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Abstract 

The 18 kDa Translocator Protein (TSPO) localizes in the outer mitochondrial membrane of the cells 

and is readily up-regulated under various pathological conditions such as cancer, inflammation, 

mechanical lesions, and neurological diseases. Capable to bind with high affinity synthetic and 

endogenous ligands, its core biochemical function resides in the translocation of cholesterol into the 

mitochondria influencing the subsequent steps of (neuro-) steroid synthesis and systemic endocrine 

regulation.  

Over the years however TSPO has also been linked to core cellular processes such as apoptosis and 

autophagy. It interacts and forms complexes with other mitochondrial proteins such as the voltage-

dependent anion channel (VDAC) via which signaling and regulatory transduction of these core 

cellular events may be influenced. Despite nearly 40 years of study, the precise functional role of 

TSPO beyond cholesterol trafficking remains elusive even though the recent breakthroughs on its 

high-resolution crystal structure and contribution to quality control signaling of mitochondria.  

All this along with a captivating pharmacological profile naturally provides novel opportunities for 

investigating and understanding the significance of this highly conserved protein and the envisaged 

therapeutics development as here presented and discussed. 

 

Summary statement 

An alternative binding site for the benzodiazepines was discovered in the periphery of the central 

nervous system at the end of the seventies. Since then, the Peripheral Benzodiazepines Receptor 

(PBR), as it was initially named before the current nomenclature of Translocator Protein (TSPO), has 

exponentially gained interest from various disciplines of experimental and applied biomedicine. 

Inspired by the series of discoveries recorded in the past twelve months we here aim to review the 

most compelling aspects of TSPO science in order to inform on the biochemical and molecular 

pharmacology, homeostatic relevance and therapeutic potential of this mitochondrial stress-response 

pathway. 

 

Keywords: TSPO, PBR, Steroids, Metabolism, Autophagy, Biochemistry and Mitochondrial 

Pharmacology 

 

Abbreviations: Translocator Protein (TSPO); Peripheral Benzodiazepine Receptor (PBR); Voltage-

Dependent Anion Channel (VDAC); 

Introduction 
The cross-disciplinary nature of TSPO has been recently remarked by prominent discoveries, which 

have pointed out this as an underlying regulatory pathway in cell homeostasis and signaling to fine-

tune mitochondrial function and its quality control to acute and chronic stress conditions. This has 
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indeed unveiled a fundamental relevance in the molecular and biochemical physiopathology of 

mitochondria and their interplay with the intracellular environment. 

TSPO was discovered in the 1977(1) and initially named as the peripheral benzodiazepine receptor 

(PBR) for the ability to bind benzodiazepine drugs outside of the central nervous system. It is an 

abundant, evolutionary conserved, protein found in every organs but with particularly high constitutive 

expression in steroidogenic tissue, including adrenal glands, gonads, placenta and activated brain 

microglia (2-4). 

The pattern of TSPO expression and the early discovery that TSPO was an high-affinity binding 

protein of cholesterol resident in the outer mitochondrial membrane, established an exciting link 

between cholesterol transport and biosynthesis of steroids, including the neuronal kind of these (2, 5, 

6). A large body of evidence has gradually defined TSPO as an essential component of cholesterol 

transport across the mitochondrial membrane and a rate-limiting step of steroid hormone production 

(7-10). This feature, in addition to the putative roles in protein import, porphyrins binding and transport, 

resulted in a new nomenclature as Translator Protein. Remarkably, this was introduced almost 30 

years after its discovery and adopted to better describe TSPO function as cholesterol-translocator 

protein replacing the original name (11, 12).  

TSPO is widely expressed throughout the body yet its density appears tissue-dependent. 

Steroidogenic tissues possess the majority of the protein whereas renal and myocardial tissues have 

reduced levels, and lower still, the brain and liver (13-15). Notably, distribution is not homogenous 

within a given organ. For instance, in the adrenal glands, the medulla is almost lacking in TSPO, while 

far greater levels of the protein are expressed in the cortex (16). It is localized to the outer 

mitochondrial membrane (2, 17, 18), and for this we call it a mitochondrial protein however it has been 

reported in the nucleus (19) and on the plasma membrane (20). Hitherto neither of these two 

alternative localizations has been properly validated.  

TSPO expression rises readily in various cell types following exposure to pro-pathological stressors 

or physicochemical insults (10, 21, 22). Such a dynamic increase of expression is particularly evident 

in microglia cells of the brain (23), which has led TSPO to be exploited for diagnostic purposes as a 

biomarker of active disease or disease-related tissue remodeling through the generation of TSPO 

radioligands (12, 21).  

The recurring association with cell and tissue pathology likewise its known druggability have made 

TSPO an attractive therapeutic target. Various are indeed the chemical entities with affinity for TSPO 

that have been reported with some of which entering clinical trials as either diagnostics or therapeutics 

(12). 

Animal models of disease that were reported to benefit from treatments with TSPO ligands include 

those for Alzheimer’s Disease (AD), Multiple Sclerosis (MS), anxiety disorders, neuropathic pain, 

peripheral nerve injury, diabetes, rheumatoid arthritis, cancer and cardiac ischemia (21, 24-30). 

Among the therapeutic interventions exploiting TSPO the most promising one, hitherto, is based on 
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the prediction that neurosteroids could be beneficial in the treatment of inflammation and selective 

TSPO ligands would consequently hold a therapeutic potential by promoting the function of TSPO in 

steroidogenesis (21, 24, 31).   

