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Effects of dietary supplementation of pioglitazone on metabolism, milk yield and 25 

reproductive performance in transition dairy cows 26 

Abstract 27 

The objective of this study was to investigate the effect of dietary supplementation of 28 

pioglitazone (PGT), a specific ligand for PPARγ, on metabolic dynamics, milk production, 29 

and reproductive performance of transition dairy cows. Eighty multiparous Holstein cows in 30 

their second or more lactations were blocked by the calving date and parity and assigned 31 

randomly to four dietary groups (n=20 cow/treatment) including control (no PGT-/-), 32 

supplemented with PGT (6 mg PGT/kg body weight) from day -14 to +21 relative to 33 

parturition (PGT+/+) or only during prepartum (PGT+/-) or postpartum periods (PGT-/+). 34 

Postpartum body condition score and body weight loss decreased (P < 0.05) in all PGT 35 

supplemented groups. Milk yield was not affected by PGT supplementation (P > 0.05). 36 

Percentage of milk fat decreased (P < 0.05) in all PGT-treated groups; however, milk fat 37 

yield was lower (P < 0.05) in PGT (+/+) and PGT (+/-) groups compared to PGT (-/-). 38 

Peripartum (d -7 to +7) concentrations of plasma non-esterified fatty acids (NEFA) and β-39 

hydroxybutyrate (BHBA) decreased in PGT (+/+) but not in the PGT (-/-) group (P < 0.05). 40 

During the postpartum period, PGT reduced (P > 0.05) plasma concentrations of NEFA in all 41 

PGT-treated groups but did not affect BHBA level. Plasma concentrations of triglycerides 42 

(TG) decreased in all PGT supplemented groups. Supplementation of PGT decreased the 43 

peripartum concentrations of plasma glucose in PGT cows. Plasma concentrations of IGF-I 44 

were higher in PGT (+/+) compared to the control group during both the peri- and postpartum 45 

periods. Plasma concentrations of growth hormone and insulin were not affected by PGT 46 

treatment (P > 0.05). Mean days to ovulation were lower and the proportion of cows 47 

ovulating by d 14 postpartum was higher in PGT (+/+) and PGT (+/-) compared to control. 48 

Days open were shorter in PGT (+/+), PGT (+/-) and PGT (-/+) groups compared to control. 49 
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The proportion of pregnant cows at 120 DIM was higher in PGT (+/+) and PGT (+/-) 50 

compared to the control. The results showed positive effects of dietary supplementation of 51 

PGT, especially supplementation during both the pre- and postpartum periods, on metabolic 52 

dynamics, ovarian function and reproductive performance in transition dairy cows. 53 

Keywords: Insulin resistance; pioglitazone; metabolic dynamics; milk yield; reproductive 54 

performance; dairy cows. 55 

1. Introduction 56 

The transition period is a crucial period in dairy cows, affecting their postpartum health, 57 

reproduction and milk performance, and is accompanied by homeorhetic adaptations in 58 

glucose and lipid metabolism [1, 2]. The increased overall energy demand in transition cows 59 

is supported by a simultaneous decrease in glucose oxidation by peripheral tissues [2], an 60 

increase in glucose output by the liver [3], and also by stimulation of body fat mobilization, 61 

that is facilitated through a decrease in the response of adipose tissue to insulin [4], known as 62 

insulin resistance. 63 

Insulin resistance during the prepartum period is a part of the homeorhetic mechanisms that 64 

develop in peripheral tissues, and continues into early lactation to direct the nutrients toward 65 

the fetus and mammary glands [1]. Decreased sensitivity of peripheral tissues to insulin 66 

facilitates mobilization of non-esterified fatty acids (NEFA) to compensate and mitigate the 67 

period of negative energy balance (NEB); however, it may be followed by a rapid decrease in 68 

dry matter intake and a high spike of NEFA during the transition period [5, 6]. High 69 

concentrations of NEFA in transition cows contribute to energy and immune related 70 

metabolic disorders, such as displaced abomasum, ketosis, fatty liver, metritis and mastitis 71 

[7], and result in a greater risk of insulin resistance [8]. 72 
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The potential for modulation of adipose tissue metabolism may suggest ways to moderate the 73 

acute spike in circulating NEFA concentrations. In this regard, several strategies have been 74 

tried to decrease insulin resistance and attenuate metabolic disorders [9-13]. A 75 

pharmacological method, based on administration of an exogenous ligand of peroxisome 76 

proliferator and activator receptors (PPARs), has been proposed as a newer approach for 77 

controlling the prepartum insulin resistance in dairy cows [14-16]. 78 

The PPARs which are widely distributed in the body, especially in the bovine adipose tissue 79 

as well as the reproductive organs [17] and mammary glands [18-20], have tremendous 80 

effects on body fat metabolism as a differentiation regulator of adipocytes [21]. Activation of 81 

these receptors in adipose tissues, influence adipocytes capacity for fatty acid storage and 82 

regulate several adipokines affecting insulin resistance [22]. PPARγ, the most prevalent 83 

PPAR in the adipose tissues, is activated by several endogenous [21, 22] and exogenous 84 

ligands such as thiazolidinediones (TZDs).  85 

There is evidence that TZDS injection was able to reverse the TNFα-induced insulin 86 

resistance in steers [23], and improve energy efficiency in beef cattle [24]. It was also shown 87 

that administration of TZDs during late pregnancy in dairy cows maintained higher 88 

postpartum BCS, decreased plasma concentrations of NEFA and liver TG accumulation, 89 

increased peripartum DMI and plasma glucose levels, and stimulated postpartum ovarian 90 

activity [15, 16, 25]. Accordingly, dietary supplementation of about 0.114 mg TZDs per kg 91 

