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Abstract  

 

Background 

Graviportal taxa show an allometric increase of the cross-sectional areas of supportive bones 

and are assumed to display microanatomical changes associated with an increase in bone 

mass, presumably to offer greater resistance to loads produced by their gigantic size. This 

evokes osteosclerosis, i.e., an increase in bone compactness, that is also observed in some 

aquatic amniotes. This study investigates the changes in bones’ inner structure associated with 

graviportality and how comparable they are with aquatically acquired osteosclerosis in order 

to better understand the adaptation of bone to the different functional requirements associated 

with graviportality in giant tetrapods, and with buoyancy and body trim control in secondarily 

aquatic tetrapods. 

 

Results 

This microanatomical and cross-sectional investigation of long bones and ribs of graviportal 

and other related tetrapod taxa shows changes of inner structure that are not solely attributable 

to allometry. Bones of graviportal taxa display a thicker cortex and a proportionally smaller 

medullary cavity, with a wider transition zone between these domains. This inner cancellous 

structure may enable better impact energy absorption and marrow support. Moreover, the 

cross-sectional geometric parameters indicate increased resistance to stresses engendered by 

bending and torsion as well as compression.  

 

Conclusions 

Although not all graviportal taxa converge on the same inner organization of their bones, a 

clear general pattern is evident across graviportal tetrapods. The increase in bone mass, 

although it might be mistaken with aquatically related osteosclerosis, is nevertheless more 

restricted than the osseous specialization observed in some shallow water swimmers or 

bottom-walkers among almost exclusively aquatic amniotes. Adaptation to a graviportal 

posture should thus be taken into consideration when analysing possibly amphibious taxa with 

a terrestrial-like morphology. This consideration is particularly important for paleoecological 

inferences about large extinct tetrapods that might have been amphibious and, more generally, 

for the study of early stages of adaptation to an aquatic life in amniotes. 
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Background 

 

Animals with extremely large body masses and with massive pillar-like limbs adapted to 

support their weight are said to be graviportal [1, 2]. Their typically columnar limbs help to 

resist bending and torsional loads generated by flexion and rotation of the limbs during 

locomotion [3–5]. They also display proportionally much longer stylopodial elements 

(humerus, femur), relatively to the more proximal zeugopodials and autopodials, and, 

especially, limb bones of much larger diameter. These larger bones result from allometric 

changes that help them to resist gravity [2, 6, 7], because body mass (and thus gravitational 

loading) tends to increase by a factor of eight when body length proportionately increases by a 

factor of two ([8]; p. 43). 

 The allometric increase of the cross-sectional areas of supportive bones is a well-

known characteristic of graviportal vertebrates [9]. However, further adaptations at the 

microstructural scale may occur -- for example, Doube et al. ([10]) showed how the trabecular 

mesh of larger species becomes more robust across a wide range of lineages of terrestrial 

tetrapods. Oxnard [11, 12] posited that there may be a general trend in some graviportal 

tetrapods to fill in the marrow cavities of the long bones in order to not only resist 

compressive loads from gravity but also to help absorb more kinetic energy when the feet 

impact the ground (see Warner et al., 2012), avoiding “crushing fractures”, as well as to 

provide scaffolding to support the heavy bone marrow itself.  

Graviportal long bones and ribs are thus considered more massive than in other 

terrestrial taxa ([2, 13]) and should show an increase in bone mass at the microanatomical 

scale. The aforementioned increase in bone mass in graviportal land animals may be 

analogous to osteosclerosis observed in comparable bones of aquatic amniotes. These 

secondarily aquatic tetrapods are generally shallow water swimmers relying on a hydrostatic 

control of buoyancy and body trim (see [14]). Thus, ironically, the increased compactness of 

bones seems to have convergently evolved multiple times in tetrapods to: (1) maintain 



appropriate buoyancy and balance in water, a low-gravity environment, as compared to land; 

and (2) improve resistance to gravity, enabling the limits of body size in terrestrial tetrapods 

to be pushed to greater extremes (e.g., Hokkanen, REF). Indeed, Wall [15] already observed 

that some graviportal taxa seem to show an increase in bone deposition, so that they can be 

mistaken for aquatic taxa, especially bottom-walkers. In mustelids, the observation of high 

density in the bones of wolverines seems more associated with their increased body mass than 

with aquatic habits [16]. Moreover, the high compactness in the ribs of rhinoceroses [17] also 

illustrates this trend, in combination with varying aquatic habits in extant and extinct 

rhinocerotoids (Prothero, 1992; [18]REFS).  

Here, we investigate microanatomical and cross-sectional specializations in the bones 

of graviportal and other related tetrapod taxa with both qualitative and quantitative methods, 

and in a phylogenetic context because microanatomical structures can show phylogenetic 

signal [19]. We first seek to evaluate the bone microanatomical changes observable in 

graviportal taxa and to determine how comparable this pattern is to the specialization 

observed in aquatic amniotes. We then synthesize our comparative results in order to better 

understand the adaptation of bone to the different functional requirements associated with 

graviportality in giant tetrapods, and notably focus on how the resulting patterns in graviportal 

taxa may sometimes be similar to changes associated with buoyancy and body trim control in 

secondarily aquatic tetrapods. 
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Results 

 

Qualitative analysis 

 

Humerus 

Most taxa exhibit humeri showing the standard tubular structure for a tetrapod long bone; i.e., 

a layer of compact cortex surrounding a large open medullary cavity (Fig. 1A). The cortex is 

thicker in the bipedal dinosaurs (the theropods Tarbosaurus, Allosaurus and the thyreophoran 

Scutellosaurus) and in the nilgai (Boselaphus) and the African buffalo (Syncerus) than in most 

tubular bones. The pygmy hippopotamus Choeropsis (which is only poorly amphibious; Wall 

[15]) also displays a tubular bone organization without a particularly thick cortex (Fig. 1B). 

