
 

 

RVC OPEN ACCESS REPOSITORY – COPYRIGHT NOTICE 

 

This is the peer-reviewed, accepted manuscript of the following article: 

Robin S.B. Williams and Clive Bate, An in vitro model for synaptic loss in neurodegenerative 

diseases suggests a neuroprotective role for valproic acid via inhibition of cPLA2 dependent 

signalling, Neuropharmacology, Volume 101, February 2016, Pages 566-575, ISSN 0028-

3908. 

The final version is available online via http://dx.doi.org/10.1016/j.neuropharm.2015.06.013.          

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/. 

The full details of the published version of the article are as follows: 

 

TITLE: An in vitro model for synaptic loss in neurodegenerative diseases suggests a 

neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling 

AUTHORS: Robin S.B. Williams and Clive Bate 

JOURNAL TITLE: Neuropharmacology 

VOLUME: 101 

PUBLISHER: Elsevier 

PUBLICATION DATE: February 2016 

DOI: 10.1016/j.neuropharm.2015.06.013 

http://dx.doi.org/10.1016/j.neuropharm.2015.06.013
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1 

An in vitro model for synaptic loss in neurodegenerative diseases suggests a 

neuroprotective role for valproic acid via inhibition of cPLA2 dependent signalling 

 

Robin S.B. Williams1 & Clive Bate2*  

 

 

1Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, 

Egham, Surrey, TW20 0EX, UK. 

2 Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North 

Mymms, Herts, AL9 7TA, UK. 

 

 

 

 

  



 2 

Running title – Valproic acid protects against synapse damage 

 

*Corresponding Author; Dr Clive Bate, Tel: 01707 666550, Fax 01707 661464, E-mail: cbate@rvc.ac.uk 

 

 

Text pages  28 

Tables     0 

Figures   8 

Number of words in;- 

Abstract    216 

Introduction    472 

Discussion   1287 

 

Abbreviations 

Alzheimer’s disease (AD), amyloid-β (Aβ), α-synuclein (αSN), cellular prion protein (PrPC), cholesterol 

ester hydrolase (CEH), cytoplasmic phospholipase A2 (cPLA2), cysteine-string protein (CSP), decanoic 

acid (DA), di-methyl sulphoxide (DMSO), phospholipase A2-Activating Peptide (PLAP), polyacrylamide 

gel electrophoresis (PAGE), propylisopropylacetic acid (PIA), prostaglandin (PG), valproic acid (VPA), 

vesicle-associated membrane protein (VAMP)-1.  

mailto:cbate@rvc.ac.uk


 3 

Abstract  

 

Many neurodegenerative diseases present the loss of synapses as a common pathological feature. Here we 

have employed an in vitro model for synaptic loss to investigate the molecular mechanism of a therapeutic 

treatment, valproic acid (VPA). We show that amyloid-β (Aβ), isolated from patient tissue and thought to 

be the causative agent of Alzheimer’s disease, caused the loss of synaptic proteins including synaptophysin, 

synapsin-1 and cysteine-string protein from cultured mouse neurons. Aβ-induced synapse damage was 

reduced by pre-treatment with physiologically relevant concentrations of VPA (10 μM) and a structural 

variant propylisopropylacetic acid (PIA). These drugs also reduced synaptic damage induced by other 

neurodegenerative-associated proteins α-synuclein, linked to Lewy body dementia and Parkinson’s disease, 

and the prion-derived peptide PrP82-146. Consistent with these effects, synaptic vesicle recycling was also 

inhibited by these proteins and protected by VPA and PIA. We show a mechanism for this damage through 

aberrant activation of cytoplasmic phospholipase A2 (cPLA2) that is reduced by both drugs. Furthermore, 

Aβ-dependent cPLA2 activation correlates with its accumulation in lipid rafts, and is likely to be caused by 

elevated cholesterol (stabilising rafts) and decreased cholesterol ester levels, and this mechanism is reduced 

by VPA and PIA. Such observations suggest that VPA and PIA may provide protection against synaptic 

damage that occurs during Alzheimer’s and Parkinson’s and prion diseases. 
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Introduction 

 

Neurodegenerative diseases comprise a disparate group of conditions involving a common loss of synaptic 

function. These conditions provide a huge societal impact, with a large number of people experiencing 

severe symptoms. Understanding the molecular processes involved in these diseases and the development 

of either existing treatments (with new indications) or new treatment thus provides an urgent need. 

Alzheimer’s disease is amongst the most important of these diseases, where the progressive loss of neuronal 

function is associated with the production of neurotoxic amyloid-β (Aβ) peptides that are cleaved from the 

C terminal of the amyloid precursor protein (Hardy, 2006). The clinical symptoms in Alzheimer’s disease 

are caused by the loss or dysfunction of synapses (Walsh and Selkoe, 2004), and the best correlate of the 

degree of dementia in Alzheimer’s disease patients is a reduction in synaptic density and the loss of synaptic 

proteins including synaptophysin, cysteine-string protein (CSP), vesicle-associated membrane protein 

(VAMP)-1 and synapsin-1 (Reddy et al., 2005; Terry et al., 1991). Yet the mechanism leading to synaptic 

loss remains unclear. 

 

Other neurodegenerative disorders are also associated with synaptic loss, including Lewy body dementia, 

Parkinson’s disease (Kramer and Schulz-Schaeffer, 2007) and prion diseases (Ferrer, 2002). In vitro models 

for these diseases employ aggregated α-synuclein protein (αSN) that accumulates at synaptic terminals, or 

the prion-derived peptide PrP82-146 (Salmona et al., 2003) to cause synaptic damage in cultured neurons 

(Bate et al., 2010). Such neurotoxic peptides have been shown to cause a reduction in synaptic density as 

determined by quantifying the amounts of synaptophysin and CSP. The molecular and cellular mechanisms 

involved in αSN and PrP82-146-dependent synaptic degeneration also remains poorly understood. 

 

To bypass the long and expensive process of developing new therapeutic agents for neurological disorders 

(Wegener and Rujescu 2013), it may be possible to re-purpose compounds with established safety profiles. 

