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Abstract 28 

The past decade has witnessed an exponential increase in the number of publications 29 

referring to extracellular vesicles (EVs). For many years considered to be extracellular 30 

debris, EVs are now seen as novel mediators of endocrine signalling via cell-to-cell 31 

communication. With the capability of transferring proteins and nucleic acids from one cell to 32 

another, they have become an attractive focus of research for different pathological settings 33 

and are now regarded as both mediators and biomarkers of disease including cardio-34 

metabolic disease. They also offer therapeutic potential as signalling agents capable of 35 

targeting tissues or cells with specific peptides or miRNAs. In this review, we focus on the 36 

role that microvesicles and exosomes, the two most studied classes of EV, have in diabetes, 37 

cardiovascular disease, endothelial dysfunction, coagulopathies and polycystic ovary 38 

syndrome. We also provide an overview of current developments in microvesicle/exosome 39 

isolation techniques from plasma and other fluids, comparing different available commercial 40 

and non-commercial methods. We describe different techniques for their optical/biochemical 41 

characterization and quantitation. We also review the signalling pathways that exosomes 42 

and microvesicles activate in target cells and provide some insight into their use as 43 

biomarkers or potential therapeutic agents. In summary, we give an updated focus on the 44 

role that these exciting novel nanoparticles offer for the endocrine community. 45 

 46 
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Introduction 52 

It is well established that patients with metabolic diseases, in particular insulin resistance 53 

and type two diabetes mellitus (T2DM), are more than twice as likely to develop accelerated 54 

cardiovascular disease (CVD) including atherosclerosis, stroke and coronary artery disease 55 

(reviewed in (Rask-Madsen and King 2013)). Coronary artery disease is a major cause of 56 

morbidity and mortality worldwide, and is a leading cause of death in T2DM, with excess risk 57 

of fatality in women compared to men (Peters, et al. 2014). Extensive coronary artery 58 

disease can result in myocardial infarction, severe loss of cardiac function, and subsequently 59 

lead to the development of heart failure (Hausenloy and Yellon 2013). A cluster of risk 60 

factors have recently been defined by the American Diabetes Association and the American 61 

College of Cardiology Foundation as reliable indicators of a patient’s risk for T2DM and 62 

CVD, and has been defined as cardiometabolic risk (CMR; (Brunzell, et al. 2008)). These 63 

risks include obesity, hyperglycemia, hypertension, insulin resistance and dyslipidemia.  The 64 

presence of secondary cardiovascular disease in patients with IR or T2DM may be referred 65 

to as cardio-metabolic disease (CMD). Given its increasing prevalence and severe 66 

consequences, new approaches are needed to diagnose and treat CMD.  67 

Extracellular vesicles (EVs) are small (50 nm to 2 µm) vesicles released from the surface of 68 

many different cell types into different bodily fluids, including plasma, milk, saliva, sweat, 69 

tears, semen and urine. There are several classes of EV, including exosomes, microvesicles 70 

(MV) and apoptotic bodies, which are produced by different mechanisms. Attracting perhaps 71 

the most attention recently have been exosomes (50-100 nm), a homogenous population of 72 

EV which are released from cells when multivesicular bodies (MVB; sometimes called 73 

multivesicular endosomes, MVE) fuse with the plasma membrane in a highly regulated 74 

process and release their contents. Cells can also produce a more heterogeneous 75 

population of EVs up to 2 µm in diameter called microvesicles (MVs), which are formed by 76 

budding and shedding of the cell membrane, a process that involves calcium dependent 77 

signalling and enzyme activity. Cells undergoing apoptosis also typically release EV of 1-5 78 

µm in diameter which are referred to as apoptotic bodies (Colombo, et al. 2014; Dignat-79 

George and Boulanger 2011; van der Pol, et al. 2012) (Figure 1).  80 

In some literature, MVs isolated by centrifugation are referred to as “microparticles”, 81 

particularly those isolated from platelets or endothelial cells. For clarity, this review will refer 82 

to EVs simply as exosomes or MV on the basis of the mechanism of their cellular production 83 

and their size range - an approach that has been taken by others (Thery, et al. 2009), with 84 

the caveat that most isolation methods do not provide a pure populations of vesicles. It is 85 

important to note that the size ranges of EVs may overlap and in particular, the size of 86 
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microvesicles could overlap with the exosomal size range. Where a mixture of exosomes 87 

and MV is likely, for example when plasma vesicles are isolated by high speed (~100,000 g) 88 

ultracentrifugation, we refer to them more broadly as EV. These EV are sometimes also 89 

referred to as “exosome-like vesicles”. 90 

One of the characteristic markers of all EVs is the presence on the outer surface of 91 

phosphatidyl serine (PS), due to loss of membrane asymmetry during blebbing (apoptotic 92 

bodies) or budding (MV) and inward folding of the membrane during vesicle formation in 93 

MVBs (exosomes). This can be identified by binding of labelled annexin V, a reagent often 94 

used for flow cytometric analysis of apoptotic cells. However, more recently several groups 95 

have identified MVs lacking phosphatidyl serine (PS) on the outer membrane, suggesting 96 

that this is not essential for MV formation (Hou, et al. 2014; Larson, et al. 2012).  97 

Both exosomes and microvesicles characteristically carry a cargo, which they are able to 98 

deliver to cells in remote locations. The cargo can include genetic material such as mRNA, 99 

microRNA (miRNA) or even small amounts of DNA (Moldovan, et al. 2013), and proteins 100 

including transcription factors, cytokines and growth factors, have also been described. 101 