A role for TSPO in the formation of the mitochondrial membrane permeability transition pore (MPTP) 

has been for long proposed, providing a rationale for the evidences linking TSPO with apoptosis, Ca2+ 

signaling and redox stress homeostasis. However, recent studies on gene-edited mice (knocked out 

for TSPO) have ruled this out and showed that MPTP is formed regardless of the presence of TSPO 

(32-36). Nevertheless, a regulatory role for TSPO and that of its drug ligands cannot be excluded. 

Several are the endogenous ligands for TSPO such as diazepam binding inhibitors (DBIs), porphyrins 

and cholesterol. There is substantial literature to date that describes cholesterol binding but much 

less about the physiological relevance of DBIs and porphyrins. DBIs exhibit micromolar affinity with 

both TSPO and the central benzodiazepine receptor, and are widely distributed in glial cells of the 

CNS and in steroidogenic peripheral tissues (37). They may be cleaved into other biologically active 

fragments and are shown to stimulate steroidogenesis via interactions with TSPO (38). Porphyrins, 

tetrapyrrolic pigments important in heme biosynthesis pathways, may be scavenged by TSPO (39, 

40). A number of interacting proteins (e.g. ACDB3, ACBD1, PRAX1, VDAC, 14-3-3, phospholipase 

A2) have been identified, which are involved in steroidogenesis and other TSPO-related functions 

including apoptosis and autophagy. Notably, the molecular link between TSPO and the Voltage 

Dependent Anion Channel (VDAC), a core element of the mitochondrial outer membrane, is restated 

by most of the recent literature, which highlights novel functional significance for this protein (41).   

In this review we will outline the current knowledge and the implications of the most recent findings in 

the understanding of TSPO as core molecular determinant of mitochondrial biochemistry and 

pharmacology.  

 

TSPO and a bi-directional transcriptional signaling network  

The Tspo gene is composed of four exons, with a large intron that separates the first two. Multiple 

transcription start sites have been identified in the Tspo promoter in different species (42). The 

promoter lacks a TATA box or CCAAT elements but contains proximal GC-rich motifs and five tandem 

binding sites for specificity protein 1/ specificity protein 3 (Sp1/Sp3) factors. The promoter region also 

harbors putative binding sites that are conserved between mouse and human TSPO for a number of 

additional transcription factors including activator protein 1 (AP1), v-ets erythroblastosis virus E26 

oncogene homolog (Ets) transcription factors, Myc and STAT members (42-46).It is likely that tissue-

specific regulatory elements exist as in steroidogenic MA-10 and Y1 cells 585 base pairs of the 

promoter was required to maintain full activity compared to an extended 805 bp region in non-

steroidogenic NIH-3T3 cells (42).  

Tspo is predominantly under the control of a PKC -dependent signal transduction pathway, which is 

constitutively active in steroidogenic and inducible in non-steroidogenic cells (46, 47). PKC  activates 
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the Raf-MEK-ERK MAPK pathway and triggers Tspo transcription through cooperation with c-Jun, 

Ets, AP1 and STAT3 transcription factors(46-48). Basal Tspo transcription requires Ets and Sp1/Sp3 

transcription factors (48), which are located in promoter regions 805-515 and 123-1 (47). Evidence 

has demonstrated that TSPO is directly related to changes in ROS generation and there are multiple 

ROS-sensitive elements that drive the expression of the Tspo gene, such as AP1, ERK1/2 and PKC

(46, 48). For example, increased ROS production in astrocytes results in nuclear accumulation of 

the Sp1 transcription factor, which increases TSPO mRNA (49). Upregulation of TSPO has also been 

observed after treatment with other ROS-producing compounds including TNFα (50, 51), phorbol-12-

myristate 13-acetate (PMA) (46, 52) and the mitogen-activated protein kinase kinase (MEK) inhibitor, 

2-(2’-amino-3’-methoxyphenyl)-oxanophthalen-4-one (PD98059) (48). 

We have shown that overexpression of TSPO is associated with increased ROS production, which 

we have reported as a causative factor in TSPO-mediated mitophagy inhibition(41). The idea that 

overexpression of TSPO creates an oxidative cellular environment is very important as the expression 

of the Tspo is driven by downstream effectors of ROS (48). Under oxidative conditions, an increase 

in TSPO levels may be physiologically important to provide mitochondrial and cellular protection 

against initial ROS damage; should this be sustained, a positive feedback cycle in which the gene is 

re-expressed and mitophagy continuously impaired may manifest by leading to cumulative 

mitochondrial damage, which would impact cell and tissue health over time (53). 

There are anyway reports showing, on the contrary, that sustained oxidative stress decreases TSPO 

expression contributing cell death (22, 48) although the transcriptional or protein degradation 

pathways in such conditions are ill-defined. 

Numerous hormones including estradiol and aldosterone also regulate TSPO (48, 54, 55); the 

presence of hormones appears to be necessary for maintaining constitutive TSPO expression, since 

decrease in TSPO is observed in steroidogenic tissues following surgical removal of the pituitary 

gland (6) and the adrenal gland (54). Several studies have described that exposure to steroid 

hormones modifies TSPO levels, determined through TSPO binding studies (56-58). mRNA and 

protein levels do not always correlate, however, and the protein is reported to undergo conformational 

changes that result in increased ligand binding (55, 59). Hormones do cause a change in TSPO 

binding affinity to typical ligands and induce structural alterations including post-translation 

modifications such as cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3'-5'-cyclic adenosine 

monophosphate)- dependent PKA-mediated phosphorylation (48, 60).  

It is well established that hormones activate the cAMP pathway, being an important element in 

steroidogenesis contributing to lipid synthesis, cholesterol trafficking and protein phosphorylation. 

cAMP is a second messenger important in many biological processes including growth and 

differentiation, and is used for intracellular signal transduction in many different organisms.  