BW in beef cattle also improved energy efficiency, and liver and muscle fatty acid oxidation 92 

[24]. These findings demonstrate the effectiveness of TZDs on attenuating insulin resistance 93 

and improving metabolic dynamics of transition dairy cows. 94 

Pioglitazone, as a TZD drug, is a synthetic and specific ligand for PPARγ that is used for 95 

treatment of type 2 diabetes mellitus in human [26]. By binding and activating PPARγ, 96 
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pioglitazone affects plasma lipids, adipose tissue, and liver to reduce insulin resistance [26, 97 

27]. The bioavailability of PGT after oral administration was 62% in sheep [28], 83% in 98 

humans [29], and 50% in rats [30]. In dairy cows, the bioavailability and half-life of PGT 99 

following oral administration was about 60%, showing acceptable potential of PGT for 100 

dietary supplementation [31]. Although, there are several studies on dietary supplementation 101 

of TZDs in beef cattle [23, 24] and dairy cows [15, 16, 25], the use of this drug has not been 102 

approved yet, and further investigations are needed to reveal the effects of TZDs on animal 103 

metabolism and health. To our knowledge, there are no reports on the effect of dietary 104 

supplementation of TZDs on metabolism in transition dairy cows or postpartum reproduction. 105 

The objectives of this experiment were to determine the effect of dietary supplementation of 106 

pioglitazone hydrochloride during the transition period on metabolism, milk production and 107 

reproductive performance in dairy cows. 108 

2. Materials and methods 109 

2.1. Experimental design 110 

The experiment was conducted on high-producing Holstein dairy cows (42 kg/day) in a 111 

commercial dairy farm in the north of Iran from February to April 2012. Eighty multiparous 112 

cows (parity 2-6) with no overt clinical disease history were blocked by calving date and 113 

parity, and allocated in four dietary groups (n=20 cow/treatment). PGT was obtained as 114 

pioglitazone hydrochloride from Hetero Drugs (India; Batch No: PHD 0510001) and kindly 115 

provided by Darou Pakhsh Co., Tehran, Iran. Considering about 60% bioavailability for oral 116 

administration of pioglitazone in ruminants [28, 31] and also previous studies [15, 16, 25] 117 

reporting that intravenous administration of 2 or 4 mg TZD/kg BW effectively influenced 118 

metabolism and performance of transition cows, a dose of 6 mg PGT/kg BW was used in the 119 

present experiment. Experimental period was 35 d, starting on d 14 before expected 120 
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parturition to d 21 postpartum. Diets consisted of PGT (+/+): supplementation of PGT during 121 

the pre and postpartum period (d −14 to +21 relative to parturition), PGT (+/-): 122 

supplementation of PGT only during the prepartum period (d −14 to parturition), PGT (-/+): 123 

supplementation of PGT only during the postpartum period (parturition to d +21 relative to 124 

parturition) and PGT (-/-): no PGT supplementation (control), (Figure 1). Cows were fed ad 125 

libitum, a common total mixed ration (TMR) during the pre- and postpartum periods twice 126 

per day (0800 and 1600 hours), supplemented with or without PGT.  127 

Diets were formulated (Table 1) according to the requirements during the pre and postpartum 128 

as suggested by NRC [32]. Cow assignment to treatments was balanced for calculated 129 

previous 305-d mature-equivalent milk yield and BCS. The average (±SE) of parity in PGT 130 

(+/+), PGT (+/-), PGT (-/+), and PGT (-/-) groups was 2.80±0.25, 3.10±0.30, 3.30±0.33, and 131 

2.70±0.24, respectively.  132 

The diets were sampled weekly, and analyzed for crude protein (CP, method 988.05; AOAC, 133 

1990); ether extract (method 920.39; AOAC, 1990), acid detergent fiber (method 973.18; 134 

AOAC, 1990) and neutral detergent fiber [33]. At weekly intervals, body weight and BCS 135 

were measured. BCS was evaluated using a 5-scale system by three experts and the average 136 

of which was taken as the BCS for each cow [34]. 137 

2.2. Milk and blood sampling 138 

After parturition, cows were milked 3 times per day, at 07.00, 14.00, and 23.00 hours, and 139 

milk yield of individual cows was recorded at each milking, until d 30 postpartum. Milk 140 

samples were collected weekly from all 3 consecutive milking in plastic vials, preserved with 141 

potassium dichromate, and stored at 4°C. Milk samples were analyzed for fat, protein, 142 

lactose, and total solids using MilkoScan (134 BN Foss Electric, Hillerød, Denmark). Milk 143 

composition were calculated based on the product of the milk production yield and milk 144 
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composition at each milking on those days, as a weighted mean, and used for statistical 145 

analysis. 146 

Blood samples were collected from 10 cows in each treatment, on d -14, -7, 0, 7, 14, and +21 147 

(d 0 = parturition). Blood was collected via the coccygeal vein in evacuated glass tubes 148 

containing EDTA (10.5 mg, Monoject; Sherwood Medical, St. Louis, MO, USA). Within 1 h 149 

following sampling, plasma was harvested by centrifugation (3000 × g, 15 min at 4°C) and 150 

stored at −18°C until further analysis. Plasma concentrations of cholesterol, TG and glucose 151 

were measured using Pars Azmoon kits according to the manufacturer’s procedures (Pars 152 