Importantly, MVs also carry cellular receptors and transmembrane proteins on their surface 102 

characteristic of the cells from which they were released. This aids in their identification but 103 

also means that they can interact with specific target cells instigating signalling cascades via 104 

receptor interactions (rececrine signalling – akin to cell-cell interactions) and also increasing 105 

specificity of cargo delivery. On the other hand, exosomes are characteristically decorated 106 

with markers including Alix, HSP70, and the tetraspanins CD9 and CD63, which may be 107 

associated with beta-2 integrin binding and intercellular communication. Although these are 108 

commonly used as markers of exosomes, they are not exclusive to exosomes and may be 109 

found on other EVs. Furthermore, not all EVs express CD63 and different sub-populations of 110 

exosomes may express different markers (Thery et al. 2009). It is important to consider that 111 

exosomes do not necessarily express the same marker proteins as their parent cells. For 112 

example, we found that the common endothelial marker CD144 is absent on exosomes from 113 

human umbilical vein endothelial cells (HUVECs)(Figure 2). Recent work has further defined 114 

plasma EV and exosome surface marker expression by using extensive antibody profiling 115 

which showed that exosomes can express surface membrane markers such as CD146, 116 

CD4, CD3 and CD45 (Jorgensen, et al. 2015a). There is some evidence that the protein and 117 

RNA content of exosomes depends on the state of the source cell (de Jong, et al. 2012). 118 

The mechanism behind the formation of exosomes and selective packaging of proteins, 119 

lipids and RNA is not completely understood but is gradually becoming revealed. The 120 

Endosomal Sorting Complex Responsible for Transport (ESCRT) pathway does not seem to 121 
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be required for exosome biogenesis, although some components are involved in their 122 

formation, particularly Alix (Baietti, et al. 2012; Raposo and Stoorvogel 2013; Trajkovic, et al. 123 

2008). Other molecules that are enriched in exosomes such as tetraspanins and ceramide 124 

have also been implicated in exosome biogenesis. For example, inhibitors of neutral 125 

sphingomyelinase, an enzyme involved in ceramide production, inhibits exosome production 126 

(Trajkovic et al. 2008). Less well understood is the mechanism of exosome release. Certain 127 

members of the Rab GTPase family are required for efficient release of exosomes, although 128 

the exact members involved appears to depend on the cell type and experimental design, 129 

and may reflect different subtypes of exosomes relating to the stage (early or late) of 130 

endosome/MVB formation (Colombo et al. 2014). 131 

Purification of EVs from different bodily fluids 132 

Although MVs and exosomes are produced by distinct mechanisms, their sizes overlap, and 133 

most isolation protocols do not isolate a pure population. Therefore, in order to evaluate 134 

published experiments it is important to understand what type of EV is most likely to be 135 

isolated by different protocols. 136 

A number of different protocols have been optimised for purification of different classes of 137 

EVs from different sources, with isolation from plasma being the best described (reviewed 138 

in(Lobb, et al. 2015; Witwer, et al. 2013)). The isolation of EVs from blood requires its rapid 139 

collection with an anti-coagulant – citrate is now generally advised (Lacroix, et al. 2012). The 140 

most straightforward technique for isolation of EVs involves sequential steps of 141 

centrifugation. After the collection of plasma by centrifugation at 1500 x g for 15 minutes, the 142 

supernatant contains platelet-rich plasma and EVs (MVs and exosomes). This is followed by 143 

a further centrifugation at 13,000 x g for 30 min to pellet the platelets, with the remaining 144 

EVs in the platelet poor plasma (PPP) supernatant. PPP may be snap frozen at -80 °C until 145 

analysis, or analysed immediately, using one of the methods outlined below. For further 146 

purification the PPP can be centrifuged at 17,000 x g to pellet the larger MVs, which can 147 

then be used for analysis. The supernatant can also be further ultracentrifuged at 100,000 x 148 

g to pellet the remaining EVs (Thery, et al. 2006). Although the resultant EVs are sometimes 149 

referred to as exosomes, this population is not completely pure and in addition to exosomes 150 

is likely to contain MVs and possibly lipoproteins. Density gradient centrifugation may be 151 

used to further purify the exosomal population (Thery et al. 2006), but recent evidence 152 

suggests that this still does not completely remove contamination by lipoproteins. Several 153 

newer methods have recently been described using commercially available columns and 154 

magnetic separation techniques, either directly from plasma or after initial ultracentrifugation 155 
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to pellet the EV fraction, typically based on CD9 or CD63, but a consensus has not yet 156 

developed on which technique is the most promising. 157 

Several companies produce reagents designed to precipitate exosomes from plasma or 158 

tissue culture medium, though purity using these techniques is generally low, particularly 159 

from plasma. Affinity purification using antibodies bound to columns or beads results in 160 

much higher purity of EVs but by definition selectively purifies only EVs expressing the 161 

marker protein of interest. Size-exclusion chromatography is increasingly popular as a 162 

technique to purify exosomes, having been demonstrated to result in isolates relatively pure 163 

of contaminating lipoproteins and protein complexes (Boing, et al. 2014; Welton, et al. 2015). 164 

Alternatively, new approaches on the horizon include the use of antibody arrays to directly 165 

identify and quantify exosomes in body fluids bypassing the need for purification all together 166 

(Jorgensen, et al. 2015b). 167 

Since the results of EV isolation procedures may vary, it is important to characterize the 168 

particular population being used as much as possible. 169 

Methods for the identification and characterization of EVs 170 

The small size of EVs makes their identification a challenge, indeed until relatively recently 171 

they were considered to be debris and not of any functional significance. Use of electron 172 

microscopy enables accurate sizing of all different classes of EVs, and is the gold standard 173 

to demonstrate presence of EVs, however this method is time consuming, not quantitative 174 

and not suitable for phenotyping (Figure 3; for review of methodology see (van der Pol, et al. 175 