The tapir shows a wide transition zone between the cortex and the open medullary cavity, and 

the polar bear shows a thin cortex associated with a wide transition zone (as described in 

[20]). The giant anteater (Myrmecophaga) displays a wide loose spongiosa with no open 

medullary cavity; and the southern tamandua shows a similar organization but with a rather 

small open medullary cavity. The peculiarity of the microanatomical features of these 

Xenarthra taxa was already raised in Straehl et al. ([21]) and Amson et al. [22], matching 

similar observations of other Xenarthra by Oxnard ([11, 12]).  

Among the other taxa sampled, several types of inner organization are observable: 1) 

absence of an open medullary cavity but a relatively wide medullary area occupied by a 

spongiosa (higher number of, and thinner osseous trabeculae than in the two xenarthrans 

above); in Hippopotamus (Fig. 1C), the sauropods Ampelosaurus (Fig. 1D) Apatosaurus and 

the ceratopsian Centrosaurus (Fig. 1E); 2) a similar pattern but associated with a much thicker 

cortex; in Ceratotherium (Fig. 1F), Rhinoceros unicornis (Fig. 1G) and R. sondaicus, the 

elephantiform proboscidean Stegodon-- and with a reduced open medullary cavity, in one 



specimen of Dicerorhinus; 3) a thick cortex and a narrow medullary cavity with only a few 

thick trabeculae; in the extant proboscideans Elephas (Fig. 1H) and Loxodonta, the 

rhinocerotids Dicerorhinus (one specimen), Diceros (Fig. 1I) and Diceratherium and the 

ceratopsian Protoceratops. The latter (third) kind of inner bone organization was already 

observed in the sirenian Trichechus [20] (Fig. 1J), whereas the two other relatively slow 

swimmers sampled, the desmostylian Paleoparadoxia (Fig. 1K) and the sirenian Dugong 

(Fig. 1L), display an extremely compact structure with no medullary cavity. 

 

Femur 

As observed for the humerus, most taxa display a tubular structure of the femoral midshaft 

(Fig. 2A). There are substantial variations in the thickness of the cortex, being relatively 

maximal in Syncerus (Fig. 2B) and Ursus thibetanus. In the giant anteater, the femur exhibits 

a pattern similar to its humerus, whereas in the tamandua the femur shows a better defined 

and larger open medullary cavity than its humerus. Most other taxa have a cortex with a 

thickness similar to the maximum values observed in the taxa displaying a tubular structure, 

but with a spongiosa occupying the whole medullary area; for example, in Ceratotherium, 

Rhinoceros unicornis (Fig. 2C), Rhinoceros sondaicus (Fig. 2D) but also in the tapir. Similar 

to pattern observed in the humerus, other taxa show a thick cortex and a medullary area 

occupied by a medullary cavity with no or only a few thick trabeculae; in Elephas (Fig. 2E), 

Loxodonta, Mammuthus (Fig. 2F), Hippopotamus (Fig. 2G) and Ceratotherium (one 

specimen). Diceratherium shows an inner organization that is almost tubular, except that a 

rather poorly extended transition zone between the cortex and the medullary cavity is 

occupied by a spongiosa. Stegosaurus (Fig. 2H) shows a thick cortex and a reduced medullary 

area with a small medullary cavity and a lightly built spongiosa. 

 

Rib 

In amniotes, there is a high diversity of rib internal morphologies, notably in the thickness of 

the cortex and the number of infilling trabeculae, as already highlighted in Hayashi et al. [20]. 

This reflects a natural diversity but also relies on the difficulty of making homologous 

comparisons with ribs, as bone microanatomical features are known to vary both along the rib 

and between ribs along the ribcage (e.g., [23, 24]).  

Typically in our sample, the ribs of quadrupedal taxa show a clear medullary area with 

no or a few thick trabeculae (Fig. 3A-B). Weakly active swimmers are characterized by a 

clear increase in bone compactness, which is limited in most desmostylians (Fig. 3C) but 



extremely high in all sirenians (Trichechus, Dugong and Halitherium; AH unpublished 

observations) with an almost complete bone filling. Most dinosaurian taxa sampled, especially 

graviportal thyreophorans (stegosaurs [Fig. 3D] and ankylosaurs) and sauropods (Fig. 3E-F), 

but also bipedal taxa (Fig. 3G), display ribs with a thick cortex and no open medullary cavity, 

but rather a dense spongiosa with reduced intertrabecular spaces in most taxa (Fig. 3D-E). 

However, some dinosaur taxa present a thick cortex but a rather loose inner spongiosa (e.g., 

the sauropod Spinophorosaurus and the moderately large theropod Lourhinhanosaurus; Fig. 

3F). The mammoth specimen and Rhinoceros (R. unicornis and R. sondaicus) show an 

organization grossly similar to that of other large quadrupedal mammals, except that the 

spongiosa is made of numerous rather thin trabeculae (Fig. 3H-I).   

 

 

Quantitative analyses 

 

The K statistics calculated are all much lower than 1 for all three bones analysed 

(0.34<K<0.68 for the humerus, 0.37<K<0.55 for the femur, and 0.39<K<0.67 for the rib; see 

Suppl. 1). However, randomization tests are unable to reject the possibility of a significant 

phylogenetic signal in the data, except for C, S and CSS for the rib. This justifies the need to 

account for the effects of phylogenetic pseudoreplication [23]. 

     Linear regressions on the independent contrast data show that only J is affected by size 

(MD) for the three bones, but not strongly. The other parameters show either no or a rather 

weak impact of size, depending on the bones concerned (see Suppl. 1).  