Azmoon Co., Tehran, Iran). The inter- and intra-assay coefficients were 2.8 and 1.7% for 153 

cholesterol, 3.1 and 2.4% for TG and 4.5 and 3.1% for glucose assay. Plasma concentrations 154 

of NEFA and BHBA were measured using commercial kits (Randox Laboratories Ltd., 155 

London, UK) with a Technicon-RA 1000 Autoanalyzer (DRG Co., Marburg, Germany). The 156 

inter- and intra-assay coefficients of variations for NEFA and BHBA assays were 6.3, 4.2, 157 

4.6 and 3.8%, respectively. 158 

 Blood concentrations of insulin and progesterone (Diaplus Inc., USA), IGF-1 (Hangzhou 159 

Eastbiopharm Co., Ltd., USA) and GH (Monobind Inc Lake Forest, CA, USA) were 160 

measured with specific ELISA kits, following the manufacturer’s instructions. The inter- and 161 

intra-assay coefficients of variation were 7.2, 5.4% for insulin, 5.1, 3.2% for progesterone, 162 

6.9, 5.2% for IGF-1, 7.8 and 6.5% for GH assay. 163 

2.3. Reproductive management 164 

A PreSynch/Ovsynch program starting on d 30 postpartum was conducted [35]. Briefly, the 165 

PreSynch estrous cycle synchronization was carried out by 2 injections of PGF2α (500 µg, 166 

Cloprostenol Sodium, i.m.; Estroplan, Parnell technologies PTY. LTD., Alexandria, 167 

Australia) given 14 d apart. The Ovsynch program started 14 d after the second PGF2α 168 
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injection. In the Ovsynch program, cows were injected an intramuscular GnRH (100 µg 169 

gonadorellin acetate, Gonabreed, Parnell Technologies PTY. LTD., Alexandria, Australia), 170 

followed by PGF2α injection 7 d later. An additional GnRH was injected 48 h after PGF2α 171 

injection. Cows were inseminated artificially 16 h after GnRH injection.  172 

Cows were inseminated and excluded from the program if they showed estrus signs following 173 

the second injection of PGF2α in presynchronization phase (d 44 postpartum) until the end of 174 

the reproductive program. Estrus was detected using a combination of behavioral 175 

observations (two times daily) and pedometer activity. One technician inseminated all cows 176 

until the end of the experiment. The reproductive traits including postpartum ovulation, 177 

conception rate, pregnancy per AI, service per conception, days open, days to first service 178 

and days to first estrus were recorded during the experiment.  179 

Number of days to first ovulation was determined using both ultrasonography and 180 

progesterone assay (3 times per week). Ovarian follicular activity was monitored by 181 

transrectal ultrasonography using a real-time linear scanning ultrasound diagnostic system (B 182 

mode; Piemedical, Falco 100; 8 MHz transducer), 2 times per week, beginning on d 8 183 

postpartum and continuing through d 28 postpartum. Ovulation was considered to have 184 

occurred 3 d before plasma progesterone was greater than or equal to 1 ng/mL [25]. 185 

2.4. Statistical analysis 186 

Data measured over time (BCS, BW, milk yield and composition, blood hormones and 187 

metabolites), were analyzed by the MIXED procedure (SAS Institute Inc., Cary, NC), for 188 

peripartum (d −7 to +7) and postpartum (d 0 to +21), separately. The model included the 189 

fixed effects of treatment, time, the interaction between treatment and time, and the random 190 

effect of cows nested within treatments. Pretreatment values for plasma variables BW, and 191 

BCS measured or assessed at the beginning of the experiment, were used as covariates to 192 
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their corresponding measurements during the treatment period; however, covariates were 193 

removed from the model if P > 0.20, and the data reanalyzed. Mathematical model and its 194 

components were: 195 

 196 

where yijk is observation on cow k at the sampling time j given treatment i; µ is the overall 197 

mean; Ti is fixed effect of treatment; tj is fixed effect of sampling time j (weeks); (T×t)ij is the 198 

two-way interaction of treatment i by sampling time j; δ(T)il is the random effect of cow k 199 

nested within treatment i, and eijkl  is residual random error.  200 

Time of sampling (weeks) was used in the REPEATED statement and the tukey test was used 201 

for multiple comparison tests. Results were expressed as least squares means and SEM. 202 

Before analysis of the reproductive data, 6 cows were removed from the data set (1, 1, 2 and 203 

2 cows from PGT +/+, PGT +/-, PGT -/+ and PGT -/-, respectively). These cows were culled 204 

after d 50 postpartum because of physical injury or reproductive problems. The interval 205 

between calving and day of the first ovulation, days to first estrus, days to first service, 206 

interval between inseminations, and days open were analyzed using survival analysis and the 207 

product limit method of the Kaplan–Meier model using the LIFETEST procedure of the SAS. 208 

Number of services per conception was analyzed by the GENMOD procedure using a 209 

Poisson distribution. Binomially distributed data such as conception and ovulation rate were 210 

analyzed by the GENMOD procedure using a binary distribution and a logit odds ratio link. 211 

Statistical significance and tendencies were declared at P < 0.05 and 0.05 ≤ P ≤ 0.10, 212 

respectively. 213 

 214 

 215 
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3. Results 216 

3.1. Plasma metabolites 217 

The overall plasma concentrations of plasma NEFA, BHBA, cholesterol, triglyceride and 218 

glucose during the peripartum (d −7 to +7 relative to parturition) and postpartum (parturition 219 

to d 21 postpartum) periods are presented in Table 2. Plasma NEFA concentrations decreased 220 

in PGT (+/+) compared to PGT (-/+) and PGT (-/-) groups during the peripartum period (P < 221 

0.05); however, during the postpartum period, plasma NEFA concentrations decreased (P < 222 