2010)). Other non-optical methods have been used, notably atomic force microscopy, which 176 

enables accurate size detection and can also be used in after antibody labeling of vesicles 177 

enabling phenotyping. Once again, however, the technique is time consuming and requires 178 

concentration of the sample meaning that it is not quantitative. A number of optical methods 179 

have been used for detection of EVs, the most widely reported of which is flow cytometry, 180 

however detection is limited to particle sizes above ~200 nm, so exosome analysis is not 181 

possible with standard configurations and techniques. However, recent exciting 182 

developments have enabled direct visualization and characterization of microvesicles in 183 

whole blood, platelet-rich and platelet-free plasma using Image stream technology 184 

(Headland, et al. 2014). 185 

A number of sophisticated protocols have been described to differentiate MVs from 186 

background noise during detection using this method, and standardised guidelines have now 187 

been published for optimised collection of plasma for detection of MVs (Lacroix et al. 2012). 188 
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Techniques are being developed which may even allow the detection of individual exosomes 189 

using dedicated flow cytometers with special labelling methods (Pospichalova, et al. 2015). 190 

An alternative and more widespread approach is to bind exosomes to carrier latex beads, 191 

which are easily detectable by flow cytometry (Thery et al. 2006) (Figure 3). 192 

Important considerations for detection of MVs by flow cytometry are that accurate sizing and 193 

enumeration of the MV population may be hampered by the light scattering of small particles 194 

compared to larger cells, for which flow cytometers are usually used. However, inclusion of 195 

commercially available pre-calibrated counting beads in all samples as internal controls and 196 

use of sizing beads can enable standardisation of measurements between samples in the 197 

same study (Figure 3) – although caution should be used when directly comparing data from 198 

flow cytometry with other methods of counting MV. The newer generations of flow 199 

cytometers have been optimised to enable detection of smaller particles. The use of surface 200 

markers for phenotyping MV has been reviewed elsewhere (Lacroix and Dignat-George 201 

2012; Macey, et al. 2011). 202 

Flow cytometry is very useful for detection of different phenotypic markers on the surface of 203 

MVs and enables accurate characterisation of the source of circulating EVs in bodily fluids, 204 

however this technique is not suitable for detection of smaller exosomes and several 205 

alternative methodologies have been developed, each with its own instrumentation. These 206 

include dynamic light scattering (DLS), nanoparticle tracking analysis (NTA, Figure 3) and 207 

tunable resistive pulse sensing (TRPS) (van der Pol et al. 2010). These methods have 208 

greater size discrimination compared to flow cytometry (down to below 50 nm diameter) and 209 

so enable quantitation of exosomes and smaller MV more efficiently (cost and time) than by 210 

EM or atomic force microscopy, however, they are limited by lack of multiple laser 211 

capabilities to enable accurate phenotyping, as well as sometimes requiring lengthy 212 

purification protocols to ensure that only exosomes are quantified. Importantly, they cannot 213 

distinguish EVs from other particulate matter such as protein aggregates, so confirmatory 214 

techniques are required to validate EV presence. Raman spectroscopy has also been used 215 

to define EV populations. This is a highly sensitive technique for analysis of the biochemical 216 

composition of EVs without labelling, and can provide quantitative data, however it is very 217 

time consuming. Direct detection of marker proteins on exosomes is challenging using these 218 

techniques.   219 

Extracellular vesicles can transfer proteins and RNA 220 

The field of EV research was greatly invigorated by the demonstration that they are able to 221 

deliver proteins and RNA to recipient cells. The first evidence for this was obtained in 222 

Page 7 of 28

joe@bioscientifica.com

Manuscript submitted for review to Journal of Endocrinology



For Review
 O

nly

8 

platelets, which released tissue factor (TF), which was subsequently functionally transferred 223 

via microvesicles to monocytes and other cells where TF was able to exert its biological 224 

effects (Del Conde, et al. 2005; Scholz, et al. 2002). Microvesicles from tumour cells were 225 

shown to be capable of transferring a truncated, oncogenic form of the epidermal growth 226 

factor receptor between cells, activating signalling pathways (MAPK and Akt) and thereby 227 

transferring the associated transformed phenotype (Al-Nedawi, et al. 2008). Microvesicles 228 

can also deliver mRNA (Skog, et al. 2008). 229 

Exosomes can also deliver molecules into the membrane of recipient cells. This appears to 230 

be part of their normal function in helping to establish morphogen gradients during 231 

development. For example, exosomes can transfer the Notch ligand Delta-like 4 (Dll4) 232 

between endothelial cells, where it is incorporated into the membrane of the target 233 

endothelial cells, and inhibits Notch signalling altering angiogenesis (Sheldon, et al. 2010). 234 

Interestingly, some cytoprotective proteins have been shown to be transferred between 235 

cells. αB crystallin is secreted from human retinal pigment epithelium in exosomes, and 236 

taken up by adjacent photoreceptors, protecting them from oxidative stress (Sreekumar, et 237 

al. 2010). 238 

In a seminal paper, Valadi et al, were first to show that exosomes can also transfer mRNA 239 

and miRNA between cells (Valadi, et al. 2007). In this study, mast cells were demonstrated 240 

to transfer functional mRNAs between cells that were subsequently translated. Importantly 241 

when exosomes were pre-treated with RNAse and trypsin, the effect was no longer 242 

observed, demonstrating that the mRNA was protected within the vesicles and not simply 243 

associated or co-purified.  244 

The profile of miRNAs contained within exosomes appears to depend on the cell type of 245 

origin. The miRNA profile is different in exosomes released from C2C12 myoblasts 246 

compared with those released by C2C12 cells once they have differentiated into myotubes 247 

(Forterre, et al. 2014). The miRNA profile within exosomes was also found to differ from the 248 

parent C2C12 cells, which indicates that there is selective sorting of miRNA into exosomes 249 