    Analyses of variance show that only the parameters C and P for the humerus vary 

significantly (Table 4) depending on the group number (1-4). Analyses of covariance all show 

a significant signal when phylogeny is not taken into consideration (except the parameter J for 

the rib), but lose this significance when phylogeny is incorporated (Table 4). Similarly, the 

multivariate analyses of variance are significant for the humeri and the femora (F=2.83, 

p=0.021 for the humeri; F=6.00, p<0.001 for the femora; F=1.99, p=0.12 for the ribs) but 

become not significant when phylogeny is taken into consideration (F=5.41, p=0.284 for the 

humeri; F=6.20, p=0.668 for the femora; F=2.77, p=0.730 for the ribs). Bone compactness is 

greater in aquatic and graviportal (especially in the femur) taxa, which also show a wider 

transition zone (high S; except in the ribs of the graviportal taxa). Bipedal taxa also display 

compact ribs with a wide transition zone and a thicker cortex. Aquatic taxa have a more 

reduced medullary cavity (lower P) associated with a proportionally thicker cortex (low R/t). 



This reduced medullary cavity and thicker cortex are also observed, but to a much lesser 

extent, in graviportal taxa but only in long bones (especially in the femur), not in the ribs. The 

cross-sectional shape index (CSS) evidences different signals depending on the bone sampled. 

The polar second moment of area (J) reveals higher values for aquatic (for the humerus; lower 

values in the ribs), graviportal and bipedal taxa.  

Our PCA of bone microanatomy in the humerus shows that the two main axes explain 

77.9% of the variance (58.5 and 19.4% respectively). This analysis demonstrates which 

variables co-varied: P and R/t correlate inversely to C (compactness). The smaller medullary 

cavity in aquatic and graviportal tetrapods is thus consistently associated with a relatively 

thicker cortex and a higher compactness values (Fig. 4A). It is particularly interesting to note 

that graviportal taxa group together (and with aquatic taxa), being essentially discriminated by 

the first axis, whereas they are randomly distributed based on PC2 and PC3. Our between-

groups PCAs generally show for all bones that the first axis mainly discriminates based on 

bone microanatomical features (C, S, P, R/t), and the second axis essentially based on bone 

shape parameters (CSS and J; Fig. 4B,5B,6B). The between-groups PCA for the humerus 

distinguishes the four groups, with aquatic taxa displaying the strongest compactness, thicker 

cortex, smaller medullary cavity, and more rounded geometry (CSS closer to 1; as opposed to 

quadrupedal taxa with CSS diverging from 1). Additionally, graviportal taxa, as opposed to 

bipedal and aquatic ones, display (for obvious reasons of gravitational support) a higher polar 

second moment of area (J) and larger transition zone between the cortex and medullary cavity 

(Fig. 4B). The two main axes explain 95.0% of the variance (79.2 and 15.8%, respectively). 

Our K-NN classifications indicate that 74.5% of specimens were well-classified and thus 

show a clear and doubtless signal. 

Similar to the humerus, our PCA analysis for the femur shows that the two main axes 

explain 81.0% of the variance in our microanatomical data (64.7 and 16.3% respectively). 

Similar co-variations are observable between C, P, and R/t. However CSS in this case vary 

almost antagonistically to P and R/t. Again, graviportal taxa group together, being 

discriminated based essentially on the first axis (Fig. 5A). The between-groups PCA for the 

femur shows that graviportal taxa are distinct from the other quadrupedal and the bipedal taxa 

in showing a much higher compactness, proportionally thicker cortex, and higher polar 

second moment of area (Fig. 5B). Bipedal taxa differ from quadrupedal ones in showing a 

higher polar second moment of area (J) and less rounded cross-sections (CSS further from 1). 

The two main axes explain 100% of the variance, 95.8 and 4.2%, respectively, showing that 

the variation conclusively distinguishes graviportal taxa from the others. Congruent with our 



results for the humerus, we find from the K-NN classifications that we reliably assigned 

69.8% of our specimens to groups a priori. 

The PCA analysis for the ribs shows that the two main axes explain 67.6% of the 

variance (50.6 and 17.0% respectively). In our rib sample, C still varies antagonistically to R/t 

and P, and in a direction almost orthogonal to those of the polar second of moment area and 

cross-sectional shape (Fig. 6A). Graviportal taxa continue to group together. However it is 

interesting to note that the bipedal taxa are within the distribution area of the graviportal ones 

and that the two aquatic taxa are much closer to the graviportal forms than to the other 

terrestrial ones. For ribs, the first axis does not clearly distinguishes graviportal taxa since 

aquatic and bipedal ones display in fact a much higher compactness, whereas graviportal taxa 

display microanatomical features closer to those of the other terrestrial forms. The second axis 

discriminates graviportal taxa from the other ones, notably based on the more rounded shape 

of the cross-sections (in contrast to the increased eccentricity evident for the humerus and 

femur; also see [24]) and higher polar second moment of area. These two main axes explain 

97.4% of the variance, 68.1and 29.3%, respectively. For ribs, we obtained a relatively poor 

result for the K-NN classifications: 46.2% of specimens as well-classified.  

Comparisons between the classical and between-groups PCAs show that the same 

parameters drive the distributions of data for both the mean representatives of the groups and 

for all individuals. 

 

Discussion 

 

We found that only certain key microanatomical and cross-sectional traits distinguish how 

humeri, femora and ribs of tetrapods change their shape and internal bone structure with 

increasing graviportal or aquatic adaptations. In particular, the ribs show stronger changes of 

compactness with aquatic habits than with graviportality. Otherwise, as we proposed in the 

Introduction, there are remarkable qualitatively and quantitatively similar patterns in how 

bones change their internal geometry with lifestyles as different as giant, graviportal land 

animals vs. secondarily aquatic tetrapods, especially increasing bone compactness and 

reduced medullary cavities along both evolutionary trajectories. As for bipedal taxa, they tend 

to show a strong change in femoral cross-sectional area and an increased internal robustness 

in their ribs. 

 



Phylogenetic signal 

 

Our quantitative analyses show that there is a phylogenetic signal in the dataset for most 

parameters, but that it is somewhat weak. Despite its relative weakness, when phylogeny is 

taken into consideration, our analyses of (co)variance do not show any significant change 

between the four groups defined. Although a historical signal is common in bone cross-

sectional geometry and microanatomical data, as previously mentioned (e.g. [25]), our 

findings might also reflect the fact that adaptations to an aquatic lifestyle and to a graviportal 

morphology occurred only infrequently in amniote evolution, so that the extant taxa showing 

such adaptations form a few groups on the phylogeny. More thorough sampling of Tetrapoda 

might show a different phylogenetic signal -- our dataset of <75 total species is far from 

comprehensive. Our results, however, might still reveal the the occurrence of fundamental 

trends of anatomical construction that transcend phylogenetic constraints. 