0.05) in PGT (+/+), PGT (+/-) and PGT (-/+) compared to PGT (-/-). The effect of PGT 223 

supplementation on plasma BHBA concentrations was not significant during the postpartum 224 

periods (P > 0.05); however, PGT supplementation decreased plasma BHBA concentrations 225 

in PGT (+/+) and PGT (+/-) compared to the control group during the peripartum period (P < 226 

0.1 and P < 0.05, respectively). Plasma concentrations of TG were decreased (P < 0.05) in 227 

PGT (+/+), PGT (+/-) and PGT (-/+) compared to PGT (-/-) during both the peri- and 228 

postpartum periods (Table 2). Concentration of plasma glucose was not affected by the diets 229 

during the postpartum period, while PGT supplementation increased (P > 0.05) plasma 230 

concentrations of glucose in PGT (+/+) and PGT (+/-) compared to PGT (-/-) during the 231 

peripartum period (Table 2). 232 

3.2. Plasma hormones 233 

The overall plasma concentrations of plasma insulin, GH and IGF-1 during the peri- and 234 

postpartum periods are presented in Table 3. Plasma insulin and GH concentrations were not 235 

affected (P > 0.05) by treatment during the peri- or postpartum periods (Table 3). Plasma 236 

concentration of IGF-1 increased (P < 0.05) in PGT (+/+) compared to PGT (-/-) during the 237 

peri- and postpartum periods. However, during the postpartum period, plasma concentration 238 

of IGF-1 tended (P < 0.1) to be higher in PGT (+/+) than PGT (-/+) group (Table 3).  239 
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3.3. Productive traits 240 

The overall effects of PGT supplementation on BW, BCS and milk yield and milk 241 

composition are shown in Table 4. There was no significant effect of PGT supplementation 242 

on BW and BCS; however, PGT supplementation decreased (P < 0.05) BW loss in PGT (+/+) 243 

and PGT (+/-) compared to PGT (-/-), and BCS loss in PGT (+/+), PGT (+/-) and PGT (-/+) 244 

compared to PGT (-/-) (P < 0.05, table 4). 245 

Supplementation of PGT did not affect milk yield and 4% fat-corrected milk yield during the 246 

first 30 d postpartum (Table 4). The percentage of milk fat was decreased by PGT 247 

supplementation in PGT (+/+), PGT (+/-) and PGT (-/+) compared to PGT (-/-); however, 248 

daily milk fat production (kg) decreased in PGT (+/+) and PGT (+/-) and tended to be 249 

decreased (P < 0.10) in PGT (-/+) compared to PGT (-/-). Supplementation of PGT did not 250 

affect other milk constituents (Table 4). 251 

3.4. Reproductive traits 252 

The effects of PGT supplementation on reproductive traits are shown in Table 5. The 253 

proportion of cows ovulating by 14 d postpartum was higher in PGT (+/+) and PGT (+/-) 254 

than the PGT (-/-) group (P < 0.05). The proportion of cows ovulating by 21 d postpartum 255 

tended to be higher in PGT (-/+) compared to PGT (-/-) cows. Mean days to first ovulation 256 

was lower in PGT (+/+) and PGT (-/+) groups compared to PGT (-/-). The mean days open 257 

was decreased in cows fed with PGT diets compared to control cows. The number of days to 258 

first estrus was not affected by PGT supplementation; however, days to first service was 259 

decreased in PGT (+/+) and PGT (-/+) compared to PGT (-/-) cows (P < 0.05; table 5). The 260 

interval between the first and second inseminations was shorter in PGT (+/+) and PGT (+/-) 261 

than that in PGT (-/-) cows (P < 0.05). The number of service per conception was lower in 262 

PGT (+/+) and PGT (+/-) compared to PGT (-/-) cows (P < 0.05). Conception rate at first 263 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

service tended to be higher in PGT (+/-) than in the PGT (-/-) group (P < 0.10). The 264 

proportion of pregnant cows by 120 DIM was higher in PGT (+/+), PGT (+/-) and PGT (-/+) 265 

compared to PGT (-/-) cows (P < 0.05). 266 

4. Discussion 267 

Insulin resistance in peripheral tissues during the prepartum period and early lactation in 268 

dairy cows directs nutrients toward the uterus and mammary glands in support of the fetus 269 

and lactation [1]. However, in pre- and postpartum cows, insulin resistance is probably 270 

followed by an increase in circulating concentrations of NEFA, and the decrease in dry 271 

matter intake leads to several postpartal metabolic disorders and poor reproductive 272 

performance [5, 6]. 273 

Prepartal administration of TZD was beneficial in controlling the circulating NEFA level, 274 

improving DMI and attenuating the insulin resistance [15, 16, 25]. We expected that dietary 275 

supplementation of PGT, as a specific ligand of PPAR-γ, would improve energy and fat 276 

metabolism and consequently improve reproductive performance in transition dairy cows. 277 

Although, there are several studies on the use of these TZDs in dairy and beef cattle [15, 16, 278 

24, 25, 31], it has not been approved and further investigations are required; however, the 279 

present study is the first study to investigate the effect of dietary TZDs on the metabolism and 280 

reproductive performance in transition dairy cows. 281 

Plasma NEFA concentrations decreased in cows receiving PGT during the pre- and 282 

postpartum periods; however, in the peripartal period, NEFA was decreased when cows 283 

received PGT during both pre- and postpartum periods. In agreement with these results, 284 

Smith et al. [15] showed that administration of TZD decreased plasma NEFA concentrations 285 

during the prepartal period and tended to decrease peripartal NEFA concentration. Ghoreishi 286 