(Forterre et al. 2014). The mechanism for this is only beginning to be unravelled, but 250 

appears to involve recognition of particular sequence motifs by sumoylated heterogeneous 251 

nuclear ribonucleoprotein A2B1 (hnRNPA2B1) (Villarroya-Beltri, et al. 2013). When the 252 

exosomes secreted by C2C12 myotubes were taken up by myoblasts they suppressed 253 

expression of Sirt1, potentially modulating metabolic homeostasis and the commitment of 254 

myoblasts during differentiation (Forterre et al. 2014). 255 

Page 8 of 28

joe@bioscientifica.com

Manuscript submitted for review to Journal of Endocrinology



For Review
 O

nly

9 

There is also evidence that exosomes are used by some cells in the heart to communicate 256 

to each other. Cardiac fibroblasts secrete exosomes that are enriched in specific miRNAs, 257 

including miR-21-3p. Intriguingly, this particular miRNA is a “passenger strand” miRNA 258 

which normally undergoes intracellular degradation and was therefore believed to be non-259 

functional (Bang, et al. 2014). However, when neonatal cardiomyocytes took up these 260 

exosomes, they increased in size indicating a hypertrophic response (Bang et al. 2014). 261 

Endothelial cells have also been shown to transfer miRNA via EVs, in this case transferring 262 

EV to smooth muscle cells after stimulation by shear stress, which is known to be 263 

atheroprotective (Hergenreider, et al. 2012). The EVs delivered functional miR-143/145 into 264 

smooth muscle cells in co-culture, which controlled the expression of target genes 265 

(Hergenreider et al. 2012). Importantly, when administered in vivo to ApoE(-/-) mice, they 266 

reduced atherosclerotic lesion formation in the aorta (Hergenreider et al. 2012). The vesicles 267 

in this study were referred to conservatively as “extracellular vesicles”, because a maximum 268 

centrifugation speed of 20,500 g was used to pellet them, and the size range of most of the 269 

vesicles on electron micrographs ranged between 60 and 130 nm, therefore they likely 270 

contained a mix of exosomes and microvesicles. 271 

In view of the RNA content of EVs which is related to the cell type of origin, and can alter in 272 

pathological settings, they have become an attractive source of biomarkers for profiling and 273 

identification of disease markers (Cheng, et al. 2014; Jansen, et al. 2013; Kruger, et al. 274 

2014), as has been reviewed elsewhere (Gaceb, et al. 2014). 275 

The role of EVs in diabetes and metabolic disease 276 

T2DM is characterized by elevated fasting plasma glucose levels combined with insulin 277 

resistance. The metabolic syndrome additionally comprises abdominal (central) obesity, high 278 

blood pressure, insulin resistance, and lipid abnormalities (Perrone-Filardi, et al. 2015). It is 279 

present in 34% of the population, and greatly increases the risk of heart failure (Perrone-280 

Filardi et al. 2015). There is accumulating evidence that EVs are elevated in these 281 

conditions and can contribute to some of the pathophysiology, including vascular 282 

complications, inflammation and alterations in blood coagulation (recent review Lakhter 283 

(Lakhter and Sims 2015)). 284 

Exosomes and MVs from different cellular sources can be identified constitutively in plasma 285 

from normal individuals (Caby, et al. 2005; Raposo and Stoorvogel 2013), including MVs 286 

released from monocytes, lymphocytes, endothelial cells, erythrocytes and platelets. A 287 

number of studies have demonstrated that the numbers of circulating MVs is increased in 288 

insulin-resistant patients (Jayachandran, et al. 2011), and in patients with T2DM (Diamant, 289 
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et al. 2002; Omoto, et al. 1999). Levels are further increased in those with microvascular 290 

complications (Ogata, et al. 2006; Omoto et al. 1999), or secondary macrovascular CVD, 291 

including atherosclerosis (Diamant et al. 2002). Increased numbers of MV have also been 292 

linked to obesity (Stepanian, et al. 2013). Interestingly, a significant reduction in MV 293 

numbers has been described after calorific restriction or bariatric surgery in these patients 294 

(Cheng, et al. 2013). Increased EVs are also a hallmark of CVD including atherosclerosis 295 

(Feng, et al. 2010), hypertension (Chen, et al. 2012), and following stroke or myocardial 296 

infarction (D'Alessandra, et al. 2010; Kim, et al. 2012). 297 

The role of chronic inflammation in progression of CVD and CMD has been highlighted in a 298 

number of studies (reviewed in (Hansson, et al. 2015);(Lindhardsen, et al. 2015)) and 299 

circulating EVs are increased in many inflammatory conditions (e.g. (Daniel, et al. 2006; 300 

Joop, et al. 2001; Suades, et al. 2015)). Their role in propagation of endothelial pro-301 

inflammatory cascades is also increasingly recognized, and was first described by Mesri et 302 

al. They stimulated EVs in vivo in healthy volunteers by infusion of a chemotactic peptide 303 

and showed that these were able to induce cytokine and chemokine release from endothelial 304 

cells in vitro (Mesri and Altieri 1998). A number of other studies have reported similar 305 

findings using EVs from patients or animal models (Meziani, et al. 2010; Wang, et al. 2011). 306 

We have recently shown that EVs induced by long term feeding of a high fat diet in a rat 307 

model of insulin resistance and T2DM were able to induce VCAM-1 adhesion molecule 308 

expression and ROS production in rat cardiac endothelial cells in vitro (Heinrich, et al. 2015). 309 