One such compound, valproic acid (2-propylpentanoic acid (VPA)), is a short branched-chain fatty acid 
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that has been proposed to have potential therapeutic role in Alzheimer’s disease treatment (Qing et al., 

2008a) and neuroprotection (Zhang et al., 2014). VPA is primarily used for the treatment of epilepsy and 

bipolar disorder treatment, although it has numerous molecular mechanisms and effects (Terbach and 

Williams, 2009), including the inhibition of cPLA2 (Bazinet et al., 2006) and the regulation of lipid 

homeostasis (Elphick et al., 2012). Here we show that synapse damage caused by Aβ, αSN and PrP82-146 

is reduced by VPA and a structural derivative (propylisopropylacetic acid (PIA)). We show the mechanism 

for this neuroprotective effect occurs through the inhibition of Aβ, αSN and PrP82-146 dependent 

cytoplasmic phospholipase A2 (PLA2) hyperactivation. We further demonstrate that this mechanism of Aβ-

induced toxicity is associated with increased translocation of cPLA2 to lipid rafts (leading to 

hyperactivation), since Aβ causes a dose-dependent increase in cholesterol and a reduction in cholesterol 

esters, and that this process is reduced by VPA and PIA. 

 

Materials and Methods 

 

Brain extracts – Soluble brain extracts from an Alzheimer’s patient containing Aβ of similar in size and 

potency to the Aβ species previously isolated from the brains of Alzheimer’s disease patients (Shankar et 

al., 2008) were used. Extracts were derived from the temporal lobe of a 78 year old female with a clinical, 

and pathologically-confirmed, diagnosis of Alzheimer’s disease, supplied by Asterand, an international 

supplier of human tissue. Brain tissue was cut into pieces of approximately 100 mg and added to 2 ml tubes 

containing lysing matrix D beads (Q-Bio). Neurobasal medium containing B27 components was added so 

that there was the equivalent of 100 mg brain tissue/ml. The tubes were shaken for 10 minutes (Disruptor 

genie, Scientific Instruments). This process was performed 3 times before tubes were centrifuged at 16,000 

x g for 10 minutes to remove cell debris. Soluble material was prepared by passage through a 50 kDa filter 

(Sartorius) (16,000 x g for 30 minutes) to remove any protease activity. The amounts of Aβ in each soluble 

extract were measured by ELISA (see below) and the supernatant aliquoted and stored at -80oC. For 

immunoblot analysis, brain extracts were mixed with an equal volume of 0.5% NP-40, 5 mM CHAPS, 50 
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mM Tris, pH 7.4 and separated by polyacrylamide gel electrophoresis (PAGE). Proteins were transferred 

onto a PVDF membrane by semi-dry blotting and blocked using 10% milk powder. Aβ was detected by 

incubation with mAb 6E10 (Covance), biotinylated anti-mouse IgG, extravidin-peroxidase and enhanced 

chemiluminescence. The amounts of Aβ42 in preparations were determined by ELISA. 

Size exclusion chromatography (SEC) – Soluble brain extracts were concentrated using desalting 

columns (3 kDa filter – Sartorius). These preparations were injected into a Superdex 75 PC column 

(separates peptides ranging from 3 kDa to 70 kDa) (GE Healthcare) and eluted at a rate of 0.2 ml/minute. 

Fractions were collected and tested by Aβ ELISA (see below).   

Immunodepletions - Brain extracts were incubated with 0.1 μg/ml mAb 4G8 (reactive with amino acids 

17-24 of Aβ) or isotype controls (mock depletions) and incubated at 4oC on rollers for 1 hour. Protein G 

microbeads were added (10 µl/ml) (Sigma) for 30 minutes and protein G bound-antibody complexes 

removed by centrifugation.  

Primary neuronal cultures - Primary cortical neurons were prepared from the brains of mouse embryos 

(day 15.5) after mechanical dissociation. Neurons were plated at 5 x 105 cells/well in 48 well plates in Hams 

F12 containing 5% foetal calf serum for 2 hrs. Cultures were shaken (600 r.p.m for 5 mins) and non-

adherent cells removed by 2 washes in phosphate buffered saline (PBS). Neurons were subsequently grown 

in neurobasal medium containing B27 components (PAA) for 10 days.  Immunostaining showed that after 

10 days culture less than 5% of the viable cells stained for glial fibrillary acidic protein or F4/80 (astrocytes 

or microglial cells).  Neurons were subsequently pre-treated with test compounds including VPA, PIA and 

decanoic acid for 1 hour before the addition of test samples including Aβ, recombinant human α-synuclein 

(αSN) (Sigma), PrP82-146 (Salmona et al., 2003)(a gift from Professor M Salmona, Milan) or 

Phospholipase A2-Activating Peptide (PLAP) (Bachem) for 24 hours. All experiments were performed in 

accordance with European regulations (European community Council Directive, 1986, 56/609/EEC) and 

approved by the local authority veterinary service/ethical committee. 
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Cell extracts -  Treated cells were washed twice in PBS and homogenised in 10 mM Tris-HCl, 100 mM 

NaCl, 10 mM EDTA, 0.5% Nonidet P-40, 0.5% sodium deoxycholate and 0.2% SDS at 106 cells/ml. Mixed 

protease inhibitors (4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride, Aprotinin, Leupeptin, 

Bestatin, Pepstatin A and E-46) (Sigma) and a phosphatase inhibitor cocktail including PP1, PP2A, 

microcystin LR, cantharidin and p-bromotetramisole (Sigma) were added and nuclei and large fragments 

were removed by centrifugation (1000 x g for 5 minutes).  

 

Western Blotting - Samples were mixed with Laemmli buffer containing β-mercaptoethanol, heated to 

95oC for 5 minutes and proteins were separated by electrophoresis on 15% polyacrylamide gels. Proteins 

were transferred onto a Hybond-P polyvinylidene difluoride membrane by semi-dry blotting. Membranes 

were blocked using 10% milk powder; synapsin-1 was detected with goat polyclonal (Santa Crux Biotech), 

synaptophysin with MAB368 (Abcam), VAMP-1 with mAb 4H302 (Abcam), caveolin with rabbit 

polyclonal antibodies (Upstate) and CSP with rabbit polyclonal anti-CSP ((sc-33154) Santa Cruz). These 

were visualised using combinations of biotinylated anti-mouse/goat/rat/rabbit IgG (Sigma), extravidin-

peroxidase and enhanced chemiluminescence.  