 

Cross-sectional geometry versus microanatomical parameters 

 

Various comparative studies have focused on long bone sections in order to analyse the link 

between inner bone structure and the structural and functional requirements of extant 

organisms and to make inferences about the lifestyle of extinct taxa (e.g., [26–29]). Of course, 

individual bones-- let alone whole skeletons-- of extinct taxa are not always complete. Given 

the fragmentary nature of fossil material, body size or mass is difficult to estimate precisely. 

Our aim was to determine how similar the cross-sectional geometry of tetrapod bones is 

across a continuum encompassing bipedal, quadrupedal, graviportal and aquatic forms with a 

particular focus on graviportal taxa. In addition to the microanatomical parameters commonly 

used, we included some cross-sectional geometry parameters. As linear regressions on the 

independent contrast data showed a strong impact of body size (i.e., maximal diameter) on 

parameters Per, CSA and Zpol, the latter were considered to display redundant information 

and were removed from further analyses. However, the parameters J and CSS showed their 

own patterns of variability and are of appreciable interest in such comparative studies (see 

Table 4). 

Our comparative analysis highlights different trends of bone adaptation to a 

graviportal limb construction. Although some parameters were, for some bones, covarying 

with MD (size parameter), it was never the case for all bones (see Suppl. 1) -- hence all the 

selected parameters display signals that are not solely attributable to size or allometry. 



Graviportal taxa are large animals with relatively larger cross-sections in their humeri, femora 

and ribs, reflecting greater resistance to compression and tension as well as greater bone mass, 

especially in the stylopodia. They are also characterized by a thicker cortex and a 

proportionally smaller medullary cavity, with a wider transition zone between the cortex and 

the medullary cavity, notably linked to the filling of the medullary area by a spongiosa with 

variations in trabecular thickness and size of intertrabecular spaces. This inner cancellous 

structure may add benefits for impact energy absorption and marrow support [11, 12]. Wall 

[15] noted the filling of the medullary cavity in Ceratotherium, suggesting a link with the 

animal’s great weight, and the differences in the type of spongiosa between Ceratotherium 

and Hippopotamus. Our results also show that graviportal taxa exhibit higher values for the 

midshaft polar second moment of area, indicating increased resistance to stresses engendered 

by bending and torsion [30] that predominate in vertebrate limb bones during locomotion 

[31]. Results concerning the two stylopodial limb bones are strongly congruent.  

However, rib microanatomical adaptation differs as summarized above. If there is a 

clear increase in bone mass in the ribs of some graviportal taxa, comparable to that observed 

in graviportal long bones, a similar phenomenon seems to occur for the bipedal forms 

sampled -- but conversely not for the rhinoceroses and mammoth. Our analyses thus showed 

an absence of significant signal in the rib MANOVA and a low K-NN classification power for 

this bone. Considering the difficulty of making homologous comparisons with ribs (see 

comments in [25, 32]), it appears necessary to increase taxon sampling and to analyse 

variations along the rib and the ribcage in various taxa (as in [33] for one sauropod) in order 

to better document and understand rib adaptations to changes of biomechanical constraints.  

 

Distinguishing graviportal and amphibious adaptations 

 

The variations we have detected among graviportal taxa are interesting—not all graviportal 

tetrapods converge on the same bone inner morphologies. Alexander and Pond [7] established 

that, although elephants, rhinoceroses and hippopotamus are considered graviportal taxa, 

elephants strongly differ from the two other groups in their relatively much longer legs 

(predominated by long stylopodia). The posture and gait of elephants is often mis-

characterized as uniformly “columnar” and restricted to simply walking (see [34, 35]) but is 

nonetheless very distinct from rhinos and hippos in form and hence likely biomechanical 

function as well. Likewise, hippos are known only to trot on land, never gallop, whereas even 

large extant rhinos can gallop and elephants can or do not [7, 34], so biomechanical and 



behavioural disparity exists even between these taxa. Such gross differences between these 

three groups of extant mammals are not evident at the microanatomical level (see “Qualitative 

analysis”).  

Despite this variability, a clear trend is observed across graviportal tetrapods examined 

here. The increase in bone mass (as represented by the infilling of marrow cavities and 

increased bone compactness; also see Christiansen, REF) observed in graviportal taxa, 

including the amphibious Hippopotamus, is more restricted compared to that observed in 

some other amniotes, especially some shallow water swimmers or bottom-walkers that are 

almost exclusively aquatic (see [20, 28, 29]). Adaptation to a graviportal morphology and 

related behaviours is thus not to be mistaken for the specialization of bone mass increase 

observed in these aquatic taxa.  

However, it is difficult to determine if the pattern observed in Hippopotamus reflects 

its graviportal limbs or the benefit of a slight increase in bone mass in its legs in order to be 

used as ballast and to stabilize in water. As a result both adaptations might be mistaken, or 

even synergistic and pointless to try to untangle from their evolutionary integration. 

Adaptation to a graviportal limb morphology should thus be taken into consideration when 

analysing possibly amphibious taxa displaying a terrestrial-like morphology, and thus notably 

in the study of the early stages of adaptation to an aquatic life in amniotes. This cautionary 

note is particularly relevant for interpreting less well understood large extinct forms such as 

some south American endemic ungulates (AH, unpublished observations), some giant 

xenarthrans and marsupials, Arsinoitherium and related giant tethytheres (including basal 

Proboscidea), and the diversity of large and small Rhinocerotoidea (e.g., [34–36]).  