Activation of the cAMP pathway leads to a redistribution of Acyl-coenzyme A binding domain 

containing 3 (ACBD3) from the Golgi to mitochondria, where it interacts with TSPO and recruits PKA 
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(61, 62). This has relevance in the activation of steroidogenesis and has been described in estradiol-

induced neuroprogesterone synthesis in the hypothalamic astrocytes (63).   

Prolonged exposure to hormones including estradiol can lead to a decrease in TSPO levels, signifying 

a feedback mechanism (48, 55). A negative feedback loop has been described to regulate Tspo 

transcription following the identification of microtranscriptional regulation by cAMP dependent natural 

antisense transcripts (NAT). Antisense transcription was initially considered as transcriptional noise, 

however, it is increasingly becoming recognized as an important regulator of gene expression and 

may form self-regulatory circuits that allow genes to regulate their own expression [for review see 

(64)]. At the Tspo locus a short interspersed element (SINE) of the B2 family was identified that was 

able to drive the expression of long transcripts. Its extension overlapped exon 3 of the Tspo gene and 

formed a NAT specific for Tspo that was dependent on cAMP (65).  

Alternatively, peroxisome proliferator-activated receptor alpha (PPAR) (66) has been linked to 

decreases in TSPO expression (48, 67-69). PPAR interferes with ROS-activated NFκB, STATs and 

AP-1 transcription signaling pathways (70), factors with binding sites in the Tspo promoter (47, 48). It 

has been also suggested that PPAR reduces the binding of AP-1 to its PKC-associated site on the 

Tspo promoter resulting in a decrease in TSPO mRNA (48) while previous studies have shown a 

positive correlation between PPARs and increased TSPO expression (52). Interestingly, activation of 

PPAR may also occur via a cAMP-PKA dependent mechanism creating a further compatible 

regulatory mechanism as activation of PPAR does bear anti-inflammatory effect (71-73), which may 

be logically linked to a decrease in TSPO expression (Figure 1).  

What emerges from the existing literature is that TSPO represents an important element in facilitating 

cellular adaptation to various pathological and pro-pathological stimuli by integrating hormone and 

REDOX sensitive pathways. 

Detailed identification of the transcriptional regulatory pathways and feedback loops could prove 

fundamental to our understanding of this protein’s function and responsiveness to stress conditions. 

 

  



 7 

TSPO and its phylogenetic structure 

TSPO has tryptophan-rich regions that are highly conserved between prokaryotes and eukaryotes 

(Figure 2). The structure of TSPO was first predicted based on its secondary structure and modelled 

using molecular dynamics simulation to give a two-dimensional membrane topological model 

comprising an intramitochondrial short amino-terminal region and five amphipathic α-helices linked 

by hydrophilic loops leading to an extramitochondrial carboxyl-terminal tail (74).  

An early 3D structure of TSPO, built upon the 7 transmembrane rhodopsin structure, which was 

almost the only membrane protein structure available at the time, was modelled as only long enough 

to span one phospholipid layer rather than crossing the entire bilayer membrane (74). Later TSPO 

topological classification in the mitochondrial membranes of yeast supported a five-transmembrane 

structure but with extended α-helices that are in fact able to traverse the entire membrane bilayer 

(75). However, CD spectrum results from mouse TSPO (MmTSPO) demonstrated the presence of a 

mainly helical secondary structure while NMR data confirmed the presence of at least five helical 

transmembrane segments (76).  

Bacterial homologues have also been used to provide detailed insights into the structure of TSPO: 

TSPO from Rhodobacter sphaeroides (RsTSPO), one of the closest ancestors of mitochondria, not 

only has a primary structure similar to that of human TSPO but is also reported to have functional 

similarities (77). Cryo-EM and image analysis studies of RsTSPO revealed a dimeric, five 

transmembrane domain architecture for TSPO at 10 Å resolution (78).  

This structural information indicated monomeric TSPO could function as a channel and could 

therefore translocate cholesterol across the outer mitochondrial membrane, in line with its well-

defined role in steroidogenesis (21, 79). Recently, a high-resolution structure of mammalian TSPO 

reconstituted in detergent micelles in complex with the ligand PK 11195 has been obtained, further 

supporting a five transmembrane alpha helical conformation (80).  

Another powerful study has described crystal structures for Bacillus cereus TSPO (BcTSPO) at 1.7 Ǻ 

resolution in complex with PK 11195. These authors demonstrated oxidative catalytic activity between 

TSPO and PpIX (protoporphyrin IX), a reaction also observed in TSPO from Xenopus tropicalis and 

Homo sapiens that leads to PpIX degradation. This has been attributed to ROS-mediated generation 

of tryptophan radicals at residues W53 (hs numbering; transmembrane domain 2) and W143 (hs 

numbering; transmembrane domain 5), which are both shown to participate in the stabilization and 

cleavage of PpIX. Two other conserved tryptophan residues are located in Loop 1 (W32 and W40; hs 

numbering) and in the cholesterol recognition amino acid consensus (CRAC) cytoplasmic domain 

located at the C-terminus (W155; hs numbering), which are considered to be important in other TSPO-

ligand and –protein interfaces (77, 81-83). The identification of potential catalytic regions in TSPO is 

particularly interesting and it would be worth understanding how such biochemical activity influences 

TSPO molecular interactions and downstream processes under conditions of REDOX stress since 
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different experimental conditions are already known to affect Kd values for PpIX binding; e.g. 0.3 μM 

(81) versus 8.6 μM (78). 