Synaptophysin ELISA. The amount of synaptophysin in neuronal extracts was measured by ELISA as 

described (Bate et al., 2010). Maxisorb immunoplates (Nunc) were coated with a mouse anti-synaptophysin 

mAb (MAB368 - Chemicon) as a capture antibody and bound synaptophysin was detected using rabbit 

polyclonal anti-synaptophysin (Abcam) followed by a biotinylated anti-rabbit IgG (Abcam), extravidin-

alkaline phosphatase and 1 mg/ml 4-nitrophenol phosphate (pNPP) solution (Sigma). Absorbance was 

measured on a microplate reader at 405 nm. Samples were expressed as “units synaptophysin” where 100 

units was defined as the amount of synaptophysin in 106 untreated cells.  

CSP ELISA – Maxisorb immunoplates were coated with a monoclonal antibody (mAb) to CSP ((sc-

136468) Santa Cruz) and blocked with 5% milk powder. Samples were added and bound CSP was detected 

using rabbit polyclonal anti-CSP ((sc-33154) Santa Cruz) followed by a biotinylated anti-rabbit IgG, 
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extravidin-alkaline phosphatase and 1 mg/ml 4-nitrophenol phosphate solution. Absorbance was measured 

at 405 nm. Samples were expressed as “units CSP” where 100 units was the amount of CSP in 106 control 

cells.  

Isolation of synaptosomes -  Synaptosomes were prepared on a discontinuous Percoll gradient based on 

methods previously described (Thais et al., 2006). Briefly, 106 neurons were homogenized at 4 °C in 1 ml 

of SED solution (0.32 M sucrose, 50 mM Tris-HCl pH 7.4, 1 mM EDTA and 1 mM dithiothreitol) and 

centrifuged at 1000 × g for 5 minutes. The supernatant was transferred to a 4-step gradient of 3, 10, 15 and 

23% Percoll in SED solution and centrifuged at 16,000 × g for 30 minutes at 4oC. The synaptosomes were 

collected from the interface of the 15% and 23% Percoll steps and washed twice at 4oC. Freshly prepared 

synaptosomes were pre-treated with drugs for 1 hour and incubated with peptides for 1 hour. 

Synaptic vesicle recycling - The uptake of the fluorescent dye FM1-43 (Molecular probes) into synaptic 

recycling vesicles was used to determine synaptic activity. Treated synaptosomes were pulsed with 5 μM 

FM1-43 and 1 μM ionomycin (Sigma) for 5 minutes, washed 3 times in ice cold PBS and homogenised in 

methanol. Extracts were transferred into 96 well black microplates (Sterilin) and fluorescence was 

measured in a spectrophotometer using excitation at 480 nm and measuring emission at 625 nm. Samples 

were expressed as “% fluorescence” where 100% fluorescence was defined as the amount of fluorescence 

in control synaptosomes.  

Isolation of lipid rafts (detergent-resistant membranes) - These membranes were isolated by their 

insolubility in non-ionic detergents. Briefly, synaptosomes were homogenised in an ice-cold buffer 

containing 1% Triton X-100, 10 mM Tris-HCl, pH 7.2, 150 mM NaCl, 10 mM EDTA and mixed protease 

inhibitors and nuclei and large fragments were removed by centrifugation (300 x g for 5 minutes at 4oC). 

The post nuclear supernatant was incubated on ice (4oC) for 1 hour and centrifuged (16,000 x g for 30 

minutes at 4oC). The supernatant was reserved as the detergent soluble membrane while the insoluble pellet 

was homogenised in an extraction buffer containing 10 mM Tris-HCL, pH 7.4, 150 mM NaCl, 10 mM 
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EDTA, 0.5% Nonidet P-40, 0.5% sodium deoxycholate, 0.2% SDS and mixed protease inhibitors at 106 

cells/ml, centrifuged (10 minutes at 16,000 x g) and the soluble material was reserved as the DRM fraction.  

 

Sucrose density gradients - Synaptosomes were homogenised in a buffer containing 250 mM sucrose, 10 

mM Tris-HCl (pH 7.4), 1 mM EGTA, mixed protease inhibitors and 1 mM dithiothreitol. Particulate 

membrane fragments and nuclei were removed by centrifugation (1000 x g for 5 min). Membranes were 

washed by centrifugation at 16,000 x g for 10 minutes at 4oC and suspended in an ice-cold buffer containing 

1% Triton X-100, 10 mM Tris-HCl pH 7.2, 150 mM NaCl, 10 mM EDTA. 5–40% sucrose solutions were 

prepared and layered to produce a gradient. Solubilised membranes were layered on top and centrifuged at 

50000 x g for 18 hours at 4°C. Serial 1 ml aliquots were collected from the bottom of gradients.  

 

cPLA2 ELISA/activated cPLA2/PGE2 measurement - The amounts of cPLA2 in extracts was measured 

by ELISA as described (Bate and Williams, 2011). Maxisorb immunoplates were coated with 0.5 µg/ml of 

mouse mAb anti-cPLA2 (clone CH-7 - Upstate) and blocked with 5% milk powder in PBS + 0.1% tween 

20 (PBST). Samples were incubated for 1 hour and the amount of bound cPLA2 was detected using a goat 

polyclonal anti-cPLA2 (Santa-Cruz Biotech) followed by biotinylated anti-goat IgG, extravidin-alkaline 

phosphatase and 1 mg/ml pNPP solution. Absorbance was measured at 405 nm and the amount of cPLA2 

protein expressed in units, 100 units = amount of cPLA2 in control preparations. The activation of cPLA2 

is accompanied by phosphorylation of the 505 serine residue which creates a unique epitope and can be 

measured by ELISA (Bate et al., 2010). To measure the amount of activated cPLA2, an ELISA using a mAb 

(anti-cPLA2, clone CH-7) combined with rabbit polyclonal anti-phospho-cPLA2 (Cell Signalling 

Technology) followed by biotinylated anti-rabbit IgG (Sigma), extravidin-alkaline phosphatase and 1mg/ml 

pNPP solution. Absorbance was measured on a microplate reader at 405 nm. Results were expressed as 

“units activated cPLA2” (100 units = amount of activated cPLA2 in control preparations). The amounts of 

PGE2 in synaptosomes were determined using a competitive enzyme immunoassay kit (Amersham Biotech, 

Amersham, UK) according to the manufacturer's instructions.    
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Aβ42 ELISA –Nunc Maxisorb immunoplates were coated with mAb 4G8 (epitope 17-24) (Covance) in 

carbonate buffer overnight. Plates were blocked with 5% milk powder in PBS-tween and samples were 

applied. The detection antibody was an Aβ42 selective rabbit mAb BA3-9 (Covance) followed by 

biotinylated anti-rabbit IgG and extravidin alkaline phosphatase (Sigma). Bound Aβ42 was visualised by 

addition of 4-nitrophenol phosphate solution. Absorbance was measured at 405 nm and compared to 

titrations of synthetic Aβ1-42 (Bachem). 

