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ABSTRACT 

 

There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the 

cellular prion protein (PrPC). Since GPI anchors can alter protein targeting, trafficking and cell signalling, 

our recent study examined how the structure of the GPI anchor affected prion formation. PrPC containing a 

GPI anchor from which the sialic acid had been removed (desialylated PrPC) was not converted to PrPSc in 

prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons 

desialylated PrPC was associated with greater concentrations of gangliosides and cholesterol than PrPC. In 

addition, the targeting of desialylated PrPC to lipid rafts showed greater resistance to cholesterol depletion 

than PrPC. The presence of desialylated PrPC caused the dissociation of cytoplasmic phospholipase A2 

(cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrPSc production.  

We conclude that the sialic acid moiety of the GPI attached to PrPC modifies local membrane 

microenvironments that are important in PrP-mediated cell signalling and PrPSc formation.  

 

Prion diseases occur following the conversion of a normal host protein designated the cellular prion protein 

(PrPC) into disease-associated isoforms (PrPSc); the accumulation of which within the brain is associated 

with neurodegeneration and clinical symptoms. While much of the focus of prion research has been on 

protein structure, it is the role of the glycosylphosphatidylinositol (GPI) anchor, also described as the 

protein’s “tail”, that links most PrPC molecules to membranes 1 which has maintained our interest. There is 

emerging evidence that the homogeneity of GPIs can alter the cellular targeting and the subsequent 
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trafficking of proteins, which has implications for prion formation. Our recent paper examined the effects 

of sialic acid, a rare modification of mammalian GPI anchors 2, upon the properties of PrPC and 

consequently prion formation 3. 

 

Although the presence of PrPC is essential for prion formation 4, not all cells that express PrPC are permissive 

for PrPSc replication and the reasons why these cells do not replicate PrPSc are not understood. Reports that 

efficient PrPSc formation occurs only when PrPC is targeted to specific membrane microdomains 5 indicated 

that factors that affect the cellular targeting and intracellular trafficking of PrPC are critical in regulating 

PrPSc formation. A seminal study showed that the presence of a GPI anchor targets PrPC to lipid rafts and 

that these are required for efficient PrPSc formation 6. It should be noted that the term lipid raft is somewhat 

simplistic as there exist many different rafts. The variety in their composition and function 7 raises the 

possibility that prion formation occurs only in a select number of rafts. The composition of the GPI anchor 

is one factor that contributes to the targeting of PrPC to specific lipid rafts. 

 

Neuraminidase digestion was used to produce a PrPC with a GPI anchor lacking sialic acid (desialylated 

PrPC), a modification that could not be achieved by genetic manipulation methods 8. Our recent paper 

reported 4 major observations: 

1) Desialylated PrPC was not converted to PrPSc. 

2) Desialylated PrPC inhibited the conversion of PrPC to PrPSc. 

3) Desialylated PrPC behaved differently from PrPC with regards to its effects on membrane composition 

and cell signalling.  

4) Desialylated PrPC disrupted cell signalling mediated by PrPC. 

 

Initially Prnp(0/0) neurons pulsed with PrPSc were used to demonstrate that while exogenous PrPC was 

converted to PrPSc, exogenous desialylated PrPC was not. These experiments were supplemented with 

studies in wildtype neurons pulsed with PrPSc. In these cells the addition of PrPC increased PrPSc formation 

whereas desialylated PrPC significantly reduced the amount of PrPSc produced. The obvious question, “why 

do the effects of PrPC and desialylated PrPC differ so greatly?” was explored. Although both PrPC and 

desialylated PrPC were targeted to lipid rafts in recipient Prnp(0/0) neurons, sucrose density gradients 

suggested that they were targeted to different rafts; observations consistent with reports that lipid rafts are 

heterogeneous 7 and that the composition of the GPI anchor targets proteins to specific rafts.  

 

The membrane surrounding GPI-anchored proteins is composed of specific phospholipids, glycolipids and 

cholesterol that constitute a lipid raft, the composition of which is dependent upon multiple interactions 
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between the protein, glycans and membrane lipids 9. It is thought that a change in the composition of the 

GPI affects the composition of the surrounding raft. This hypothesis is supported by observations that the 

composition of GPIs attached to Thy-1 differs from those attached to PrPC 2, 10 and that the membranes 

surrounding these molecules have different lipid compositions 11. Therefore we hypothesised that the 

presence of sialic acid in the GPI has a direct effect upon the composition of the surrounding membrane. 