 

Methods 

 

Material 

The material analysed consists of humeri, femora and ribs of a large sample of fossil and 

extant mammals and reptiles. The taxa were chosen based on availability (including good 

preservation of the bone mid-diaphysis and feasibility of obtaining good quality digital 

imaging data, in addition to general accessibility to our research team) with the aim of 

including large forms and of representing diverse postures and locomotor habits (e.g., 

terrestrial vs. aquatic) (see Tables 1-3; Fig. 1). Our final sample consisted of 54 humeri of 49 

species, 43 femora of 38 species (and two indeterminate theropod dinosaurs; although their 



phylogenetic position could not be determined precisely, so that they could not be 

incorporated in analyses taking the phylogeny into consideration, they could increase the 

sample of bipedal taxa), and 25 ribs of 25 species. Stylopodial bones were chosen because 

they are thought to have a stronger ecological signal than zeugopodial ones [26, 27] and show 

a much larger cross-sectional area in graviportal taxa ([7], REFS). Complete cross-sectional 

microanatomical data for stylopodial bones are rare for giant sauropods because of practical 

constraints imposed by the bone size. Conversely, whole transverse rib sections were 

available, which explains why ribs were also chosen for the analysis. 

 

Bone section analysis 

Some bones were sectioned using standard petrographic thin-section techniques (e.g. [37]; 

Tables 1-3). Others were scanned using high-resolution computed tomography 

(GEphoenix∣X-ray v∣tome∣xs 240) at the Steinmann-Institut, University of Bonn (Germany) 

and at the AST-RX platform of the Muséum National d’Histoire naturelle (UMS 2700) or at 

the Equine Diagnostic Imaging Centre at the Royal Veterinary College (GE Lightspeed), with 

reconstructions performed using datox/res or similar software (e.g., in case of the GE 

Lightspeed scans, Medview software (www.Medimage.com)). Image segmentation and 

visualization were performed from the reconstructed image data using VGStudioMax 2.0 and 

2.2 (Volume Graphics Inc., Heidelberg, Germany). These techniques have already been 

shown neither to introduce artefacts nor to bias interpretation of the results for comparative 

analyses [25, 38]. New virtual thin-sections were made from the microtomographic data in 

cross-sectional planes of interest that serve as references for our comparative studies. For long 

bones, these were diaphyseal transverse sections showing the thickest cortex, and thus 

assumed to cross the growth centre (see [39, 40]). Rib transverse sections were made at about 

the first third of the proximodistal distance along the rib’s perimeter, which has been shown to 

be the location of the growth centre in ribs [33].  

Scans of the classical (physical) thin-sections, performed at high resolution (i.e., 

between 6400 and 12800 dpi) using an Epson V750-M Pro scanner, and virtual thin-sections 

were transformed into single-bit digital images using Photoshop CS3 (where black represents 

bone and white cavities), and analysed using the software Bone Profiler [41]. Some additional 

sections, either histological thin sections or virtual thin sections, come from previous studies 

[20, 21, 42]. Quantitative parameters were measured directly on these images, again via Bone 

Profiler [41] but also via the ImageJ plugin BoneJ [43], except for maximal bone diameter 

(MD), which was taken directly from the sections. These parameters included (see [41] for 

http://www.medimage.com/


details and illustrations): (1) C: compactness of the whole section (i.e., surface occupied by 

bone divided by whole sectional area); (2) P: the extent of the medullary cavity as measured 

by the relative distance from the centre of the section to the point where the most abrupt 

change in compactness occurs; (3) S: the width of the transitional zone between the compact 

cortex and the medullary cavity as measured by the reciprocal of the slope of the compactness 

profile at the inflection point; (4) MD: maximum bone diameter at the level of section (here 

considered as a proxy for body size); (5) R/t: outside radius of the bone divided by the 

thickness of the cortex ([44]); (6) CSS: cross-sectional shape (=Imax/Imin; the ratio of maximal 

to minimal second moments of area); (8) J: polar second moment of area (=Imax + Imin); (9) 

Zpol: polar section modulus (see for definitions of these measurements #6-9 and usage in 

BoneJ software); and (10) Per: perimeter of the section. 

 

Statistical analyses 

All data were log10 transformed prior to analyses (CSA and Zpol were first raised to the power 

of 0.50 and 0.33, respectively, reducing them to dimensions more comparable to linear 

values) to meet assumptions of normality and homoscedasticity required for parametric 

analyses. Considering that the parameter maximal diameter (MD) is usually considered as an 

estimate of overall body size [41], and actual body mass data were not available for our 

specimens, we performed linear regression analyses on the various microanatomical 

parameters in order to evaluate the scaling of each parameter vs. MD in the dataset. Because 

of the very strong impact of MD on the parameters Per, CSA and Zpol (r~0.99), the later were 

removed from the analyses, to avoid multiplying the same signal. The amount of phylogenetic 

signal was investigated for the different parameters analysed, as follows. Statistical tests were 

performed using an approximate “consensus” phylogeny, derived from several published 

phylogenies [45–52] (Fig.7). We calculated the K-statistic following Blomberg, Garland & 

Ives [53], which compares the observed phylogenetic signal in a trait to the signal under a 

Brownian motion model of trait evolution. Species means were used when several specimens 

were available for the same species. A K-value lower than one implies less similarity between 

relatives than expected under Brownian motion. We then performed linear regression analyses 

on all parameters in order to evaluate the allometry in the data. As a phylogenetic signal 

generally was detected, we calculated independent contrasts and forced regressions through 

the origin. We then conducted a Principal Components Analysis (PCA) in order to explore the 

distribution of the different taxa in morphospace. Four groups were defined based on their 

typical limb posture and locomotor habit: (1) Graviportal (i.e., with robust bones with 



relatively long stylopodia; likely columnar posture), (2) Quadrupedal (graviportal taxa 

excluded), (3) Bipedal and (4) Aquatic (groups 1-3 being predominantly terrestrial taxa). In 

order to clearly visualize the trends between the different groups, a between-groups PCA was 

performed (on the mean values for each group). We also performed a pattern recognition 

analysis using the K-nearest neighbours algorithm (see [54]) in order to discriminate between 

our groups while avoiding possible biases linked to more classical discriminant analyses 

(notably as a result of the small number of specimens for some groups). Phylogenetic 

ANOVAs and ANCOVAs (when a size effect was detected), as well as phylogenetic 

MANOVAS were performed as tests to determine if the group number had a significant 

correlation with the various parameters analysed.  