 

Cholesterol content - The amounts of cholesterol in samples were measured using the Amplex Red 

cholesterol assay kit (Invitrogen), according to the manufacturer’s instructions. Briefly, cholesterol is 

oxidised by cholesterol oxidase to yield hydrogen peroxide and ketones. The hydrogen peroxide reacts with 

10-acetyl-3, 7-dihydroxyphenoxazine (Amplex Red reagent) to produce highly fluorescent resorufin, which 

is measured by excitation at 550 nm and emission detection at 590 nm. By performing the assay in the 

presence or absence of cholesterol esterase (50 units/ml) (Sigma) the assay can also determine the amounts 

of esterified cholesterol within samples. 

 

Drugs – VPA and decanoic acid was obtained from Sigma. PIA was obtained from Ukrogsyntez Ltd. Stock 

solutions were dissolved in ethanol or di-methyl sulphoxide (DMSO) and diluted in medium to obtain final 

working concentrations. Vehicle controls consisted of equal dilutions of ethanol or DMSO.  

 

Statistical Methods - Differences between treatment groups were assessed using Student’s paired t tests. 

Error bars are standard deviation (SD). Correlations were bivariate analysis and significance was set at 

0.01% 

 

Results 
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Brain extracts contain toxic Aβ - Synaptic degeneration is a prominent feature of the early stages of 

Alzheimer’s disease (Reddy et al., 2005) and is thought to be caused by a toxic soup of Aβ peptides 

including Aβ40, Aβ42 and Aβ43 (Benilova et al., 2012). To develop an in vitro model for synaptic loss, we 

employed brain extracts derived from a patient with Alzheimer’s disease containing a mixture of Aβ 

monomers, dimers and trimers, as characterised by Western blot (Figure 1A) and by size exclusion 

chromatography (Figure 1B). We then examined the effect of increasing concentrations of Aβ over a 24 

hour period on synapses from cultured primary mouse cortical neurons. Addition of increasing amounts of 

Aβ-containing brain extracts triggered the loss of synaptophysin (Figure 1C) and CSP (Figure 1D) and 

other synaptic proteins including VAMP-1 and synapsin-1 indicative of synapse damage (Figure 1E). These 

effects occurred in the absence of any neuronal death as measured by thiazolyl blue tetrazolium (101% cell 

survival ± 6 compared with 100% ± 5, n=6, P=0.6) and there was no loss of caveolin from treated neurons. 

Immunodepletion of brain extract with mAb G48 reduced concentrations of both Aβ40 (4.9 nM ± 0.3 

compared with 0.3 nM ± 0.3 nM, n=9, P<0.01) and Aβ42 (1.42 nM ± 0.16 to 0.11 nM ± 0.1 nM, n=9, 

P<0.01). Immunodepleted brain extract did not cause any significant loss of synaptophysin or CSP from 

neurons indicating that Aβ was the synaptotoxic entity in these preparations. Mock-depletions, with control 

mouse IgG, did not affect the concentration of either Aβ40 (4.9 nM ± 0.3 compared with 4.74 nM ± 0.9, 

n=9, P=0.58) or Aβ42 (1.42 nM ± 0.16 compared with 1.38 ± 0.37 nM, n=9, P=0.48), nor did they affect the 

brain extract-induced reduction of neuronal synaptophysin or CSP. 

 

Aβ, αSN and prion-induced synapse damage was reduced by VPA and PIA – To investigate a role of 

VPA on cultured neurons, synaptophysin and CSP levels were measured in neurons in the absence or 

presence of increasing amounts of Aβ-containing brain extracts for a 24 hour period. Pre-treatment of 

neurons with VPA (10 μM, 1 hour) did not significantly alter the amounts of synaptophysin (Figure 2A) or 

CSP (Figure 2B) in neurons, indicating that VPA did not affect synapses in the absence of pathogenic 

signalling. However, pre-treatment of neurons with VPA (10 μM) for 1 hour prior to incubation with 

increasing concentrations of Aβ-containing brain extracts for a 24 hour period, gave rise to a dose-
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dependent neuroprotective effect in blocking the loss of synaptophysin (Figure 2A) or CSP (Figure 2B). 

This effect was also shown with a structurally related VPA analogue, propylisopropylacetic acid (PIA), but 

not with a straight-chain fatty acid, decanoic acid (DA). Neither PIA, nor decanoic acid affected 

synaptophysin or CSP concentrations in the absence of Aβ (supplementary data, Table 1). The effects of 

VPA and PIA were dose-dependent (Figure 2C).  

Other neurodegenerative diseases including Lewy body dementia, Parkinson’s disease and prion diseases 

are also associated with synaptic loss (Kramer and Schulz-Schaeffer, 2007). In these diseases, aggregated 

αSN and the disease-associated, prion-derived peptide (PrP82-146) cause synapse damage. To examine a 

role for VPA and PIA in protection against these neurodegenerative-associated proteins, cultured neurons 

were initially exposed to αSN and the prion-derived peptide PrP82-146 for a 24 hour period, and synaptic 

protein loss was monitored. We show increasing concentrations of αSN also triggered the loss of 

synaptophysin (Figure 3A) and CSP (Figure 3B) in cultured neurons. However, pre-treatment with either 

VPA or PIA, but not decanoic acid (all at 10 μM) for 1 hour prior to αSN exposure, partially protected 

against the loss of synaptophysin (Figure 3A) or CSP (Figure 3B). Similarly, increasing concentrations of 

PrP82-146 for a 24 hour period also triggered the loss of synaptophysin (Figure 3A) and CSP (Figure 3B), 

and pre-treatment with VPA or PIA, but not 10 μM decanoic acid (both at 10 μM) for 1 hour prior to PrP82-

146 exposure also partially protected against the loss of synaptophysin (Figure 3C) or CSP (Figure 3D). In 

contrast, pre-treatment with VPA, PIA or decanoic acid (all at 10 μM) did not alter the loss of synaptophysin 

or CSP-induced by phospholipase A2-activating peptide (PLAP) (Figure 3E &F) suggesting a specificity of 

effect relating to neurodegenerative protein function.  