The same factors that increase the risk of cardiometabolic disease are also risk factors for 310 

polycystic ovary syndrome (PCOS)(Daskalopoulos, et al. 2015), the most common 311 

endocrine disorder in women aged 18-44, affecting up to 10% of the population, and which 312 

leads to reduced fertility (Teede, et al. 2010). Several studies have now shown that in 313 

accordance with these increased risk factors, PCOS patients have increased circulating 314 

levels of EVs, particularly pro-coagulant platelet MVs (Koiou, et al. 2011; Koiou, et al. 2013). 315 

Willis et al recently measured increased numbers of circulating EVs nearing the exosome 316 

size range (<150 nm), with a greater percentage of annexin V+ve MV and 16 miRNA that 317 

were differentially expressed compared to matched controls (Willis, et al. 2014). However, a 318 

causal relationship has not yet been established between MVs and the other symptoms of 319 

PCOS which include excess androgen activity, oligo-ovulation or anovulation, and polycystic 320 

ovaries (Teede et al. 2010). 321 

The role EVs in the function and dysfunction of healthy and diseased endothelium 322 
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A number of studies have demonstrated a correlation between the number of circulating 323 

endothelial (CD31+CD41–) MVs and endothelial dysfunction in patients with coronary artery 324 

disease (Chen et al. 2012; Wang, et al. 2014b; Werner, et al. 2006). Similarly, in T2DM 325 

patients higher numbers of endothelial MVs correlate with impaired endothelium function, as 326 

determined by the measurement of flow mediated dilatation in the brachial artery (Feng et al. 327 

2010). In addition to their levels increasing with endothelial dysfunction, MVs may also have 328 

a direct effect on endothelial function. MVs isolated from T2DM patients by centrifugation 329 

have been shown to impair shear stress induced dilatation of mouse mesenteric arteries 330 

(Martin, et al. 2004) whilst aortic ring experiments have shown that endothelial derived EVs 331 

(obtained by ultracentrifugation at 100,000 x g) decrease nitric oxide (NO) and increase 332 

reactive oxygen species production, as well as impairing acetylcholine-mediated 333 

vasorelaxation (Brodsky, et al. 2004). Consequently, microvesicles have gained some 334 

notoriety as potentially detrimental factors contributing to cardiovascular disease. 335 

On the other hand, EVs have also been observed to have some beneficial effects, 336 

particularly with regards to the stimulation of endothelial proliferation, migration and tube 337 

formation in vitro (Deregibus, et al. 2007; Jansen et al. 2013)(Vrijsen, et al. 2010). This effect 338 

has been observed with EVs isolated from apoptotic endothelial cells (Deregibus et al. 2007; 339 

Jansen et al. 2013) (and therefore presumably containing many apoptotic vesicles), as well 340 

as with more pure populations of MVs isolated from platelets (Brill, et al. 2005; Kim, et al. 341 

2004), from endothelial progenitor cells (Deregibus et al. 2007; Vrijsen et al. 2010), or from 342 

ischemic muscle (Leroyer, et al. 2009). Exosomes isolated from cardiomyocyte progenitor 343 

cells (Vrijsen et al. 2010) or the conditioned medium of bone marrow CD34+ stem cells 344 

(Sahoo, et al. 2011) have been shown to have a similar effect on endothelial cell proliferation 345 

and migration. 346 

EVs can also stimulate endothelial repair. For example, endothelial EVs were isolated by 347 

centrifugation from human coronary artery endothelial cells undergoing apoptosis. When 348 

administered to mice in which a region of endothelium had been denuded, these EVs were 349 

found to be capable of repairing the endothelium via delivery of miR-126 (Jansen et al. 350 

2013). It is significant, however, that this effect was abrogated in EVs isolated from cells 351 

which had been grown under hyperglycaemic conditions in vitro or isolated from patients 352 

with T2DM, since this suggests that this reparative property of EVs is altered by diabetes 353 

and may contribute to continued vascular damage and dysfunction (Jansen et al. 2013). 354 

Similarly, exosomes from the cardiomyocytes of non-diabetic rats were founds to be pro-355 

angiogenic, stimulating endothelial proliferation, migration and tube formation in vitro, while 356 

those isolated from the cardiomyocytes of diabetic rats had the opposite effect (Wang, et al. 357 
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2014a).In this example, the detrimental effect was attributed to exosomal transfer of miR320 358 

and the down-regulation of its target genes (IGF-1, Hsp20 and Ets2) (Wang et al. 2014a). 359 

Various additional mechanisms have been implicated in the stimulatory effect of exosomes 360 

on endothelial cells. Platelet MVs appear to activate pro-angiogenic ERK and PI3K/Akt 361 

pathways (Brill et al. 2005; Kim et al. 2004) and may contain a contain a lipid growth factor 362 

(Kim et al. 2004), while EVs from endothelial progenitor cells appear to transfer mRNAs that 363 

activate PI3K/AKT and eNOS signaling in the recipient endothelial cells (Deregibus et al. 364 

2007). The transfer of miR-214 has also been proposed to mediate induction of 365 

angiogenesis by endothelial exosomes by suppressing the expression of ATM in recipient 366 

cells (van Balkom, et al. 2013). Endothelial cells also communicate atheroprotective stimuli 367 

to smooth muscle cell via the transmission of miR-143/145 via EVs (Hergenreider et al. 368 

2012). In this study, EV were purified by centrifugation at 20,500 g for 1 h, resulting in 369 

vesicles that were mostly between 60 and 130 nm. 370 

In some cases, exosomes can also suppress hyperproliferative pathways such as those that 371 

contribute to hypoxia-induced pulmonary hypertension. Here, the beneficial effect of 372 

mesenchymal stromal cells was shown to be mediated by the release of exosomes which 373 

suppressed hyperproliferative pathways including those mediated by STAT3 and the miR-17 374 

superfamily, in addition to increasing lung levels of miR-204 (Lee, et al. 2012). 375 