All statistical analyses were performed using the statistical software R [55] except 

phylogenetic ANCOVAs that required the use of the PDSIMUL and PDANOVA routines 

implemented in PDAP [56]. In the PDSIMUL program, we used Brownian motion as our 

model for evolutionary change and ran 1000 unbounded simulations to create an empirical 

null distribution against which the F-values from the original data could be compared. 
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Figure legends 

 

 

Figure 1. Schematic drawings illustrating the diversity of microanatomical patterns observed 

in humeri of: A- Giraffa camelopardalis, B- Choeropsis liberiensis, C- Hippopotamus 

amphibious, D- Ampelosaurus atacis, E- Centrosaurus apertus, F- Ceratotherium simum, G- 

Rhinoceros unicornis, H- Elephas maximus, I- Diceros bicornis, J- Trichechus manatus, K- 

Paleoparadoxia sp., L- Dugong dugon. Scale bars: 5 mm. 

 

Figure 2. Schematic drawings illustrating the diversity of microanatomical patterns observed 

in femora of: A- Giraffa camelopardalis; B- Syncerus caffer, C- Rhinoceros unicornis, D- 

Rhinoceros sondaicus, E- Elephas maximus, F- Mammuthus sp., G- Hippopotamus 

amphibious, H- Stegosaurus sp. Scale bars: 5 mm 

 

Figure 3. Schematic drawings illustrating the diversity of microanatomical patterns observed 

in ribs of: A- Martes foina, B- Ursus spelaeus, C- Paleoparadoxia sp., D- Miragaia 

longicollum, E- Cathetosaurus sp., F- Lourinhanosaurus sp., G- Baryonyx sp., H- 

Mammuthus primigenius, I- Rhinoceros unicornis. Scale bars: 5 mm (except for Martes: 0.5 

mm). 

 



Figure 4. Microanatomical clusters obtained by Principal Component Analyses (PCA) 

conducted on the humeri of our sample. Graphs showing the distribution of the variance in all 

taxa examined according to the PCA1 and PCA2 axes. A, classical PCA; B, between-groups 

PCA. Abbreviations for the taxa in the PCA graphs as in Table 1. 

 

Figure 5. Microanatomical clusters obtained by Principal Component Analyses (PCA) 

conducted on the femora of our sample. Graphs showing the distribution of the variance in all 

taxa examined according to the PCA1 and PCA2 axes. A, classical PCA; B, between-groups 

PCA. Abbreviations for the taxa in the PCA graphs as in Table 2. 

 

Figure 6. Microanatomical clusters obtained by Principal Component Analyses (PCA) 

conducted on the ribs of our sample. Graphs showing the distribution of the variance in all 

taxa examined according to the PCA1 and PCA2 axes. A, classical PCA; B, between-groups 

PCA. Abbreviations for the taxa in the PCA graphs as in Table 3. 

 

Figure 7. Consensus phylogenetic tree (based on [45–52]) with the 4 groups defined in the 

present study illustrated (yellow: graviportal; green: quadrupedal (graviportal taxa excluded); 

orange: bipedal; blue: aquatic). 

 

 

 

 



Table 1. List of the humeri analyzed in this study. Abb: abbreviations; P: posture; G: graviportal; B: bipedal; Q: quadrupedal; A: aquatic; ST: section type; CS: classical section; 

VS: virtual section. 

Family Taxon Abb. P Coll Nb ST 

Diplodocidae cf. Apatosaurus sp. Ap G OMNH 01275 CS 

Titanosauria Ampelosaurus atacis Am G MDE C3-270 CS 

Tyrannosauridae Tarbosaurus sp. Tar B HMNS 94-10-78 CS 

Allosauridae Allosaurus fragilis All B UMNH 3607 CS 

Stegosauria Scutellosaurus lawleri Sc B UCMP 13068 CS 

 Scutellosaurus lawleri Sc B UCMP 130580 CS 

Protoceratopsidae Protoceratops andrewsi Pr G MPC-D 100/530 CS (2) 

 Centrosaurus apertus Cen G RTMP 79.14.759 CS 

Nothrotheriidae Nothrotherium escrivanse No Q PIMUZ A/V 477 Straehl et al. (2013) 

Myrmecophagidae Tamandua tetradactyla Tam Q NMB 10420 Straehl et al. (2013) 

 Myrmecophaga tridactyla My Q ZMZ 11119 Straehl et al. (2013) 

Desmostylia Paleoparadoxia sp. Pal A AMP AK0011 CS 

Trichechidae Trichechus manatus Tr A NSM M 34694 VS 

Stegodontidae  Stegodon aurorae St G OMNH QV 264 CS 

Elephantidae  

 

Elephas maximus El G JRHRVC uncat. VS 

Elephantidae  

 

Loxodonta africana  Lo G NHMUK 1939.5.27.1 VS 

Felidae Felis felis Fe Q UFGK uncat. VS 

Felidae Panthera leo Pa Q MNHN1912-398 Laurin et al. 2011 

Felidae Uncia uncia Un Q NSM M 33876 VS 

Canidae Canis lupus Ca Q Unnumbered Laurin et al. 2011 

Canidae Vulpes vulpes Vu Q STIPB M12 VS 

Mustelidae Meles meles Me Q STIPB M4002 VS 

Ursidae Ursus thibetanus Ut Q ZFMK 81557 VS 

 Ursus maritimus Um Q ZFMK 2005.356 VS 

Equidae Equus burchelli Eq Q NMW 28810 Laurin et al. 2011 

Tapiridae Tapirus terrestris Tap Q ZFMK 462 VS 

Rhinocerotidae Diceratherium sp. Dic G NHMUK PV M7752 VS 

Rhinocerotidae Diceros bicornis  Db G UMZC H.6481 VS 

http://fr.wikipedia.org/wiki/Elephantidae
http://fr.wikipedia.org/wiki/Elephantidae
http://en.wikipedia.org/wiki/Rhinocerotidae
http://en.wikipedia.org/wiki/Rhinocerotidae