Aβ, αSN and prion-induced reduction in synaptic vesicle recycling was reduced by VPA and PIA - 

The fluorescent dye FM1-43 is used to visualise synaptic vesicles uptake in confocal microscopy (Klingauf 

et al., 1998). This system was modified to enable quantification of FM1-43 uptake into synaptosomes 

(multiple synapses). We showed that ionomycin (a calcium ionophore that stimulates neurotransmitter 

release and synaptic vesicle recycling) caused the uptake of FM1-43 by synaptosomes (Figure 4A) 
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consistent with increased vesicle recycling. Using this approach, vesicle recycling was not affected by pre-

treating synaptosomes with VPA, PIA or decanoic acid (all at 10 μM) in the absence of Aβ.  However, the 

addition of Aβ-containing brain extract to synaptosomes reduced recycling in a dose-dependent manner 

(Figure 4B) and Aβ-depleted brain extract did not affect recycling, indicating that Aβ was responsible for 

this effect. The inhibitory effect of Aβ was reduced in synaptosomes pre-treated with VPA or PIA for 1 

hour, but was not affected by decanoic acid (all at 10 μM; Figure 4C). Similarly, pre-treatment of 

synaptosomes with VPA or PIA, but not decanoic acid significantly reduced the inhibitory effects of PrP82-

146 (Figure 4D) and αSN (Figure 4E) on the vesicle recycling. These data suggest that inhibition of synaptic 

vesicle release provides a common response to multiple neurodegenerative disease-linked proteins in vitro, 

and that this common effect is reduced by pre-treatment with VPA or PIA. 

Aβ42 to binding to synapses was not affected by VPA and PIA – The observations that Aβ accumulated 

within synapses prior to synapse damage (Lacor et al., 2004) raised the possibility that VPA might prevent 

synapse damage by reducing the accumulation of Aβ within synapses. To investigate this, we pre-treated 

neurons with VPA (10 μM) for 1 hour and incubated with 10 nM Aβ42, the concentration of Aβ42 found in 

synaptosomes was not significantly altered (2.9 nM Aβ42 ± 0.7 compared with 3.2 nM Aβ42 ± 0.6, n=9, 

P=0.5). Similar results were obtained with PIA (10 μM), since it did not significantly affect the binding of 

Aβ42 to synaptosomes (3.1 nM Aβ42 ± 0.6 compared with 3.2 nM Aβ42 ± 0.6, n=9, P=0.5).  

Aβ, αSN and prion-induced hyperactivation of cPLA2 at the synapse was reduced by VPA and PIA - 

Several studies suggest that aberrant activation of cPLA2 is involved in Aβ-induced synapse damage. For 

example, Aβ peptides activate PLA2 (Shelat et al., 2008) and inhibition of cPLA2 prevented Aβ-induced 

synapse damage in vitro (Bate et al., 2010). In addition, cPLA2 inhibitors ameliorate the cognitive decline 

seen in a transgenic model of Alzheimer’s disease (Sanchez-Mejia et al., 2008). We therefore investigate 

the activation of cPLA2 in synapses. The addition of Aβ-containing brain extracts, but not Aβ-depleted 

brain extract, caused a dose-dependent increase in the amounts of activated cPLA2 (Figure 5A). Although 

VPA, PIA or decaonoic acid (all at 10 μM) did not affect the amounts of cPLA2 protein or activated cPLA2 
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within synaptosomes (supplementary data, Table 2) the Aβ-induced activation of cPLA2 in synaptosomes 

was reduced by 1 hour pre-treatment with VPA or PIA, but not with decanoic acid (all at 10 μM). The 

effects of VPA and PIA upon Aβ-induced activation were dose-dependent and there was no observable 

difference in their efficacy (Figure 5B). Similarly, pre-treatment of synaptosomes with either VPA or PIA 

(both at 10 μM) reduced αSN (Figure 5C) and PrP82-146 (Figure 5D)-induced activation of cPLA2. In 

contrast, pre-treatment with VPA or PIA (both at 10 μM) did not affect the PLAP-induced activation of 

synaptic cPLA2 (Figure 5E) indicating that these drugs did not have a direct effect upon this enzyme. The 

activation of cPLA2 is the first step in the production of prostaglandins (PG) including PGE2 which causes 

synapse damage in cultured neurons (Bate et al., 2010). Here we show that pre-treatment of synaptosomes 

with either VPA or PIA (both at 10 μM) reduced Aβ and αSN-induced PGE2 production, but had no effect 

upon PLAP-induced PGE2 production (Figure 5F). These data suggest that activated cPLA2 activity 

provides a common response to multiple neurodegenerative disease-linked proteins, and that this common 

effect is reduced by pre-treatment with VPA or PIA.  