 

When immunoprecipitation studies were used to isolate rafts surrounding PrPC and desialylated PrPC we 

found significantly higher concentrations of gangliosides and cholesterol associated with rafts containing 

desialylated PrPC than rafts containing PrPC. The significance of these observations was examined with a 

battery of functional tests. Firstly, desialylated PrPC remained within rafts after cholesterol depletion, 

whereas PrPC redistributed to the normal cell membrane. Secondly, desialylated PrPC had a longer half-life 

than PrPC in neurons. Finally, PrPC is released from the surface of cells following activation of an 

endogenous GPI-phospholipase C (GPI-PLC) by glimepiride 12. Glimepiride does not release all GPI-

anchored proteins indicating that the GPI-PLC associates only with specific rafts. Our observation that 

treatment with glimepiride did not release desialylated PrPC from cells indicated that desialylated PrPC 

occupies different rafts to PrPC. Although we do not know how sialic acid affects the composition of rafts 

it is possible that sialic acid contained within the GPI competes with gangliosides for sialic acid-binding 

proteins. If so then the removal of sialic acid from the GPI would allow greater incorporation of gangliosides 

into PrPC-containing rafts. Gangliosides sequester cholesterol within the membrane which increases 

membrane rigidity and helps stabilize lipid rafts 13-15. Thus the increased concentrations of gangliosides 

surrounding desialylated PrPC would then explain the observed increased cholesterol density in rafts 

surrounding desialylated PrPC and the increased resistance of desialylated PrPC to cholesterol depletion. 

This hypothesis is compatible with reports the concentrations of gangliosides in rafts affects the expression 

and function of some GPI-anchored proteins 16, 17 including PrPC 18. 

 

Desialylated PrPC also inhibited the conversion of PrPC to PrPSc in primary cortical neurons and in 2 prion-

infected cell lines, ScN2a and ScGT1 cells. Others have shown that the co-expression of mutant prion 

proteins had altered the cellular localisation of wild type PrPC and portioning into lipid rafts 19.  Since the 

composition and hence the function of rafts is dynamic and controlled by an “induced fit” model 7 the 

concept that the binding of desialylated PrPC to PrPSc modifies lipid rafts that are involved in PrPSc formation 

was explored 6.  More specifically, as the composition of membranes is affected by the glycan structure of 

GPIs 9 then the membrane surrounding PrPSc:PrPC complexes would be expected to differ from membranes 

surrounding PrPSc:desialylated PrPC complexes. We propose that the binding of desialylated PrPC to PrPSc 
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changes the composition of the local membrane so that it is unfavourable for the conversion of PrPC to 

PrPSc.  

 

Studies of T cell receptor signalling show that the coalescence of outer membrane raft proteins affects the 

composition of the cytoplasmic leaflet and its association with signalling molecules 20, 21. To explain how 

membrane composition could affect prion formation we hypothesized that the clustering of sialic acid-

containing GPIs attached to PrP activates cPLA2, a factor that promotes PrPSc formation 22 . This occurs 

naturally as a consequence of PrPSc self-aggregation and experimentally following cross-linkage of PrPC by 

monoclonal antibodies. The cross-linkage of desialylated PrPC did not activate cPLA2 8 and the presence of 

desialylated PrPC reduced activation of cPLA2 in prion-infected neurons. Surprisingly desialylated PrPC did 

not inhibit the phospholipase A2-activating peptide (PLAP)-induced activation of cPLA2 indicating that it 

had an indirect effect upon this enzyme. The targeting of cPLA2 to membranes containing their substrates 

can regulate the formation of second messengers such as platelet-activating factor that facilitate PrPSc 

formation22 and in control ScGT1 cells activated cPLA2 co-localised to PrPSc-containing rafts 23. The 

addition of desialylated PrPC to prion-infected cells caused the dissociation of cPLA2 from rafts indicating 

that the density of sialic acid attached to GPIs is critical to the stabilisation and activation of cPLA2. We 

hypothesize that the binding of desialylated PrPC to PrPSc affects the composition of the underlying 

membrane so that it no longer captured and activated cPLA2. This reduced the activation of cPLA2 by 

existing PrPSc and hindered the conversion of PrPC to PrPSc. It is noteworthy that desialylated PrPC is 

surrounded by more gangliosides than PrPC, which is consistent with reports that gangliosides inhibit the 

activation of cPLA2 24 25. 

 

In conclusion we show that sialic acid attached to the GPI affects the properties of PrPC, altering the 

surrounding cell membrane, PrPC-induced cell signalling and the trafficking of PrPC. Critically the presence 

of desialylated PrPC reduced the activation of cPLA2 and PrPSc formation in prion-infected cells. We 

propose that sialic acid on the GPI anchor attached to PrPC affects its precise membrane targeting and the 

subsequent cell signalling that is conducive to its conversion to PrPSc.  
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