existing clinical information is used when interpreting images and that the 520 

results of imaging are applied sensibly in the context of the needs of individual patients. 521 

There is a need for more clinical research to assess the impact of diagnostic imaging studies 522 

for veterinary patients with common conditions to help clinicians make decisions conducive 523 

to optimal patient care.  524 
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 745 

Table 1. Possible results of binary tests 746 

 Test result 

Patients + - 

Disease present TP FN 

Disease absent FP TN 

TP, true positive; FN, false negative; FP, false positive; TN, true negative. 747 

  748 
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Figure legends 749 

Fig. 1. Schematics illustrating the effect of positive and negative test results on the probability of disease. (A) 750 

For an accurate diagnostic test (sensitivity = 90% and specificity = 90%), a pre-test probability of 50% (circle) 751 

is increased to 90% by a positive test result (triangle) and decreased to 10% by a negative test result (square). 752 

(B) The most marked increase in post-test probability occurs with a positive result for a test of high specificity 753 

whereas the most marked decrease in post-test probability occurs with a negative result for a test of high 754 

sensitivity.  755 

 756 
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Fig. 2. A negative CT scan does not rule out the possibility of pulmonary metastasis. Tranverse CT images of a 757 

St. Bernard dog with osteosarcoma of the right distal radius. Initial scan (A) appears normal, but repeat scan (B) 758 

only 3 months later shows multiple pulmonary metastases. 759 

 760 

  761 
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Fig. 3. Example of a subclinical condition that could be misinterpreted as the cause of clinical signs. Sagittal (A) 762 

and dorsal (B) CT images of the thoracic spine of a French bulldog with signs of spinal pain.  Multiple 763 

hemivertebrae are present, but these usually represent a subclinical finding in this breed. In this instance, the 764 

clinical signs were related to a cervical disc extrusion.  765 

 766 

 767 
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Fig. 4. Schematic illustrating the relationship between the predictive value of a test result and prevalence of 768 

disease. Positive predictive value (PPV) is low when prevalence is low. Unless the prevalence of disease is 769 

relatively high, a positive test result is likely to be a false positive (i.e. predictive value <50%). The opposite is 770 

true for negative predictive (NPV) value.  771 

 772 

 773 

Fig. 5. The imaging signs associated with a specific disease will be most closely related to its gross 774 

(macroscopic) structural features, less closely related to its dysfunctional effects and indirectly related to the 775 

cellular features that are the basis for the pathological diagnosis.  776 

 777 

  778 
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Fig. 6. Examples of incidental findings. (A) Multiple pulmonary bullae (arrowheads) in a thoracic radiograph of 779 

a dog with a cough that resolved with conservative treatment. (B) Splenic mass (arrows) discovered during 780 

comprehensive work-up of a dog with dysrhythmia. The dysrhythmia resolved spontaneously and the splenic 781 

mass was subsequently proved to be a haematoma.  782 
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