Quite notably, TSPO has been characterized in monomeric, dimeric and multimeric states although 

the functional significance of its polymerization requires further clarification. Analysis of RsTSPO 

revealed a dimer (78, 81) while studies on MmTSPO portray a monomeric protein in complex with PK 

11195 (80) although there is a possibility of oligomeric states (84). BcTSPO on the other hand has 

been extracted as monomeric, dimeric and as higher oligomeric species with a dimeric model in 

complex with PK 11195 (40).  Interestingly, cellular REDOX status has been previously linked with 

TSPO oligomeric status s in response to ROS increases TSPO preferentially forms covalent polymers 

(85).  

TSPO can function both as a monomer and polymer. In its monomeric form TSPO binds PK 11195 

and cholesterol with nanomolar affinity (79) although the translocation of cholesterol is preferentially 

mediated through polymeric forms or in complex with other protein binding partners (86).  

A TSPO genetic polymorphism in humans Ala(147)  Thr(147) is associated with psychiatric 

disorders (87-89) and reduced pregnenolone production (90).  

The polymorphism resides one helical turn before the CRAC cholesterol binding motif, and a reduction 

in cholesterol binding has been identified with a four- to fivefold lower affinity than wild-type (91, 92). 

Complications in the application of certain TSPO PET ligands, including [11C]-PBR28, [18F]-PBR111 

and [(18)F]-FEPPA for imaging brain inflammation have been linked to this polymorphism (88, 93-

96). However, structural analyses have shown that A147T TSPO is able to retain the same structural 

profile as the wild-type protein, and binds the first generation TSPO ligand, PK 11195, with 

comparable affinity (97). Contradictory to this study, which used mTSPO (97), RsTSPO A139T 

exhibited a lower binding affinity to PK 11195 as well as PpIX (92) and this is supported by crystal 

structures of the A139T mutant at 1.8 and 2.4 Ǻ resolution in RsTSPO, which show conformational 

changes that alter the structural environment in both the CRAC domain and possible ligand binding 

domains. These conflicting reports however can be ascribed to the structural differences between 

mammalian and bacterial species. Nevertheless, they still raise the question as to how functional 

activity data obtained in bacterial systems can be applied to mammalian TSPO and therefore if this 

has been preserved intact in the phylogenesis. Additional studies conducted in mammalian TSPO 

systems will therefore be of essence particularly with regards to the apparent catalytic activity 

exhibited by TSPO in the degradation of PpIX as already pointed out (40).  

Anyhow the tremendous effort by colleagues who endeavored, in series, to generate the actual 

structure of the protein is of invaluable importance not only to inform TSPO biochemistry but also to 

pave novel avenues of research to dissect and exploit the nature of TSPO-ligands binding as well as 

the design of novel chemicals. 

 

Tspo-/- knockout mice: new insights of an old function  
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The most studied role assigned to TSPO is in the transport of cholesterol into mitochondria for 

hormone biosynthesis. Hormone-induced steroidogenesis in all tissues begins with the conversion of 

the precursor cholesterol to pregnenolone, a reaction catalysed by the enzyme P450 cholesterol side 

chain cleavage enzyme (CYP11A1), located in the IMM, facing the matrix [reviewed in (98)]. The rate-

limiting step is the transport of cholesterol from the cellular stores across the mitochondrial 

membranes. In order for this step to be achieved, cholesterol must accumulate at the outer 

mitochondrial membrane (OMM) and then be transferred to the IMM.  

The steroidogenic acute regulatory protein (StAR) is a hormone induced mitochondria-targeted 

protein that has been shown to initiate cholesterol transfer into mitochondria (99-101). It binds 

cholesterol (102) and is active at the OMM where it is proposed to interact with TSPO to form a 

complex that facilitates mitochondrial cholesterol import (62, 101, 103, 104). Other components of the 

complex include ACBD3 (Acyl-coenzyme A binding domain containing 3) and the regulatory subunit 

R1α of PKA (62, 83, 105). TSPO can bind cholesterol through its CRAC domain (106), and 

mutagenesis in this region interferes with cholesterol binding and transfer of cholesterol into the IMM, 

preventing steroidogenesis (107). TSPO gene silencing blocks cholesterol transport into the 

mitochondria, also reducing steroid production, while reintroduction of TSPO is able to restore 

steroidogenic capacity (83). Parallel studies conducted in a bacterial system expressing MmTSPO 

demonstrated time- and temperature-dependent uptake of radiolabeled cholesterol. A number of non-

steroidal ligands that interact with the CRAC motif were recently identified through molecular modeling 

and in silico screening of chemical libraries and were shown to potently inhibit steroidogenesis (108). 

Taken together there is a large body of evidence supporting a function for TSPO in cholesterol 

transport; although it has also been suggested that it stores cholesterol until later requirement since 

cholesterol loaded membranes release cholesterol in response to PK 11195 (79, 109). 

Recently, however, a number of studies from independent groups have reported that TSPO global 

knock out mice are viable and that loss of the protein has no effect on basal steroid hormone 

biosynthesis (32, 35, 110, 111). These studies not only question the role TSPO holds in 

steroidogenesis but contrast early attempts to generate Tspo-/- knockout mice, which resulted in 

embryonic lethality (5). However, the viability of mice has been shown to vary depending on 

methodology: Nr5a1-driven conditional knock-outs were born at a normal Mendelian ratio while 

Amhr2-Cre driven conditional knock-outs were born at a ratio of 4.4% (111). Global Tspo knockout 

phenotypes can range from lethal, when whole gene deletion is performed, to no phenotype, as in 

the case of cre-loxP technique, thus presenting the possibility that methodological differences may 

be the cause of such discrepancy (112). Phenotypic characterization carried out on currently available 

global and conditional knock-out strains is summarized in Table 1. However, it is important to consider 

that compensatory mechanisms may play an important part in ensuring ongoing steroidogenesis in a 