The activation of cPLA2 is accompanied by its migration to specific membranes utilizing a Ca2+-dependent 

lipid binding domain (Nalefski et al., 1994). To investigate cPLA2 localisation in lipid rafts as a cause of 

enhanced activity, sucrose density gradients generated from synaptosomes in the presence or absence of 

Aβ (Figure 6A). Lipid rafts were defined by solubility in triton X-100. The addition of Aβ-containing, but 

not Aβ-depleted brain extract, increased the amounts of cPLA2 within lipid rafts.  The addition of Aβ caused 

a dose-dependent increase in cPLA2 in lipid rafts (Figure 6B). There was a significant correlation between 

the amounts of cPLA2 in lipid rafts and the amounts of activated cPLA2 in synaptosomes incubated with 

brain extracts containing between 1 and 0.125 nM Aβ42 (Figure 6C). VPA, PIA and decanoic acid alone 

did not affect the amounts of cPLA2 found within rafts (supplementary data, Table 2). In synaptosomes pre-

treated with either VPA or PIA (both at 10 μM), less cPLA2 was found within lipid rafts following the 

addition of Aβ-containing brain extract (Figure 6D). This data suggest that the Aβ-dependent increase in 

lipid raft-localised cPLA2 localisation is blocked by the treatment of VPA and PIA.  
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Aβ-induced increase in synaptic cholesterol is prevented VPA and PIA - The amount of cholesterol in 

cell membranes is a critical factor involved in both lipid raft formation (Pike, 2004) and in 

neurodegeneration (Maxfield and Tabas, 2005) and Aβ has been shown to regulate cholesterol homeostasis 

through an unknown mechanism (Liu et al., 1998). We therefore determined the cholesterol concentrations 

in synaptosomes following the addition of Aβ-containing brain extract. Increasing concentration of Aβ 

caused a dose-dependent increase in synaptic cholesterol (Figure 7A) and a corresponding reduction in 

synaptic cholesterol esters (Figure 7B). There was a significant correlation between the increased 

concentrations of cholesterol and reduced concentrations of cholesterol esters in synaptosomes incubated 

with brain extract containing between 1 nM and 0.125 nM Aβ42, Pearson’s coefficient= -0.931, P<0.01 

(Figure 7C). These results suggests that Aβ acts through the cholesterol ester cycle, activating cholesterol 

ester hydrolase enzymes that release biologically active cholesterol into the membrane from stores of 

cholesterol esters in lipid droplets (Figure 7E). There was also a significant correlation between the 

concentrations of cholesterol and activated cPLA2 in synaptosomes incubated with brain extract containing 

between 1 nM and 0.125 nM Aβ42, Pearson’s coefficient= -0.734, P<0.01, (Figure 7D) suggesting that 

cholesterol concentrations affect the Aβ-induced activation of cPLA2. These data suggest that Aβ acts to 

alter cholesterol ester hydrolases activity to modify cPLA2 activity by lipid raft localisation.  

Since we have shown VPA and PIA reduce Aβ-dependent cPLA2 activation, we then investigated a role for 

these compounds in cholesterol recycling. While the addition of VPA or PIA or decanoic acid (all at 10 

μM) did not affect the amounts of cholesterol in synaptosomes, pre-treatment of synaptosomes with VPA 

or PIA significantly reduced the Aβ-induced increase in cholesterol in synaptosomes (Figure 8A). Similarly, 

the Aβ-induced reduction in cholesterol esters was blocked by pre-treatment with VPA or PIA (both at 10 

μM; Figure 8B).  

 

 



 16 

Discussion  

 

The discovery of compounds that reduce synapse damage is a rational strategy to reduce clinical symptoms 

in neurodegenerative diseases including prion diseases, Alzheimer’s disease and Parkinson’s disease.  In 

this study we demonstrate that VPA and PIA protected cultured neurons against synapse damage induced 

by the neurotoxic peptides Aβ, PrP82-146 and αSN. Neuroprotection was associated with the regulation of 

cholesterol and inhibition of cPLA2, hyperactivation of which leads to synapse degeneration and memory 

defects (Bate et al., 2010; Sanchez-Mejia et al., 2008). This study used 2 models of synapse damage; firstly 

the loss of synaptic proteins from cultured neurons and secondly the inhibition of fluorescent FM1-43 

uptake into synaptosomes as an indicator of the synapse vesicle recycling that is necessary for normal 

neurotransmission. The loss of synaptic proteins from neurons indicated synapse degeneration and the 

disruption in synaptic vesicle recycling demonstrated synapse dysfunction. Both these effects were apparent 

at concentrations of neurotoxic peptides that did not cause neuronal death. In this respect we have sought 

to replicate the early stages of disease where there is significant synapse dysfunction/damage but without 

the extensive loss of neurons that occurs during the latter stages of disease. 

 

Our date suggests that VPA may attenuate the Aβ-induced synapse damage that underlies the dementia 

observed in Alzheimer’s disease patients. Similarly, VPA protected neurons against synapse damage 

induced by αSN, aggregates of which accumulate in synapses during Parkinson’s disease and Lewy body 

dementia (Kramer and Schulz-Schaeffer, 2007) and the prion-derived peptide PrP82-146. We demonstrate 

a mechanism for this neuroprotective effect through inhibiting hyperactivation of cPLA2 by these 

neurotoxic peptides. Consistent with this mechanism, VPA has been reported to show PLA2 inhibitory-like 

activity (Bosetti et al., 2003; Elphick et al., 2012; Rapoport and Bosetti, 2002), in addition to inhibiting 

phosphoinositide turnover (Chang et al., 2012) and histone deactylase activity (Phiel et al., 2001). PIA is 

thought to have greater therapeutic potential as it does not inhibit histone deacteylase (Eyal et al., 2005), an 

activity associated with teratogenic effects (Jentink et al., 2010). Although a direct mechanism of action 
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has been recently reported for PIA, through an inhibition of acyl-CoA synthetase (Modi et al., 2013), this 

effect occurs with a Ki of 11.4 mM, that is around 1000-fold higher than effective concentrations reported 

here. PIA has also been shown to strongly reduce fatty acid release (Elphick et al., 2012) consistent with 

an indirect effect on cPLA2 activity shown here. Decanoic acid was used in this study, since like VPA, it 

has also been reported to inhibit phosphoinositide turnover in relation to seizure control (Chang et al., 2012), 

although again at higher concentrations than used in this study, thus it appears that VPA and PIA exert 

different effects on neuroprotection that decanoic acid at these concentrations.  Neither VPA nor PIA 

protected cultured neurons against synapse damage triggered by PLAP indicating that VPA and PIA affect 

specific pathways that are activated by neurotoxic peptides.  