Recently, pressure overload or stretch was shown to cause the release from cardiomyocytes 376 

of exosomes containing functional angiotensin II type 1 receptors, which are able to be 377 

transferred to skeletal muscle, mesenteric resistance vessels and cardiomyocytes, 378 

conferring responsiveness to angiotensin II (Pironti, et al. 2015). This exciting data suggests 379 

that exosomes may contribute to the in vivo tissue distribution of cell surface receptors such 380 

as angiotensin II, with functional consequences for the cardiovascular system. 381 

The role of EVs in coagulopathies  382 

When EVs were first described by Peter Wolf they were referred to as “platelet dust” (Wolf 383 

1967) because they were thought not to be functionally significant. Despite there being some 384 

reports to the contrary (Tushuizen, et al. 2012), numerous studies have shown that platelet 385 

EVs are procoagulant due to the exposure of negatively charged PS which can enhance clot 386 

formation (for review see (Hargett and Bauer 2013)). Indeed, platelet EVs have more binding 387 

sites for the factors involved in the clotting cascade than do activated platelets themselves 388 

(Sinauridze, et al. 2007). More recent studies have revealed the presence of tissue factor 389 

(TF) on the surface of endothelial- and monocyte-derived EVs (Breitenstein, et al. 2010), as 390 
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well as P-selectin glycoprotein ligand-1 (PSGL-1) which can bind to P-selectin on the 391 

surface of activated platelets and become incorporated into the clot (Falati, et al. 2003). 392 

Other receptors including glycoprotein IIb/IIIa (Sommeijer, et al. 2005), factor VIII, factor Va 393 

(Nomura, et al. 1993) and protein disulphide isomerase (Raturi, et al. 2008) may also be 394 

present on the surface of EVs and participate in clot formation and thrombosis.  395 

In addition to hyperglycemia, hyperinsulinemia can cause an increase in procoagulant TF-396 

positive MVs (Boden and Rao 2007), and MVs are elevated in otherwise-healthy individuals 397 

with signs of metabolic syndrome (Agouni, et al. 2008; Ueba, et al. 2008). A correlation 398 

between circulating endothelial microparticles (MVs) and cardiometabolic risk factors 399 

(particularly dyslipidaemia), was also detected in the Framingham Heart Study cohort 400 

(Amabile, et al. 2014). The presence of hypertension, elevated triglycerides, and metabolic 401 

syndrome all increased circulating MVs, but dyslipidaemia had the most severe effect. 402 

Obesity has also been correlated with increased circulating endothelial MVs in children 403 

(Gunduz, et al. 2012). These increases may contribute to the disease, since MVs from 404 

individuals with metabolic syndrome have been shown to impair endothelium-dependent 405 

relaxation and decrease endothelial NO synthase expression when injected into mice 406 

(Agouni et al. 2008). Other cardiovascular risk factors such as uremia may also correlate 407 

with increased numbers of platelet MVs which may trigger thrombosis (Ando, et al. 2002). 408 

Elevated uric acid in chronic renal failure patients may also contribute to their increased risk 409 

of cardiovascular events (Faure, et al. 2006). 410 

Tsimerman et al measured increased numbers of pro-coagulant TF-positive EVs in patients 411 

with T2DM, but MV coagulability was significantly increased only in those who also had 412 

macrovascular complications (foot ulcers and coronary artery disease) (Tsimerman, et al. 413 

2011). EVs were isolated and evaluated for their ability to induce tube formation in 414 

endothelial cells in vitro. Endothelial tube formation was stimulated by MVs from healthy 415 

controls, but was defective when incubated with MVs from patients with macrovascular 416 

complications (Tsimerman et al. 2011).  417 

Thus, hyperglycemia, dyslipidaemia and hyperinsulinemia as well as hyperuricemia and 418 

uremia appear to contribute to cardiometabolic disease via the procoagulant activity of MVs, 419 

but also due to their diminished ability to support endothelial function. 420 

EVs as a potential therapy for cardiometabolic disease 421 

The heart is essentially terminally differentiated, meaning that there is very little division of 422 

cardiomyocytes after injury (e.g. IR), and instead those that remain tend to undergo a 423 
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compensatory increase in size. The possibility of renewing the cardiomyocytes by stem cell 424 

therapy has been intensively investigated for a number of years, however, the results of this 425 

approach have been largely disappointing. Some improvements in cardiac function have 426 

been observed after stem cell therapy, although this is generally acknowledged to occur in 427 

the absence of new cardiomyocyte formation. Interestingly, similar levels of benefit could 428 

also be obtained experimentally after injecting medium that had been conditioned by stem 429 

cells. It was therefore proposed that stem cells release cytokines, growth factors and other 430 

proteins in a “paracrine” manner to improve survival and function of cardiomyocytes (Kim, et 431 

al. 2014; Menasche 2014; Yoon, et al. 2005).  432 

In 2010, it was shown that exosomes purified from the conditioned medium of human ESC-433 

derived mesenchymal stem cells (ESC-MSC) by HPLC size-exclusion fractionation, could 434 

protect the heart both in vitro and in vivo (Lai, et al. 2010). Cardiac function after 28 days 435 

was also improved (Arslan, et al. 2013). An increase in the activity of cardioprotective 436 

kinases Akt and GSK3α/β was observed 1 h after exosome administration until the following 437 

day (Arslan et al. 2013). These kinases are known to be highly cardioprotective (Hausenloy, 438 

et al. 2005). In another study, exosomes were isolated from MSC cells overexpressing 439 