[36] showed that dietary supplementation of 4.0 mg PGT/kg BW during the transition period 287 
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decreased plasma peripartal concentrations of NEFA. It was also reported that administration 288 

of 2.0 mg TZD/kg BW to steers was effective in alleviating insulin resistance, induced by 289 

administered TNF-α, and reducing the increased plasma NEFA after d 2 of treatment [23].  290 

These results are explained by the possible effect of TZDs on increasing DMI during the 291 

peripartal and postpartal periods [15, 25, 36], and/or by direct effect of TZDs on re-292 

esterification of fatty acids and induction of phosphoenol pyruvate carboxykinase in adipose 293 

tissue, that increases glyceroneogenesis and promotes a futile cycle [37]. Probably, the 294 

glyceroneogenesis-dependent fatty acid-lowering effect of TZDs could be an essential aspect 295 

of the antidiabetic action of these compounds. Generally, lower levels of plasma NEFA 296 

showed that PGT may decrease fat mobilization or increase free fatty acid re-esterification or 297 

stimulate hepatic capacity for oxidation of NEFA.  298 

The lower plasma concentrations of BHBA during the peripartal period in cows treated with 299 

PGT was in agreement with the results of Smith et al. [15], who reported a decrease in 300 

plasma BHBA concentration by administering 2.0 mg TZD/ kg BW. However, Smith et al. 301 

[25] reported an increase in peripartal BHBA concentration by TZD administration, and 302 

Ghoreishi [36] found no significant effect of dietary supplementation of 4.0 mg PGT on 303 

plasma BHBA concentration. The lower plasma concentrations of BHBA may be a result of 304 

lower plasma NEFA availability in PGT-treated cows (Table 2) and increased hepatic 305 

capacity to oxidize palmitic and stearic acids [38] which lowers plasma BHBA. However, 306 

because dietary or pharmacologic manipulation of hepatic PPARs in dairy cows would 307 

increase β-oxidation of fatty acids and likely increase plasma BHBA [39], it is probable that 308 

lower BHBA levels in this experiment are caused by an indirect effect of PGT on the liver, by 309 

lowering the plasma NEFA, or by increasing DMI. 310 

The effectiveness of PGT on fat metabolism was also approved where plasma concentration 311 
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of TG decreased in PGT-treated cows during both the peri- and postpartal periods. Ghorieshi 312 

et al [36] reported no effect of dietary supplementation of 4.0 mg PGT per kg BW on plasma 313 

TG in transition cows; however, consistent with the results of the present study, calves from 314 

cows treated with PGT had lower plasma TG concentration. According to results of Palmer et 315 

al [40], PGT may decrease expression of MTTP (microsomal triglyceride transfer protein) 316 

and consequently decreases incorporation of TG in VLDL and plasma concentration of TG. 317 

In addition, limited mobilization of body fat as a result of PGT treatment may reduce 318 

precursors required for TG synthesis in the liver. Generally, the approved beneficial effects of 319 

TZDs on enhancing insulin sensitivity in cow’s peripheral tissues [15, 16, 23] is the most 320 

likely pathway by which PGT treatment decreased body fat mobilization in dairy cows, as 321 

previously documented for the human adipocytes [41]. 322 

In the present study, peripartum plasma concentrations of glucose increased in cows which 323 

received PGT for 14 d prepartum (PGT +/+ and PGT +/-). This finding supported the results 324 

of previous studies in which perpartal administration of 2.0 or 4.0 mg TZDs/ kg BW 325 

increased plasma concentrations of glucose during the peripartal period [16, 25]. However, 326 

the effect of TZDs on plasma glucose was not significant in other studies [15, 36]. It has been 327 

demonstrated that administration of TZDs increased DMI in transition dairy cows [15, 36] 328 

and laboratory animals [42, 43]. Therefore, the higher concentration of glucose during the 329 

peripartal period may be a direct effect of higher DMI in PGT- treated cows. Moreover, 330 

prepartal administration of TZDs decreased accumulation of TG in the liver of dairy cows 331 

[25] and humans [44, 45] and that would increase gluconeogenic capacity [46, 47] and 332 

plasma concentration of glucose.  333 

It has been suggested that TZDs may increase plasma concentration of insulin in dairy cows 334 

[15]; however, in agreement with results of Schoenberg and Overton [16], no significant 335 

change in plasma concentration of insulin was observed in the current study. A previous 336 
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study in animal models [21] showed that TZDs administration may improve pancreatic β-cell 337 

function and insulin production; however, Kushibiki et al. [23] reported a decrease in plasma 338 

concentrations of insulin in TZD-treated steers following improvement in glucose utilization. 339 

The differences between animals, dosage and/or type of administration might have resulted in 340 

inconsistent responses to this compound. On the other hand, we expected an increase in 341 

plasma insulin in those cows that had a higher plasma concentration of glucose. However, no 342 

increase in insulin levels may be due to an inadequate increase in plasma concentration of 343 

glucose or a failure of the liver to secrete insulin at a level appropriate for plasma glucose 344 

concentrations. 345 

 Plasma concentration of IGF-1 was significantly increased in PGT (+/+) and non-346 

significantly in PGT (+/-) and PGT (-/+) compared to PGT (-/-), but plasma concentrations of 347 

GH were not affected by PGT treatment. In peripartal dairy cows, concentrations of plasma 348 

IGF-1 are low but GH level is high [48]. It has been suggested that decreases in liver growth 349 

hormone receptor 1A (GHR 1A) before calving causes the uncoupling of the somatotropic 350 

axis in postpartal cows [48]. The subsequent recoupling of the somatotropic axis has been 351 

linked to postpartal nutrition and energy balance and is probably dependent on GHR 1A [49]. 352 