 

VPA has been reported to reduce Aβ production (Qing et al., 2008b; Su et al., 2004) and attenuate neuronal 

loss in a murine transgenic model of Alzheimer’s disease (Long et al., 2013). Our study showed that neither 

VPA nor PIA significantly altered the amounts of Aβ42 that bound to synapses. The observation that Aβ 

can accumulate within synapses without causing synapse damage indicates that synapse damage occurs via 

activation of specific pathways, rather than a direct effect of Aβ itself.  Prior studies had demonstrated the 

importance of cPLA2 in Alzheimer’s disease, pharmacological inhibition of cPLA2 protected neurons 

against Aβ-induced synapse damage (Bate et al., 2010) and inhibited cognitive impairment in a murine 

model of Alzheimer’s disease (Sanchez-Mejia et al., 2008). Others have reported that VPA and PIA alter 

arachidonic acid metabolism (Bazinet et al., 2006) and here we showed that VPA and PIA, but not decanoic 

acid, reduced the activation of synaptic cPLA2 by Aβ, PrP82-146 or αSN. It was notable that the 

concentrations of VPA and PIA required to inhibit Aβ-induced activation of synaptic cPLA2 were similar 

to those that reduced Aβ-induced synapse damage, observation supporting the direct role of activated cPLA2 

in Aβ-induced synaptotoxicity. The activation of cPLA2 is critical for the formation of bioactive lipids 

including prostaglandins and PAF. The neurotoxic peptides used in this study activates cPLA2 leading to 

the production of PGE2 which caused synapse damage (Bate et al., 2010) and are raised in the cerebrospinal 

fluid of patients with probable Alzheimer’s disease (Montine et al., 1999).  
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Neither VPA nor PIA affected the activation of cPLA2 by PLAP suggesting that they did not have a direct 

effect upon the enzyme. The activation of cPLA2 is accompanied by its migration to specific membranes 

utilizing a Ca2+-dependent lipid-binding domain (Nalefski et al., 1994). Here we show that Aβ causes cPLA2 

to be targeted to lipid rafts and that in synaptosomes there was a significant correlation between the % of 

cPLA2 in rafts and activation of cPLA2 following the addition of Aβ. The recruitment of signalling proteins 

to specific compartments is an emerging concept in the regulation of cell activation. The observations that 

Aβ is found within lipid rafts (Williamson et al., 2008) and the Aβ-induced activation of cPLA2 is 

cholesterol sensitive (Bate and Williams, 2007) suggests that the formation of specific lipid rafts is 

necessary for Aβ-induced activation of cPLA2 and synapse degeneration.  Critically, pre-treatment with 

VPA or PIA reduced the Aβ-induced translocation of cPLA2 to rafts. 

 

It should be noted that cPLA2 and the products of its activation including PAF and prostaglandins are 

involve in the normal function of the synapse. Both PGE2 and PAF have both been implicated in the 

induction of long-term potentiation and memory formation (Chen and Bazan, 2005). Our contention is that 

it is Aβ-induced aberrant activation of cPLA2 that leads to synapse degeneration. Therefore, the inhibition 

of cPLA2 by VPA and PIA may be beneficial under these conditions. However, long term VPA treatment 

is associated with impairment of hippocampal synaptic plasticity (Sgobio et al., 2010) and in vitro 1 mM 

VPA reduced long term potentiation in hippocampal slices (Chang et al., 2010) indicating that VPA and 

PIA may also reduce activation of cPLA2 in normal synapses. 

 

Aβ has been shown to affect cholesterol homeostasis and in these neurons Aβ increased cholesterol 

concentrations in synaptosomes; an effect consistent with observations of increased concentrations of 

cholesterol in Aβ positive synapses in the cortex of Alzheimer’s patients (Gylys et al., 2007). The Aβ-

induced increase in cholesterol may be significant in that cholesterol an essential role in their formation and 

function of lipid rafts (Pike, 2004) and there was a significant correlation between the increase in cholesterol 
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and activated cPLA2 in response to Aβ. Notably, VPA and PIA did not affect cholesterol concentrations in 

control synaptosomes but both reduced the Aβ-induced increase in cholesterol. Our studies showed that the 

Aβ-induced increase in synaptic cholesterol was accompanied by a reduction in cholesterol esters indicating 

that Aβ activated cholesterol ester hydrolase. The observation that VPA and PIA prevented the Aβ-induced 

reduction in concentrations of cholesterol esters suggests that these drugs inhibit cholesterol ester hydrolase.  

 

Conclusion 

 

In summary we report that VPA and PIA protected cultured neurons against the synapse damage that was 

induced by Aβ, αSN or PrP82-146, neurotoxic peptides associated with disease progression in Alzheimer’s, 

Parkinson’s and prion disease. Our results are consistent with the hypothesis that VPA and PIA inhibit the 

peptide-induced activation of cPLA2, hyperactivation of which leads to synapse damage. These drugs do 

not appear to have a direct effect upon cPLA2, rather they affected the membrane micro-environment in 

which peptides activate cPLA2, inhibiting the release of cholesterol that is required for a stable signalling 

platform. These studies suggest that VPA and PIA may be able to reduce synapse damage and ameliorate 

pathology in Alzheimer’s, Parkinson’s and prion diseases. 
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Figure Legends  

 

Figure 1. Soluble Aβ triggers synapse damage in neurons - (A) Immunoblot showing Aβ monomers (M), 

dimers (D) and trimers (T) in brain extract (1) and Aβ-depleted brain extract (2). (B) Aβ monomers (M), 

dimers (D) and trimers (T) eluted from a Superdex 75 PC column (separates proteins ranging from 3 kDa 

to 70 kDa) loaded with a soluble brain extract. Values are means of duplicates. The amounts of 

synaptophysin (C) and CSP (D) in neurons incubated with brain extracts (●), Aβ-depleted brain extracts 

(▲) or mock-depleted brain extracts (∆). Values are means ± SD from triplicate experiments performed 4 
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times, n=12. (E) Immunoblots showing the amounts of synaptophysin, CSP synapsin-1, VAMP-1 and 

caveolin in neurons incubated with brain extract as shown.  

 

Figure 2 - Synapse damage induced by Aβ is reduced by VPA and PIA - The amounts of (A) 

synaptophysin and (B) CSP in neurons pre-treated with control medium (●), 10 μM VPA (○), 10 μM PIA 

(□) or 10 μM decanoic acid (■) and incubated with brain extracts containing Aβ42 as shown. Values are 

means ± SD from triplicate experiments performed 4 times, n=12. (C) The amounts of synaptophysin in 

neurons pre-treated with VPA (●), PIA (□) or decanoic acid (■) and incubated with brain extract containing 

2 nM Aβ42. Values are means ± SD from triplicate experiments performed twice, n=6. 