TSPO null setting, and these may be different in the various strains, which may be attributed to 

methodology as highlighted already. In both global and conditional Tspo knock-out studies, several 
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genes involved in steroidogenic processes were found to be upregulated including Cyp21a2 (110), 

Abca2 (110), and Scarb1 (111) in the adrenal glands and Lhcgr (111) in the testes (Table 2). The 

study by Fan et al describes how tissue-specific deletion of Tspo in gonadal tissues had little effect 

on gonadal steroidogenesis although ACTH stimulation of corticosterone production in Tspo depleted 

adrenals was severely impaired in both male and female animals (111). Interestingly, in Tspo-/- mice, 

there is an accumulation of lipid droplets in the adrenal glands, implying decreased lipid metabolism, 

while instead lipid stores were depleted in testes and ovaries, implying excessive substrate 

consumption (111). These observations provide strong evidence that there is an important role for 

TSPO in hormone-mediated steroidogenesis and lipid and cholesterol metabolism.  

TSPO is also attributed to immune regulation, with elevated expression observed in microglia and 

macrophages. Recently it was highlighted that TSPO is involved in cholesterol trafficking in 

macrophages, since its overexpression leads to increased transcription of proteins involved in 

cholesterol efflux, ACBA1 (ATP-binding cassette A1), PPARα (peroxisome-proliferator-activated 

receptor α) and LXRα (liver X receptor α), and corresponds with increased efflux of cholesterol to 

acceptors (113). This pathway is activated upon a moderate cholesterol load stress and it is proposed 

as a protective mechanism to reduce macrophage cholesterol mass (113). Other genes involved in 

immune regulation are similarly altered in Tspo-/- mice (see Table 2) further validating a role for TSPO 

in the regulation of these processes. Tmem178 is proposed as a negative regulator of macrophage 

activation and Ca2+ signaling at the ER level (114), and is reduced in Tspo-/- mice. Conversely, there 

are increased levels of Zbtb7b, which is associated with T-cell maturation (115) and regulates the 

development of Natural Killer T (NKT) cells (116) and ties in the Tu et al study (110) with the recent 

work by Banati et al (32), who observed an increase in NKT cells present during haematological 

analysis in female Tspo-/- mice. TSPO has previously been reported as having antiretroviral activity 

by inhibiting Env protein expression (117). In support of this study, decreased levels of Trim12a, 

coding for protein within the anti-retroviral TRIM family, and Pydc4, coding for an AIM2-like receptor 

that activates STING-dependent interferon (IFN) production as part of the antiviral response (118), 

were observed in Tspo-/- mice (110). The reduced levels suggest that TSPO is involved in an upstream 

transcriptional signaling cascade that influences the antiviral response.    

Another interesting observation in Tspo-/- mice is a disparity in body weight that occurs only in females, 

with an increase in weight in the knock-out strain (34), which the authors attribute to a hormone-

dependent metabolic pathway. Previously the TSPO ligand, PK 11195, was shown to alter the 

expression of metabolic genes in white adipose tissue (22) and liver (29) of male mice although no 

study has examined the application of ligands in female mice yet to assess possible sexual disparity 

in ligand efficacy. Notably PPARα, regulated by hormones and cAMP, holds a key role in integrating 

the mammalian clock and energy metabolism (119) and notably influences Tspo transcriptional 

regulation (48). Since gender based differences have been observed previously in metabolic patterns 

of circadian rhythms (120) , this may be an explanation for the gender-based differences in body 
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weight seen in Tspo-/- mice. This is particularly interesting as it could reveal a therapeutic potential for 

TSPO ligands in the development of gender-based personalized medicine for human diseases 

relating to metabolic disorders, which are often linked to circadian disruption (121).  

The overarching conclusions that are consistent between all the knock-out studies indicate that due 

to the relative lack of phenotype in Tspo-/- mice, TSPO is likely to be most involved in pathological 

and stress-related conditions. Future follow on studies could therefore focus to assessing 

susceptibility in standard stress models of diseases where TSPO has already been linked to, for 

example, LPS-induced inflammation, ischemia-reperfusion injury, radiation/chemical-induced 

cancers, overfeeding or bacterial/viral infection. Nonetheless, age-related studies should also be 

recommended based on the brain-imaging evidences lately produced (96). 

 
TSPO and its molecular partnership with VDAC1 

TSPO is included in a complex with the 32kDa voltage-dependent anion channel (VDAC) (17), of 

which there are three different isoforms. The relative ratio of these proteins is tissue and condition 

dependent (122). Early studies indicate that 4-6 molecules of TSPO associate with one molecule of 

VDAC to form a single mitochondrial pore (5, 123) but the precise biochemical properties governing 

the interaction remain unclear and require further investigation, which may be facilitated with the 

recent high-resolution characterization of its 3D structure (80).  

There is a growing body of work that supports a functional interplay between TSPO and VDAC 

particularly in dictating the efficiency of mitochondrial metabolism and quality control.  

The long standing role of TSPO in steroidogenesis appears to be linked to its interactions with VDAC 

(124, 125), and relative levels of each protein have comparative expression profiles in steroidogenic 

tissues (126). STAR, TSPO and VDAC all contain binding motifs for 14-3-3ε, a newly identified 

negative regulator of cAMP-mediated induction of steroidogenesis (124, 127). VDAC is a primary 

target of 14-3-3ε, with which forms a protein-protein scaffold that influences downstream TSPO 

interactions leading to reduced cholesterol import into mitochondria (124). In fish testis, tspo and vdac 

mRNA levels are both correlated with reproductive stage and gonadosomatic index (GSI) while in 

females, gonadal tspo and vdac expression are negatively correlated with GSI and levels of plasma 

testosterone and 17β-estradiol (126). 