Rhinocerotidae Diceros bicornis Db G NHMUK M92402 VS 

Rhinocerotidae Ceratotherium simum Ce G JRHRVC uncat. VS 

 Ceratotherium simum Ce G MNHN ZM MO 2005-297 VS 

Rhinocerotidae Dicerorhinus sumatrensis  Di G UMZC H.6392 VS 

 Dicerorhinus sumatrensis Di G MNHN ZM AC 1903-300 VS 

 Rhinoceros sondaicus Rs G MNHN ZM AC A7970 VS 

 Rhinoceros unicornis Ru G MNHN ZM AC 1960-59 VS 

Hippopotamidae Choeropsis liberiensis Ch G ZFMK 65 570 VS 

Hippopotamidae Hippopotamus amphibius  Hi G UMZC H.10714 VS 

Suidae Sus scrofa Su Q STIPB M56 VS 

Giraffidae Giraffa camelopardalis  Gi Q JRHRVC uncat. VS 

Giraffidae Okapia johnstoni Ok Q UMZC H.20302 VS 

Cervidae Rangifer tarandus Ra Q STIPB M47 VS 

 Capreolus capreolus Cp Q MNHN CH 221 Laurin et al. 2011 

 Alces americanus Al Q UMZC H.17691 VS 

 Cervus elaphus Cer Q MNHN Unnumbered Laurin et al. 2011 

Cervidae Megaloceros sp. Meg Q UCMP 63524 VS 

Cervidae Megaloceros giganteus Meg Q UMZC H.17535 VS 

 Dama dama Da Q STIPB M1 VS 

Bovidae Cephalophus sylvicultor Cep Q NHMUK ZD 1961.8.9.80-1 VS 

Bovidae Ovis ammon Ov Q NMW 26499 Laurin et al. 2011 

Bovidae Rupicapra Rup Q STIPB M1639 VS 

 Capra falconeri Cap Q NMW 12081 Laurin et al. 2011 

Bovidae Boselaphus tragocamelus Bo Q NMW 25399 Laurin et al. 2011 

Bovidae Taurotragus oryx Tau Q NMW 61319 Laurin et al. 2011 

Bovidae Syncerus caffer   Sy Q NHMUK ZD 1874.11.2.4 VS 

 

http://en.wikipedia.org/wiki/Rhinocerotidae
http://en.wikipedia.org/wiki/Rhinocerotidae
http://en.wikipedia.org/wiki/Rhinocerotidae
http://en.wikipedia.org/wiki/Hippopotamidae
http://fr.wikipedia.org/wiki/Giraffidae
http://fr.wikipedia.org/wiki/Giraffidae
http://en.wikipedia.org/wiki/Cervidae
http://en.wikipedia.org/wiki/Cervidae
http://fr.wikipedia.org/wiki/Bovidae
http://fr.wikipedia.org/wiki/Bovidae


Table 2. List of the femora 

analyzed in this study. Abb: 

abbreviations; P: posture; G: 

graviportal; B: bipedal; Q: 

quadrupedal; A: aquatic; ST: 

section type; CS: classical 

section; V: virtual section. 

Family Taxon Abb. P Coll Nb ST 

Ornithomimidae Gallimimus sp. Ga B HMNS  97-21-378 CS 

Allosauridae Allosaurus fragilis All B UMNH 3694 CS 

Abelisauridae Masiakasaurus knopfleri Ma B FMNH PR 2123 CS 

Theropoda Theropod indet. Th B HMNS 2006-04-356 CS 

Theropoda Theropod indet. Th B HMNS 2006-04-151 CS 

Hypsilophodontidae Dryosaurus altus Dr B BYU 13312 CS 

Stegosauria Scutellosaurus lawleri Sc B UCMP 170829  CS 

Stegosauridae Stegosaurus sp. St G YPM 4634 CS 

Myrmecophagidae Myrmecophaga tridactyla My Q ZMZ 11119 Straehl et al. (2013) 

Myrmecophagidae Tamandua tetradactyla Tam Q NMB 10420 Straehl et al. (2013) 

Elephantidae  

 

Mammuthus sp. Ma G UCMP 35984 VS 

Elephantidae  

 

Mammuthus sp. Ma G NHMUK uncat. VS 

Elephantidae  

 

Elephas maximus El G JRHRVC uncat. VS 

Elephantidae  

 

Loxodonta africana  Lo G NHMUK 1939.5.27.1 VS 

Felidae Felis felis Fe Q UFGK uncat. VS 

Felidae Uncia uncia Un Q NSM M 33876 VS 

Canidae Vulpes vulpes Vu Q STIPB M12 VS 

Mustelidae Meles meles Me Q STIPB M4002 VS 

Ursidae Ursus thibetanus Ut Q ZFMK 81557 VS 

http://fr.wikipedia.org/wiki/Elephantidae
http://fr.wikipedia.org/wiki/Elephantidae
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 Ursus maritimus Um Q ZFMK 2005.356 VS 