GATA4, and these also restored cardiac contractile function and reduced infarct size when 440 

injected into rat hearts at the time of infarction (Yu, et al. 2014). Protection was attributed to 441 

an increase in the treated hearts of miR-19a, which targets PTEN, indirectly increasing Akt 442 

and ERK activation. However, with such experiments it is difficult to ascertain whether the 443 

miR-19a was transferred from the MSC exosomes or was a transcriptional response of the 444 

myocardium to the treatment (Yu et al. 2014). The ability to activate protective pathways 445 

does not appear to be restricted to exosomes, since microvesicles derived from human adult 446 

mesenchymal stem cells were also able to protect the kidney against ischaemia and 447 

reperfusion injury (Gatti, et al. 2011).  448 

MSC are not the only type of stem cell that has been shown to release exosomes with 449 

beneficial cardiovascular effects. Intramyocardial injection of exosomes from murine cardiac 450 

progenitor cells (CPCs) reduced apoptosis after ischaemia and reperfusion (Chen, et al. 451 

2013). In this study, however, exosomes were isolated by precipitation with polyethylene 452 

glycol (PEG) (Chen et al. 2013), which raises some uncertainty about the effects that the 453 

PEG might have itself. In another study EVs were isolated from CPCs derived from atrial 454 

appendage explants from patients undergoing heart valve surgery (Barile, et al. 2014). 455 

Injection of these CPCs-EVs into the hearts of rats subject to permanent coronary artery 456 

ligation reduced cardiomyocyte apoptosis and scar size, increased the amount of viable 457 

tissue in the infarct area, increased blood vessel density, and prevented the impairment of 458 

Page 14 of 28

joe@bioscientifica.com

Manuscript submitted for review to Journal of Endocrinology



For Review
 O

nly

15 

ventricular function between day 2 and day 7 (Barile et al. 2014). In contrast, exosomes 459 

isolated from normal human dermal fibroblasts exhibited no benefit, suggesting that effects 460 

depend on cell type of origin (Barile et al. 2014). Intramyocardial injection of exosomes 461 

isolated from CPCs that had been exposed to hypoxia for 12 h improved cardiac function 462 

and also reduced fibrosis 21 days (Gray, et al. 2015). The exosomes released after hypoxia 463 

had an altered miRNA content, and co-regulated miRNA with a beneficial profile were 464 

identified (Gray et al. 2015). Although cardiac endothelial cells and fibroblasts took up 465 

fluorescently stained exosomes in vitro, uptake was minimal in primary rat cardiomyocytes 466 

(Gray et al. 2015), suggesting either that they deliver miRNA directly to the former cells 467 

types, or that they interact with surface receptors on cardiomyocytes without delivering 468 

miRNA intracellularly. Thus, the exact mechanism of functional benefit conferred by CPC-469 

EVs remains unclear. 470 

When a nonviral mini-circle plasmid carrying HIF1, a transcription factor that mediates 471 

adaptive responses to ischemia, was delivered into the endothelium of ischemic mouse 472 

myocardium, these cells were found to release exosomes with a higher content of miR-126 473 

and miR-210. These exosomes could be taken up by CPCs administered to the heart, 474 

leading to the activation of pro-survival kinases and to a switch towards glycolysis. This 475 

resulted in them having an increased tolerance against hypoxic stress (Ong, et al. 2014) and 476 

suggests the interesting possibility that endothelial cells can support CPC survival by 477 

exosomal transfer of miRNA. 478 

An attractive aspect of using EVs for therapy is the potential for altering their cargo to 479 

augment their protective capabilities. In a study by Mackie et al, CD34+ cells or their 480 

exosomes showed no benefit after injection into ischaemic mouse hearts. However, CD34+ 481 

cells were then genetically modified to to express the sonic hedgehog (Shh) protein, in order 482 

to enhance the angiogenic quality of CD34+ cells. When CD34+Shh cells were injected into 483 

the infarct border zone in mice, infarct size was reduced, border zone capillary density was 484 

increased, and ventricular dilation and cardiac function were improved 4 weeks later 485 

(Mackie, et al. 2012). In vitro studies in cells were performed to demonstrate that Shh was 486 

released from the CD34+Shh cells in exosomes, and could be transferred to recipient cells 487 

and (modestly) activate transcription. Injection of the exosomes from CD34+Shh cells had 488 

the same benefit, though exosomes from CD34+ cells wihout Shh showed no benefit 489 

(Mackie et al. 2012).  490 

Strikingly, it has been shown that there are on the order of 1010 EVs per ml present in the 491 

blood of all individuals, after isolation using the technique of differential ultracentrifugation, 492 

(Caby et al. 2005), and these could potentially be continually delivering different miRNA or 493 
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receptor-ligand mediated signals to the heart. This possibility was addressed by isolating 494 

plasma exosomes from rats or healthy individuals by differential ultracentrifugation and 495 

testing whether they were cardioprotective in in vitro, ex vivo and in vivo models of IR 496 

(Vicencio, et al. 2015). Indeed, exosomes from plasma were strongly cardioprotective, 497 

activating the cardioprotective ERK1/2 kinase and reducing infarct size (Vicencio et al. 498 

2015). Plasma exosomes were similarly protective in an isolated perfused rat heart model 499 

and in primary cardiomyocytes, suggesting a direct effect of the exosomes at the plasma 500 

membrane level, although interestingly exosomes did not appear to be taken up by the 501 

cardiomyocytes but they were endocytosed by endothelial cells (Vicencio et al. 2015). This 502 

study also showed that the number of exosomes in the plasma was increased by short (5 503 

min) cycles of limb IR. This manipulation is under investigation of a means of inducing 504 

protection of the heart and other organs via a phenomenon known as “remote ischaemic 505 

preconditioning (RIC)” (Hausenloy and Yellon 2008). As yet, the mechanism of RIC is 506 

unknown although evidence for several mediators has been presented, including SDF-1α 507 

and Il-10 (Cai, et al. 2012; Davidson, et al. 2013). As vehicles able to deliver multiple signals 508 