As mentioned above, TSPO has a regulatory metabolic role. For example the ligands, FGIN-1-27 and 

PPIX are both shown to reduce glycolytic activity and cellular ATP levels (128, 129) while PK 11195 

increases ATP levels (130).  TSPO overexpression is associated with reduced Ca2+-dependent 

activation of mitochondrial respiration (41), which has been linked to VDAC activity while the effect of 

PK 11195 on quinolinic acid-induced glucose metabolic disturbance is reported to involve VDAC 

(131).   

TSPO is strongly associated with inflammation, and studies have demonstrated the importance of the 

TSPO-VDAC interplay in this response too. In vascular endothelial cells, TNFα and other 
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inflammatory cytokines induce mitochondrial ROS production and expression of vascular cell 

adhesion molecule-1 (VCAM-1) although TSPO overexpression interferes with this sequence of 

events (132). In contrast to the apparent parallel expression profiles in steroidogenic tissues, TSPO 

expression negatively correlates with VDAC1 expression in endothelial cells, an observation that the 

authors attribute to the reduced mitochondrial ROS and lower levels of VCAM-1 in overexpressing 

TSPO conditions (132). 

The mitochondrial TSPO-VDAC complex is further involved downstream of PARK2-mediated activity 

(41, 133). We determined that increased TSPO expression in mouse embryonic fibroblast cells leads 

to a reduction in PARK2-mediated mitochondrial ubiquitination during FCCP-induced mitophagy (41). 

Mechanistically, VDAC1 was required for this TSPO-dependent activity and further attributed to a 

ROS-signaling pathway since mitophagy could be restored in over-expressing TSPO cells in the 

presence of the antioxidant, MnTBAP (Manganese (III) tetrakis (4-benzoic acid)porphyrin chloride) 

(41).  

A further study has confirmed a role for TSPO-VDAC in regulating PARK2 function, showing that 

TSPO-VDAC is involved downstream of the PARK2-mediated immune response in Drosophila since 

PARK2 overexpression failed to rescue lethality caused by septic injury in TSPO-silenced larvae (133) 

.  

This evidence suggests that the interplay between VDAC and TSPO is important in all the major 

functions attributed to TSPO including steroidogenesis, hormone biosynthesis, immune/inflammatory 

regulation and energy metabolism, processes for which mitochondria are critically involved. The 

removal of different VDAC isoforms can yield mice without mitochondrial dysfunction or evident 

phenotype, which is also the case in certain strains of TSPO KO mice (please see section above). 

This may appear particularly confounding, as each of these proteins can comprise up to 5% of total 

outer mitochondrial membrane protein levels in certain tissues. However, some functional redundancy 

has been described between the various VDAC isoforms, which may explain the apparent lack of 

phenotype. Furthermore, in the case of the VDAC1-/- strains, there was considerable variation in 

phenotype, which was notably dependent upon the methodology used to generate the line. VDAC1-/- 

mice obtained from a mixed genetic background (C57BL6/129SvEv) were born at a lower than 

expected mendelian ratio whilst VDAC1-/- mice, bred onto the C57B16 background, showed near 

complete lethality (134). 

 

 
TSPO in cellular and tissues pathology 

Cancer 

TSPO is overexpressed in a variety of cancers including those affecting the brain (135). TSPO 

expression is elevated in human prostatic intraepithelial neoplasia, primary prostate cancer and 

metastases when evaluated against normal prostate tissue and benign prostatic hyperplasia (136). A 



 13 

positive correlation with disease progression was observed too and immunohistochemical studies in 

oral cancer have yielded similar results. Interestingly, the five-year survival probability dropped from 

65% in patients with TSPO negative tumors to just 7% in patients with high tumoral TSPO content 

(137). Results, from colorectal carcinomas in human patients, indicated that TSPO was 

overexpressed in 67% of tumors in comparison to corresponding normal mucosa in which expression 

was found to be significantly higher. And in this study, TSPO did not differ for expression between 

intermediate versus high-grade tumors or in lymph node-positive versus negative patients (138). 

Overexpression of TSPO has also been observed in breast cancer cell lines (139) and in clinical 

studies (140). In the former, estrogen receptor-negative breast cancer cell lines had significantly 

higher TSPO expression compared to ER-positive lines and the levels of TSPO were positively 

correlated with the proliferation marker, Ki-67 (139). This observation was mirrored in the clinical study 

in which TSPO expression was significantly increased in tumoral versus normal breast cells and 

TSPO was again correlated with Ki-67 levels. TSPO was anyway never associated with reduced 

prognosis in the whole patient sample, but in lymph-node negative group of patients, elevated TSPO 

was linked to a shorter disease-free survival period, indicating that TSPO could be used to identify a 

higher risk population in this category (140). TSPO is reported overexpressed in oesophageal cancer 

cells compared to normal oesophageal epithelium (141), as well as in human endometrial carcinoma, 

where significantly more mitochondrial TSPO was observed in contrast to normal endometrium (142). 

The link between TSPO and cancer is therefore consolidated even though the underlying pathogenic 

mechanism driving a primary oncogenic profile is still lacking. 

Inflammatory Brain conditions  

High levels of TSPO are recurrently associated with glial cell activation and inflammation (143, 144). 