In response to insulin, GHR 1A and IGF-I expression increased in the liver of postpartal dairy 353 

cows [49], humans and other species [50]. In the present study, NEB indexes (NEFA and 354 

BHBA) decrease and plasma concentration of glucose increased in PGT-treated cows. These 355 

effects were also demonstrated by increased DMI and a decrease in the NEB during the 356 

postpartum in dairy cows that were subjected to TZDs [15, 25]. As an insulin sensitizing 357 

agent, PGT may also improve the responsiveness of the liver and other peripheral tissues to 358 

insulin. Therefore, there is a possibility that PGT increased the sensitivity of liver to insulin 359 

and caused greater expression of GHR 1A receptor and IGF-1 synthesis in the liver. 360 

In this experiment, milk yield was not affected by PGT, but milk fat percentage and yield 361 
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were decreased by d 30 postpartum. Smith et al. [25] showed that prepartal administration of 362 

4.0 mg TZDs/kg BW tended to decrease milk fat percentage by d 63 postpartum. Considering 363 

the fact that a part of plasma NEFA and blood fat metabolites incorporated directly into milk 364 

fat [48], the decrease in milk fat is explained by lower plasma NEFA and other fat 365 

metabolites in PGT-treated cows. Moreover, administration of endogenous or exogenous 366 

ligands of PPAR-γ to dairy sheep and goats regulated genes involved in triacylglycerol 367 

synthesis and secretion in mammary gland epithelial cells and milk fat content [18, 19]. TZDs 368 

also altered lipogenic gene networks in the bovine mammary epithelial cells [20]. Therefore, 369 

it has been postulated at least a part of the change in milk fat may be due to the effect of PGT 370 

on milk fat synthesis in mammary glands. 371 

In the present study, the postpartal BCS and BW loss was less as a result of PGT- treatment. 372 

These findings supported those of Smith et al. [25] that showed higher BCS in cows receiving 373 

2.0 or 4.0 mg/kg TZDs for 25 d prepartum. However, Smith et al. [15] and Schoenberg and 374 

Overton [16] did not find any differences in BCS or BW in cows treated prepartum with 375 

TZDs. The lower concentrations of NEFA and BHBA indicated a lower negative energy 376 

balance during the peri- and postpartal periods in PGT-treated cows. Moreover, lesser 377 

amounts of energy used for milk fat synthesis and possibly more energy intake (as DMI) are 378 

possible reasons for less BW and BCS loss during postpartum in PGT-supplemented cows.  379 

The proportion of cows ovulated by d 14 postpatum increased by PGT supplementation (PGT 380 

+/+ and PGT -/+), while the average number of days to ovulation was decreased. Smith et al. 381 

[25] also showed that prepartal administration of 4.0 mg TZDs/kg BW for 25 d decreased the 382 

interval from calving to first ovulation. It has been shown that the NEB adversely influenced 383 

the interval from calving to ovulation [51]; however, reproductive efficiency improved as 384 

BCS loss decreased [52] in dairy cows. In this study, dietary supplementation of PGT 385 

decreased peri- and postpartal NEFA, BHBA and postpartum loss of BCS and BW, and 386 
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caused a decrease in the NEB. In agreement with the results of this study, there are studies 387 

showing that administration of insulin or insulin sensitizing agents during the prepartum 388 

period stimulate ovulation and improve the reproductive performance [49, 53, 54]. In 389 

addition, studies in ruminants and rats [17, 55, 56] showed that PPARγ was widely expressed 390 

in reproductive tissues and ovarian follicles and expression of these receptors increased as 391 

ovulation was approached. This implies a possible direct effect of PGT on specific receptors 392 

leading to a higher proportion of cows ovulating postpartum. However, PGT increased 393 

postpartal concentration of IGF-1 which is considered as a crucial factor for early postpartum 394 

ovulation. In this regard, Kawashima et al [57] demonstrated that ovulation and final 395 

development of the preovulatory follicle is strictly dependent on increasing plasma levels of 396 

IGF-1 and insulin during the first postpartal follicular wave, while low concentration of IGF-397 

1 delays ovulation [58]. Accordingly, PGT may provide a more appropriate metabolic milieu 398 

as well as having a direct effect on the ovulatory process. 399 

The average number of days open was decreased and proportion of pregnant cows during 120 400 

DIM increased in PGT-supplemented cows. Decreased days open is described by shorter 401 

intervals between inseminations and more conception per insemination. Interestingly, PGT 402 

supplementation during both the pre- and postpartal periods (PGT +/+) resulted in 14 d and 403 

19 d decreases in days open compared to PGT (+/-) and PGT (-/+), respectively. This 404 

indicated a synergic interaction between pre- and postpartal supplementation of PGT, and a 405 

relative advantage of supplementing PGT during both the pre- and postpartal periods.  406 

Butler et al. [49] reported that prepartal administration of insulin resulted in earlier postpartal 407 

ovarian activity and improved the reproductive performance. Consistent with the results of 408 

the present study, it has been demonstrated that conception rate was higher in cows that 409 

showed fewer days to first service [59]. The ovarian follicles in the cows supplemented with 410 

PGT during the transition period might experience more appropriate metabolic and hormonal 411 
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conditions, resulting in more competent oocytes. Insulin resistance decreases the quality of 412 

oocytes, leading to a decline in reproductive performance and early embryo development 413 