between cells, EVs had been proposed as possible candidates for carriers of the 509 

cardioprotective factor released by RIC (Yellon and Davidson 2014). A study by Giricz et al. 510 

suggested that this may be the case, since RIC was not effective when EVs were removed 511 

from medium containing the factor (Giricz, et al. 2014). However, in a dose-response 512 

experiment conducted using primary adult rat cardiomyocytes the EVs released after RIC 513 

were found not to be significantly more protective that exosomes from baseline (Vicencio et 514 

al. 2015). 515 

On the other hand, the observation that plasma EVs themselves were cardioprotective is 516 

important and may suggest that they signal continuously to the heart, modulating the 517 

protective state. Protection was shown to involve HSP70 in the exosome membrane, which 518 

binds to TLR4 on cardiomyocytes, activating ERK1/2, p38MAPK and downstream 519 

phosphorylation of the small heat shock protein HSP27 (Vicencio et al. 2015). TLR4 is part 520 

of the innate immune system, and strong activation by its ligands from bacteria leads to a 521 

cell damage response and can cause cell death. However, mild activation is known to be 522 

protective (Mathur, et al. 2011; Zhang, et al. 2013). Other studies have suggested a link 523 

between body fluid exosomes and TLR-dependent signaling pathways, possibly mediating 524 

immunosuppressive and anti-inflammatory pathways (Bretz, et al. 2013; Zhang, et al. 2014). 525 

 526 

Conclusion 527 
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With T2DM reaching epidemic proportions and cardiovascular disease being the major 528 

cause of death worldwide, novel therapeutic strategies are urgently needed to offer cell and 529 

tissue repair mechanisms to the myocardium and also diseases characterized by endothelial 530 

dysfunction. EVs including MVs and exosomes have emerged over the past decade to 531 

attract immense interest due to their potential either as biomarkers or mediators of disease. 532 

Increased MVs in plasma can be observed in patients with insulin resistance, T2DM, 533 

atherosclerosis and also after stroke or myocardial infarct. MVs have been also described as 534 

mediators of inflammation and to be involved in the pro-coagulant actions of platelets. The 535 

protein or RNA cargo of EVs offers additional potential not only for their use as biomarkers 536 

but also for their use as vehicles for delivering bioactives. As such, they offer the capability 537 

of delivering multiple signals to target tissues. Stem cells are the best-explored example of 538 

cells that deliver miRNA via exosomes with beneficial effects on the heart, kidneys and the 539 

endothelium. Exosomes and MVs have also been implicated in protecting the heart from 540 

infarction and have been proposed as potential mediators of ischaemic conditioning. EVs 541 

therefore represent one of the most exciting and promising research areas for the endocrine 542 

community. However, there is still much left to understand regarding the mechanisms of EV 543 

formation and their specific targeting to a selective tissue. Although current research has 544 

provided valuable insight to the mechanisms of EV release, we are only beginning to 545 

understand mechanisms of RNA/protein loading into exosomes for instance, and exploring 546 

these mechanisms is essential to design efficient therapeutical strategies involving EVs.  547 
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Figure legends 

Figure 1 

(A) Timeline (1956-2014) of the publications referring to extracellular vesicles (black line), 

microvesicles (blue line) and exosomes (red line). (B) Schematic representation of the 

mechanisms of formation of microvesicles, exosomes and apoptotic bodies. Microvesicles 

(0.2 – 2.0 µm) originate via budding and shedding from the plasma membrane of cells and 

therefore may contain specific surface markers from the cell of origin. Exosomes (50 - 100 

nm) on the other hand originate intracellularly through a sorting pathway involving 

intermediate organelles such as the early endosome and a late multivesicular body, which 

fuses with the plasma membrane to release exosomes via exocytosis. Apoptotic bodies (1 - 

2 µm) originate via blebbing of the plasma membrane.  

 

Figure 2 

 

The endothelial cells marker CD144 is absent from exosomes isolated from HUVEC 

endothelial cells (A), despite being detectable on the parent cells (B). HUVEC cells or 

HUVEC exosomes bound to 4 µm beads were labelled with anti-CD144 and fluorescent 

secondary antibody, before fluorescent detection using a BD AccuriC6 flow cytometer. 

 

Figure 3 

Flow cytometry (FCM) allows direct analysis of microvesicles (MVs) and indirect 

(conjugated) analysis of exosomes. Nanoparticle tracking analysis (NTA) is the preferred 

technique for EV quantitation. Electron microscopy (EM) is the golden standard for EV 

visualization. (A) Direct flow cytometric analysis of MVs in plasma of rats fed chow or high fat 

diets (HFD; Heinrich et al. 2015) after staining for phosphatidyl serine exposure (Annexin V 

PE-Cy7.7) and CD106 (PE) to determine MV release from activated endothelial cells. 

Enumeration beads (red) and 1,1 µm sizing beads (green) were added as internal controls. 

(B) NTA of MVs from rats fed chow or HFD. (C) Indirect flow cytometric analysis of 

exosomes bound to aldehyde sulphate beads (4 µm) after staining for the tetraspannin 

CD63 and surface HSP70 (Vicencio et al. 2015). (D) NTA of human plasma exosomes 

isolated via ultraceintrifugation (black line) or using the Exo-spinTM (Cell Guidance Systems) 

commercial kit (red line). (E) Electron micrograph of MVs and exosomes.  
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HUVEC cells

Figure 2.
The endothelial cells marker CD144 is absent from exosomes isolated from HUVEC
endothelial cells (A), despite being detectable on the parent cells (B). HUVEC cells or
HUVEC exosomes bound to 4 μm beads were labelled with anti-CD144 and fluorescent 
secondary antibody, and fluorescence detected using a BD Accuri C6 flow cytometer.
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