Chronic inflammation is an early feature of many neurological conditions and other age-related 

conditions including atherosclerosis [reviewed in (145)]. Uptake of TSPO ligands in the brain is 

generally low in normal healthy adults, but overall uptake is increased with age (146). An increase in 

TSPO expression has been observed during the onset of disease in amytrophic lateral sclerosis (ALS) 

patients (147). Similarly, brains of subjects with mild cognitive impairment (MCI), who are at an 

increased risk of developing Alzheimer’s disease (AD), or subjects with mild and early forms of AD, 

exhibit higher ligand binding compared to age-matched controls (148, 149) although other studies 

contradict this observation (150). Widespread glial activation is likewise associated with the 

pathological process that occurs in Parkinson’s disease (PD) and TSPO ligands have shown 

increased binding profiles in rat models mimicking the early stages the disease (151). Clinical studies 

show that compared to controls, PD patients have increased levels of TSPO ligand binding in the 

regions of the brain (152), although the degree of binding did not alter over a two-year period and was 

not associated with clinical severity demonstrating that TSPO overexpression and inflammation are 

likely early diagnostic factors (153). In stroke patients, TSPO expression and glial activation is 
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increased in the peri-infarct zone for several weeks following insult (154) while bio-imaging has 

revealed elevated TSPO expression in inflamed atherosclerotic plaques of the vasculature (155, 156). 

The precise molecular mechanisms characterizing a functional role for TSPO in these diseases are 

unclear leaving a general understanding that the upregulation of TSPO is an adaptive consequence 

rather than a causative factor on which the mitochondrial dependent rewiring of cell signaling and 

metabolism of the cells, is affected. It is anyway known that factors playing part in the regulation of 

TSPO expression such as ROS, Interleukin-1 (IL-1) and TNF , are clearly involved in this process 

suggesting that a molecular pro-inflammatory role is plausible (18, 157). 

TSPO is also implicated in peripheral inflammatory diseases for example the Inflammatory Bowel 

Disease (IBD). In this it has been demonstrated an increase in TSPO expression in the colon likewise 

in human intestinal biopsies from IBD patients (18). TSPO ligands have been indeed developed or 

adapted along the years to illustrate areas of inflammation through in vivo imaging analysis, making 

this one of the most active fields for biomedical applications targeting the protein. Interestingly, almost 

unexplored is whether these same tools may be effective as therapeutic means against the diseases 

in which they are adopted.  In this regard, some preliminary material seems to support this notion (21, 

24, 158) but more is to be done. 

 
The pharmacology of a natural mitochondrial target  

The consolidated profile as a multi-drugs binding protein has made TSPO a topic of natural interest 

for pharmacologists. Numerous are indeed the publications reporting the use of TSPO targeting 

chemicals to dissect and/or correct biological processes associated with the protein. The archetype 

synthetic TSPO ligands, prevalently used are the 4’-chloro-derivative of diazepam, Ro 5-4864, and 

the isoquinoline carboxamide, PK11195 which respectively bind TSPO with nanomolar affinity even 

though this is greater for PK11195 (KD <20nM) (159). Several endogenous ligands for the protein 

have been also identified among the porphyrins (cholesterol, hemin, protoporphyrin IX, 

mesoporphyrin IX, deuteroporphyrin IX) (160, 161). 

In spite of the extensive use, the most recent evidences suggest that these may not be so reliable 

since Ro 5-4864 varies its efficacy across species whilst PK11195, exerts cellular effects independent 

of TSPO (162-165) soon as it is over-dosed (µM rather than nM). 

This has consequently stimulated the search for alternative compounds based on different chemical 

structures. Another class of compounds generated and still binding TSPO with nM affinity was 

identified in the 2 aryl-3-indoleacetamides (FGIN-1) (166), which retains good cross-species efficacy. 

Furthermore this drug does hold anxiolytic-like effects (167) likewise the XBD173 (AC-5216; 

Emapunil). The mechanisms by which these two chemicals operate are univocal by inducing a boost 

of the production of neurosteroids. Once they are bound to TSPO they would in turn potentiate the 

GABAA receptor-based neurotransmission leading to a beneficial effect linked with the regulatory 

cascade depending on this receptor. 
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However, a series of highly specific synthetic ligands for TSPO have been successfully developed in 

the form of radiotracers for PET bio-imaging of inflammation, for example the 7-chloro-N,N,5-

trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575) (168) 

and 2-(5, 7-diethyl-2-(4-(2-fluoroethoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide 

(VUIIS1008) (169) and the 12a ([(18)F]GE-180).  Thus, the exploitation of TSPO upregulation for the 

in vivo diagnostic imaging of patients is probably the primary and mostly corroborated clinical value 

for TSPO and holds the potential to grow and extend across multiple fields by refinement in the 

chemistry of TSPO-binding ligands in order to overcome imaging complications. In spite of this the 

pharmacological regulation of TSPO does remain debated.  

Very recently Selvaraj and Stocco have, very timely and elegantly, stimulated attention towards the 

word ‘ligand’ as loosely used in the TSPO literature in reference to all substances that bind TSPO at 

various distinct sites (170). This is quite appropriate, as findings on ligand-binding response have 

proved inconsistent along the years, ranging from steroid hormone production to cell proliferation, 

signaling and apoptosis. The word ligand thus describes a small-molecular substance that binds to a 

target biomolecule (or complex) without the need to elicit or modulate a specific biological response 

as required instead by an agonistic or antagonistic whcich directly associated with the function of the 

target. In the case of TSPO such function is -for now- represented solely by the translocation of 

cholesterol and consequent synthesis of steroids.  

However, gene-edited animal models for TSPO do not reassemble, challenged with TSPO-binding 

chemicals, the pharmacological effects recorded in vitro experiments, implying these chemicals may 

have alternative biochemical/pharmacological relevance beyond TSPO or the TSPO dependent 

translocation of cholesterol may not represent per se the perfect assay to sample their activity. 

Although basal steroids could be still formed without TSPO being expressed a regulatory role for the 

protein cannot be excluded and thus TSPO ligands, which do mediate a robust effect on steroids as 

well as neurosteroids formation, may also be affected. 