[60]. Consistent with the results of the present study, supplementation of chromium, an 414 

insulin sensitizing element, reduced plasma concentrations of NEFA and negative energy 415 

balance in heat-stressed animals [61], resulting in improvement of the reproductive 416 

performance in transition dairy cows. Therefore, improved hormonal and metabolic 417 

conditions as a result of PGT supplementation may be involved in the improvement of the 418 

reproductive performance in dairy cows. 419 

4.1. Conclusions 420 

Dietary supplementation of PGT during the transition period decreased peri- and postpartal 421 

plasma NEFA, BHBA, and TG concentrations and also decreased milk fat content, BCS and 422 

BW loss during the postpartal periods in Holstein dairy cows. The improved metabolic health 423 

in PGT-supplemented cows effectively enhanced the postpartum ovulation resumption 424 

activity and reproductive performance. However, better productive and reproductive 425 

performances were observed when PGT was supplemented during both the pre- and 426 

postpartum periods. According to the results of the present study and the previous studies on 427 

the effect of TZDs on transition dairy cows, oral or intravenous administration of these drugs 428 

seems to have beneficial effects on metabolic dynamics and reproduction; however, further 429 

research should be conducted to confirm the mechanisms involved in the effects of PGT and 430 

PPAR-γ on metabolic dynamics, ovulation and reproductive performance in dairy cows. 431 
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Figure caption 602 

Figure 1. An outline of the experimental design indicating initiation of dietary treatment and 603 

duration of pioglitazone (PGT) supplementation. Dairy cows (n=20 cow/treatments) were fed 604 

four experimental diets from d -14 to +21, relative to parturition. PGT was supplemented at 6 605 

mg /kg BW to TMR.  606 
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Table 1. Ingredients and chemical composition (DM basis) of the experimental diets 607 

Ingredients Prepartum diet  Postpartum diet  
Alfalfa hay 26.15  22.00  
Corn silage 31.64  20.33  
Cottonseed,  whole 2.74  7.42  
Soybean, whole- roasted  ---  2.47  
Meat meal  ---  1.28  
Beet pulp   ---  4.08  
Barley grain 12.27  10.48  
Corn grain 9.29  13.83  
Soybean meal 9.07  12.1  
Wheat bran 3.15  1.5  
Corn germ meal  ---  1.05  
Common salt   ---  0.43  
Sodium bicarbonate  ---  0.90  
Dicalcium phosphate  ---  0.3  
Calcium carbonate  0.89  0.8  
Magnesium oxide  ---  0.18  
Bentonite  ---  0.27  
Vitamin and mineral premix1 0.90  0.67  
Ammonium chloride 3.10   --- 
Magnesium sulfate 0.80  --- 
Composition   
DM, % 50 55 
NEL (Mcal/kg DM) 1.53 1.66 
EE, %  3.2 4.6 
CP , %  14.1 17.1 
ADF, %  24.1 22.13 
NDF, %  36.2 32.2 
1. Contained (per kg): 16,000,000 IU vitamin A; 3,200,000 IU vitamin D; 48,000 IU vitamin 608 

E; 24.0 g Mn; 24.0 g Zn; 24.0 g Fe; 12.8 g Cu; 1.44 g I; 0.32 g Se; and 0.32 g Co. 609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 
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Table 2. Least squares means for the effect of dietary supplementation of pioglitazone (6 mg 622 

PGT/kg BW) on plasma metabolites during transition periods in Holstein cows 623 

(n=10/treatment1) 
624 

 625 

  Diets1   

Item  PGT(+/+) PGT(+/-) PGT(-/+) PGT(-/-)  SEM 

NEFA (mmol/L)        

Peripartum2  0.65b 0.72ab 0.82a 0.79a  0.05 

Postpartum3  0.52b 0.59b 0.60b 0.72a  0.05 

BHBA (mmol/L)         

Peripartum  0.56b 0.57ab 0.61ab 0.65a  0.04 

Postpartum  0.56 0.55 0.73 0.63  0.07 

Cholesterol (mg/dL)        

Peripartum  96.13 90.30 88.90 98.90  4.40 

Postpartum  133.52 131.22 134.25 122.58  8.90 

Triglyceride (mg/dL)        

Peripartum  19.99c 23.61b 20.68bc 28.72a  1.30 

Postpartum  18.08b 19.97b 19.37b 24.07a  1.76 

Glucose (mg/dL)        

Peripartum  58.98a 55.38ab 47.86bc 46.83c  2.60 

Postpartum  49.93 52.10 45.76 53.66  3.66 

a–c Values with different superscripts within a row indicate a significant difference, P < 0.05. 626 
1 Diets consisted of PGT (+/+): supplementation of PGT in pre- and postpartum periods (d -627 

14 to +21 relative to parturition), PGT (+/-): supplementation of PGT only during the 628 

prepartum period (d -14 to parturition), PGT (-/+): supplementation of PGT only during the 629 

postpartum period (d 0 to +21 relative to parturition) and PGT (-/-): no PGT supplementation. 630 
2 Represents data collected weekly from 7 d before parturition through 7 d postpartum. 631 
3 Represents data collected weekly from parturition through 21 d postpartum. 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 
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Table 3. Least squares means for the effect of dietary supplementation of pioglitazone (6 mg 640 

PGT/kg BW) on some plasma hormones during the transition period in Holstein cows 641 

(n=10/treatment) 642 

 643 

  Treatments1   

Item  PGT(+/+) PGT(+/-) PGT(-/+) PGT(-/-)  SEM 

Insulin (µIU/mL)        

Peripartum2  8.68 9.21 8.30 8.11  0.69 

Postpartum3  8.21 9.13 8.18 9.00  0.59 

GH (µg/L)         