 

Figure 3. Synapse damage induced by αSN and PrP82-146 is reduced by VPA and PIA – The amounts 

of synaptophysin (A) and CSP (B) in neurons pre-treated with control medium (●), 10 μM VPA (○), 10 μM 

PIA (□) or 10 μM decanoic acid (■) and incubated with αSN as shown. The amounts of synaptophysin (C) 

and CSP (D) in neurons pre-treated with control medium (●), 10 μM VPA (○), 10 μM PIA (□) or 10 μM 

decanoic acid (■) and incubated with PrP82-146 as shown. The amounts of synaptophysin (E) and CSP (F) 

in neurons pre-treated with control medium (●), 10 μM VPA (○), 10 μM PIA (□) or 10 μM decanoic acid 

(■) and incubated with PLAP as shown. All values are means ± SD from triplicate experiment performed 

4 times, n=12. 

 

Figure 4. Synaptic vesicle recycling is inhibited by Aβ, αSN and PrP82-146 and is rescued by VPA 

and PIA – (A) The amounts of FM1-43 in synaptosomes pre-treated with control medium  (●), 10 μM 

VPA (○), 10 μM PIA (□) or 10 μM decanoic acid (■) and pulsed with ionomycin as shown (●). Values are 

mean % fluorescence (100%=maximum fluorescence in synaptosomes). (B) The amounts of FM1-43 in 

synaptosomes incubated with brain extract (●), Aβ-depleted brain extract (▲) or mock-depleted brain 

extract (∆) and pulsed with ionomycin. The amounts of FM1-43 in synaptosomes pre-treated with control 

medium (●), 10 μM VPA (○), 10 μM PIA (□) or 10 μM decanoic acid (■), incubated with brain extract 
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containing Aβ42 as shown (C), PrP82-146 (D) or αSN (E) and pulsed with ionomycin. All values are means 

± SD from triplicate experiments performed 3 times, n=9.   

 

Figure 5. Induced activation of synaptic cPLA2 by Aβ, αSN and PrP82-146 is reduced by VPA and 

PIA (A) The amounts of activated cPLA2 in synaptosomes pre-treated with control medium (●), 10 μM 

VPA (○), 10 μM PIA (□) or 10 μM decanoic acid (■) and incubated with brain extract containing Aβ42 as 

shown. (B) The amount of activated cPLA2 in synaptosomes pre-treated with VPA (○), PIA (□) or decanoic 

acid (■) and incubated with brain extract containing 2 nM Aβ42. The amounts of activated cPLA2 in 

synaptosomes pre-treated with control medium (●), 10 μM VPA (○), 10 μM PIA (□) or 10 μM decanoic 

acid (■) and incubated with (C) αSN or (D) PrP82-146 as shown. (E) The amounts of activated cPLA2 in 

synaptosomes pre-treated with control medium (●), 10 μM VPA (○), 10 μM PIA (□) or 10 μM decanoic 

acid (■) and incubated PLAP as shown. All values are means ± SD, from triplicate experiments performed 

3 times, n=9. (F) The concentrations of PGE2 in synaptosomes pre-treated with control medium (■), 10 μM 

VPA (□) or 10 μM decanoic acid (striped bar) and incubated with brain extract containing 2 nM Aβ42, 500 

nM αSN or 500 nM PLAP. Values are means ± SD, n=6. *=PGE2 significantly less than in control 

synaptosomes incubated with peptides.  

 

Figure 6. Aβ-induced translocation of cPLA2 into rafts is reduced by VPA and PIA – (A) The amount 

of cPLA2 in fractions from control synaptosomes (○) or synaptosomes incubated with brain extract 

containing 1 nM Aβ42 (●). (B) The amounts of cPLA2 in lipid rafts derived from synaptosomes incubated 

with control medium (□) or brain extract containing Aβ42 as shown. (C) There was a significant correlation 

between the amounts of raft cPLA2 and activated cPLA2 in synaptosomes incubated with brain extract 

containing Aβ42 (1 nM to 0.6 nM), Pearson’s coefficient=0.927, P<0.01. (D) The amounts of cPLA2 in lipid 

rafts derived from synaptosomes pre-treated with control medium (□), 10 μM VPA (■), 10 μM PIA (striped 

bar) or 10 μM decanoic acid (DA) (hatched bar) and incubated with brain extract containing 1 nM Aβ42. 



 27 

All values are means ± SD, from triplicate experiments performed 3 times, n=9. *=amounts of raft cPLA2 

significantly less than in control synaptosomes incubated with Aβ. 

 

Figure 7. Aβ-induces increased synaptic cholesterol and reduced cholesterol esters – The 

concentrations of cholesterol (A) and cholesterol esters (B) in synaptosomes incubated with control medium 

(□) or brain extract containing Aβ42 as shown (■). Values are means ± SD from triplicate experiments 

performed 4 times (n=12). *=cholesterol significantly higher than in control synaptosomes. **=cholesterol 

esters significantly lower than in control synaptosomes. (C) There was a significant inverse correlation 

between the concentrations of cholesterol and cholesterol esters in synaptosomes incubated with brain 

extract containing Aβ42 (1 nM to .125 nM), Pearson’s coefficient= -0.931, P<0.01. (D) There was a 

significant correlation between the concentrations of cholesterol and amounts of activated cPLA2 in 

synaptosomes incubated with brain extract containing Aβ42 (1 nM to .125 nM), Pearson’s coefficient= -

0.734, P<0.01. (E) Schematic showing the cholesterol ester cycle and the proposed release of synaptic 

cholesterol via Aβ-induced activation of cholesterol ester hydrolases (CEH). 

 

Figure 8. Aβ-induced changes in synaptic cholesterol is reduced by VPA and PIA – The concentrations 

of cholesterol (A) and cholesterol esters (B) in synaptosomes pre-treated with control medium, 10 μM VPA, 

10 μM PIA or 10 μM decanoic acid (DA) and incubated with control medium (□) or brain extract containing 

1 nM Aβ42  (■). *=cholesterol significantly lower than in control synaptosomes incubated with Aβ. 

**=cholesterol esters significantly higher than in control synaptosomes incubated with Aβ.  
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