Tapiridae Tapirus terrestris Ta Q ZFMK 462 VS 

Rhinocerotidae Ceratotherium simum Ce G MNHN ZM MO 2005-297 VS 

 Ceratotherium simum Ce G JRHRVC uncat. VS 

 Dicerorhinus sumatrensis Di G MNHN ZM AC 1903-329 VS 

 Rhinoceros sondaicus Rs G MNHN ZM AC A7970 VS 

 Rhinoceros unicornis Ru G MNHN ZM AC 1960-59 VS 

Hippopotamidae Choeropsis liberiensis Ch Q ZFMK 65 570 VS 

Hippopotamidae Hippopotamus amphibius  Hi G UMZC H.10714 VS 

Camelidae Lama guanicoe La Q STIPB M7388 VS 

Suidae Sus scrofa Su Q STIPB M56 VS 

Giraffidae Okapia johnstoni Ok Q UMZC H.20302 VS 

Giraffidae Giraffa camelopardalis  Gi Q JRHRVC uncat. VS 

Cervidae Dama dama Da Q STIPB M1 VS 

Cervidae Megaloceros sp. Meg Q UCMP 63524 VS 

Cervidae Rangifer tarandus Ra Q STIPB M47 VS 

 Capreolus capreolus Cp  STIPB M1452 VS 

Cervidae Alces americanus Al Q UMZC H.17691 VS 

Bovidae Cephalophus sylvicultor Cep Q NHMUK ZD 1961.8.9.80-1 VS 

Bovidae Rupicapra Ru Q STIPB M1639 VS 

Bovidae Syncerus caffer   Sy Q NHMUK ZD 1874.11.2.4 VS 

Bovidae Bos taurus  Bos Q NHMUK 47 VS 

Bovidae  Bison bonasus Bi Q ZFMK 2010-303 VS 

http://en.wikipedia.org/wiki/Rhinocerotidae
http://en.wikipedia.org/wiki/Hippopotamidae
http://fr.wikipedia.org/wiki/Giraffidae
http://fr.wikipedia.org/wiki/Giraffidae
http://en.wikipedia.org/wiki/Cervidae
http://en.wikipedia.org/wiki/Cervidae
http://fr.wikipedia.org/wiki/Bovidae
http://fr.wikipedia.org/wiki/Bovidae
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Table 3. List of the ribs analyzed in this study. Abb: Abbreviations; P: posture; G: graviportal; B: bipedal; Q: quadrupedal; A: aquatic; ST: section type; CS: classical section; V: 

virtual section. 

Family Taxon Abb. P Coll Nb ST 

Spinosauridae Baryonyx sp. Ba B ML 1190.7c C 

Sinraptoridae Lourinhanosaurus sp. Lou B ML 370C C 

Sauropoda Spinophorosaurus nigeriensis Sp G Ni5.40-7ax C 

Diplodocidae Apatosaurus sp. Ap G BYU 145 C 

Diplodocidae Diplodocus sp. Di G CMC 9932 C 

Camarasauridae Cathetosaurus sp. Ca G SMA 0002 C 

Brachiosauridae Brachiosaurus sp. Br G FMNH 25107 C 

Camptosauridae Draconyx sp. Dr B ML 439 C 

Ankylosauridae Ankylosaurus indet An G HMNS 94-10-7 C 

Stegosauridae Miragaia sp. Mi G ML 433A C 

Stegosauridae Hesperosaurus mjosi He G HMNS 014 C 

Procaviidae Procavia capensis Pr Q NSM M 3497 V 

Desmostylidae Behemotops katsuiei Be A AMP 22 C 

Desmostylidae Paleoparadoxia sp. Pa A AMP AK1001 C 

Elephantidae Mammuthus primigenius Ma G ZFMK 98 395 V 

Mustelidae Martes foina Mar Q STIPB M4004 V 

Ursidae Tremarctos ornatus Tr Q ZFMK 97.275 V 

 Ursus spelaeus Us Q xxx V 

 Ursus maritimus Um Q ZFMK 2005.356 V 

Tapiridae Tapirus terrestris Ta Q ZFMK 462 V 

 Rhinoceros sondaicus Rs G MNHN ZM AC A7970 V 

 Rhinoceros unicornis Ru G MNHN ZM AC 1960-59 V 



Hippopotamidae Choeropsis liberiensis Ch Q ZFMK 65 570 V 

Bovidae  Bison bonasus Bi Q ZFMK 2010-303 V 

 Capra aegagrus Cap Q UFGK Uncat.  

 

 

 

 
 



Table 4. Table showing the F and p values obtained for the various analyses of (co)variance. In bold 

when p<0.05. 

 

 Phylogenetic ANOVA ANCOVA Phylogenetic ANCOVA 

 F p F p F p 

HUMERUS       

C 11.96 0.032     

S   5.49 0.024 8.68 0.235 

P 14.16 0.015     

RT 8.52 0.081     

CSS 1.14 0.794     

J   5.28 0.026 8.58 0.261 

FEMUR       

C   7.96 0.008 8.84 0.105 

S 4.86 0.412     

P   7.99 0.008 8.78 0.089 

RT   5.52 0.025 8.77 0.212 

CSS   7.63 0.009 9.00 0.103 

J   8.54 0.006 9.05 0.081 

RIB       

C 2.35 0.546     

S 2.44 0.529     

P 7.17 0.111     

RT 4.87 0.216     

CSS 0.77 0.852     

J   4.18 0.053 8.56 0.198 

 

















 Phylogenetic Signal      Linear Regressions on the 
independent contrast data 

Humerus K p p adjusted R2 

C 0.68 <0.001* 0.91 -0.02 

S 0.55 <0.001* 0.01* 0.11 

P 0.49 <0.001* 0.81 -0.02 

RT 0.56 <0.001* 0.50 -0.01 

MD 0.40 <0.001* - - 

CSS 0.34 0.041* 0.09 0.04 

J 0.37 0.002* 0.04* 0.07 

Femur     

C 0.46 <0.001* 0.01* 0.16 

S 0.55 <0.001* 0.33 0.00 

P 0.47 0.004* 0.01* 0.15 

RT 0.48 0.003* 0.01* 0.13 

MD 0.37 0.006* - - 

CSS 0.51 0.007* <0.01* 0.32 

J 0.45 0.005* <0.01* 0.54 

Rib     

C 0.47 0.139 0.61 -0.03 

S 0.39 0.550 0.15 0.05 

P 0.65 0.016* 0.98 -0.04 

RT 0.56 0.049* 0.47 -0.02 

MD 0.67 0.017* - - 

CSS 0.43 0.282 0.30 0.01 

J 0.56 0.038* <0.01* 0.35 

 