Peripartum  3.68 3.98 4.22 4.02  0.31 

Postpartum  2.83 3.19 3.10 3.46  0.40 

IGF-1 (µg/L)        

Peripartum  48.11a 40.06ab 38.92ab 34.03b  4.27 

Postpartum  39.91a 35.03ab 32.67ab 30.55b  3.31 

a–c Values with different superscripts within a row indicate a significant difference, P < 0.05. 644 
1 Diets consisted of PGT (+/+): supplementation of PGT in pre- and postpartum periods (d -645 

14 to +21 relative to parturition), PGT (+/-): supplementation of PGT only during the 646 

prepartum period (d -14 to parturition), PGT (-/+): supplementation of PGT only during the 647 

postpartum period (d 0 to +21 relative to parturition) and PGT (-/-): no PGT supplementation. 648 
2 Represents data collected weekly from 7 d before parturition through 7 d postpartum. 649 
3 Represents data collected weekly from parturition through 21 d postpartum. 650 
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Table 4. Least squares means for the effect of dietary supplementation of pioglitazone (6 mg 662 

PGT/kg BW) on production traits during the postpartum period in Holstein cows 663 

(n=20/treatment) 664 

 Treatments1  

Item PGT (+/+) PGT (+/-) PGT(-/+) PGT (-/-) SEM 

Body weight (kg) 639.15 639.51 637.64 635.87 1.26 

Body weight loss (kg) 30.86c 37.44b 39.16ab 41.60a 0.09 

BCS2 3.34 3.33 3.37 3.25 0.05 

BCS loss 0.54b 0.60b 0.63b 0.77a 0.04 

Milk yield, kg/d 40.92 42.80 42.21 42.97 1.50 

4% FCM3, kg/d 40.06 40.71 41.35 43.53 1.33 

Fat, % 3.91b 3.90b 3.89b 4.15a 0.11 

Fat, kg/d 1.57b 1.60b 1.63ab 1.77a 0.05 

True protein, % 3.16 3.14 3.19 3.27 0.08 

True protein, kg/d 1.27 1.29 1.31 1.39 0.07 

Lactose, % 4.78 4.67 4.71 4.77 0.05 

Lactose, kg/d 1.96 1.97 2.00 2.06 0.08 

Total solids, % 12.12 12.29 12.34 12.40 0.12 

Total solids, kg/d 4.95 5.07 5.17 5.29 0.18 

a,b Values with different superscripts within a row indicate a significant difference, P < 0.05. 665 
1 Diets consisted of PGT (+/+): supplementation of PGT in pre- and postpartum periods (d -666 

14 to +21 relative to parturition), PGT (+/-): supplementation of PGT only during the 667 

prepartum period (d -14 to parturition), PGT (-/+): supplementation of PGT only during the 668 

postpartum period (d 0 to +21 relative to parturition) and PGT (-/-): no PGT supplementation. 669 
2 Based on a 5-point scale. 670 
3 4% FCM = fat-corrected milk, calculated as [0.4 × milk production (kg d−1)] + [15 × fat 671 

yield (kg d−1)]. 672 
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Table 5. Least squares means for the effect of dietary supplementation of pioglitazone (6 mg 681 

PGT/kg BW) on reproductive traits in Holstein cows (n=20/treatment) 682 

 Treatments 1  

Item PGT(+/+) PGT(+/-) PGT(-/+) PGT(-/-) SEM 

First ovulation ≤ 14 d, 
%(n/group) 

45%(9/20)a 15%(3/20)b 30%(6/20)ab 15%(3/20)b 0.11 

First ovulation ≤ 21 d, % 
(n/group) 

65%(13/20) 60%(12/20) 70%(14/20) 45%(9/20) 0.13 

First ovulation (d) 18.37 b 21.00 ab 19.60 b 23.05 a 1.29 

      

Median days to first 
estrus 

40 41 40 45 2.3 

Median days to first 
service 

44b 50ab 46b 53a 2.8 

First to second 
insemination interval (d) 

34b 30b 45ab 55a 5 

Median days open 133 b 147b 152b 169 a 7 

      

Number of services per 
conception 

2.56b 2.28b 3.00ab 3.80a 0.55 

Pregnant to first 
insemination, %(n/group) 

10.5%(2/19) 26%(5/19) 16.5%(3/18) 5.5%(1/18) 0.10 

Pregnant by 120 DIM, % 
(n/group) 

53%(10/19)a 42% (8/19)a 39% (7/18)a 11% (2/18)b 0.13 

a, b Values with different superscripts within a row indicate a significant difference, P < 0.05. 683 
1 Treatments included PGT (+/+): supplementation of PGT in pre- and postpartum periods (d 684 

-14 to +21 relative to parturition), PGT (+/-): supplementation of PGT only during the 685 

prepartum period (d -14 to parturition), PGT (-/+): supplementation of PGT only during the 686 

postpartum period (d 0 to +21 relative to parturition) and PGT (-/-): no PGT supplementation. 687 
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Highlights 

� Dietary supplementation of PGT during the transition period decreased peri- and 

postpartal plasma NEFA, BHBA, and TG concentrations and also decreased milk fat 

content, BCS and BW loss during the postpartal periods in dairy cows.  

� PGT had positive effects on postpartum resumption of ovarian activity and increased the 

number of ovulated cows during the postpartum period. 

� The average number of days open was decreased and proportion of pregnant cows during 

120 DIM increased in PGT-supplemented cows. 

� Better productive and reproductive performances were observed when PGT was 

supplemented during both the pre- and postpartum periods 

 