The manufacture of steroids might indeed entail concurrent limiting steps depending on alternative 

molecular elements and therefore likely to be too elaborated to allow fast discrimination of TSPO 

pharmacology. The effort should be therefore to outline alternative fast-response assays, which could 

insight, not only the binding capacity but also the agnostic/antagonistic profiles of the compounds.  

In this the recent advancements in comprehending the structure and the functional role of TSPO in 

respect of cell signaling mitochondrial cell biology may represent the solution. Even without a direct 

etiological link, this quest for TSPO-binding therapies has been extensive in recent years and applied 

to various diseases prompted by the pressing need for drug discovery pipelines, being the 

upregulation of TSPO constant in pathological lesions.  

Thus, TSPO ligands have still proven efficacious in ameliorating disease pathology in numerous 

preclinical models and most remarkably in models bearing phenotypes in the central nervous system 
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(24, 171-173). Recently, Ro5-4864 was shown to amend Alzheimer’s disease associated phenotypes 

in vivo (25) by mediating positive effects in steroid hormones production (109) (Table 3).  

Human clinical trials have been performed for Emapunil to treat anxiety disorders with promising 

outcomes reported in an induced model of panic disorder (31). However, the high TSPO binding 

variability across human subjects -recently observed- does render unlikely a drug development via 

this mechanism of targeting (operating by inducing a boost of the production of neurosteroids as 

recorded following challenge with TSPO ligands) which remains, anyhow the most promising one 

(174). On the other hand, the early assessment of mutations in TSPO (e.g. A147T SNP), via advanced 

imaging protocols, could lead to personalized therapies and consequent tangible benefit for patients. 

What is known since long time is that TSPO-binding drugs can cause death of cancer cells and 

therefore considered potential anticancer therapies. This was prevalently associated with the putative 

role of TSPO in activating the Mitochondrial Permeability Transition Pore (MPTP) that was also 

hypothesized to be involved in the protection mediated by the TSPO ligands as heart protectors and 

tools to reduce infarct size after ischemia-reperfusion (175, 176). The recent advancements in the 

clarification of the MPTP molecular entity rule TSPO in its formation and regulation and therefore in 

the consequent protein-associated pharmacological mechanisms thus calling for these to be clarified 

if therapeutic uses are to be exploited. 

This further highlights how structure and conformational adaptation of the protein are essential to 

better dissect the pharmacology of this pathway and in this way ease the comprehension and 

validation of current and future chemicals.  

 

Concluding remarks 
 
The aspects of TSPO above discussed report of a multifaceted mitochondrial pathway characterized 

by interdisciplinary interest. The evidences gathered along the years have enriched the landscape of 

TSPO science favoring its current exploitation by diagnostic and therapeutic protocols. 

Being brought up to general attention, as an off-target binding site of the benzodiazepines TSPO is 

now a corroborated regulatory element in the mitochondrial and cellular pharmacology of lipids. 

In the attempt to interpret the series of information homogenously it seems that the accumulation of 

TSPO, reconciled during inflammation and therefore targeted by advanced protocols of in vivo 

imaging, prevents the removal of mitochondria by the autophagy-operated quality control 

mechanisms leaving the organelles to be primed by the cells for steroids synthesis and undermining 

other core functions that are indeed compromised by the accumulation of TSPO.  

The concerted cooperation among disciplines, a structured cooperation by experts and the 

advancements in the technology and experimental protocols will continue to improve and modernize 

TSPO science incrementing its significance in mammalian pathophysiology to obtain an informed 

understanding of this regulator and target of the mitochondrial function. 
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Legends to Figures 

 

Figure 1: TSPO transcriptional regulation- crosstalk between hormone and REDOX sensitive signal 

transduction pathways 

Hormonal stimuli that bind to G-protein coupled receptors (GPCR) in the plasma membrane results in cAMP 

synthesis from ATP via adenylate cyclases. cAMP is a signaling molecule that triggers the release of ACBD3 

from the Golgi, which translocates to mitochondria, where it recruits PKA through its interaction with TSPO. 

PKA has been demonstrated to phosphorylate TSPO and VDAC and its kinase activity is dependent upon local 

concentrations of cAMP. cAMP also activates PPARα, which interferes with Tspo transcription factors including 

AP-1. TSPO is also sensitive to changes in REDOX status. Cytoplasmic or mitochondrial sources of ROS may 

activate the PKCε-Raf1-MEK1/2-ERK1/2 signaling cascade, which promotes Tspo transcription via the activity 

of c-Jun and STAT-3 transcription factors. An increase in TSPO may potentiate this response by maintaining 

an oxidative environment. ROS have also been demonstrated as promoting the formation of TSPO multimers. 

VDAC – voltage dependent anion channel; TSPO – translocator protein; ACBD3 – Acyl-coenzyme A binding 

domain containing 3; PKA – cAMP dependent protein kinase A; cAMP - cyclic adenosine monophosphate; ROS 

– reactive oxygen species; PPARα - peroxisome proliferator-activated receptor alpha; STAT3 – signal 

transducer and activator of transcription 3; AP-1 – activator protein 1 
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Figure 2: TSPO domain architecture and cross-species sequence alignment  

Sequence alignment of TSPO using ClustalX software, showing conserved regions including the cholesterol-

binding domain (CRAC sequence) in rhodobacter sphaeroides TspO, Homo sapiens, mus musculus and canis 

lupus familiaris. Transmembrane (TM) domains are denoted by black lines (TM1: 6-26 a.a; TM2: 47-67 a.a; 

TM3: 80-100 a.a; TM4: 106-126 a.a; TM5: 135-155 a.a.). Loops 1 (6-26) and 3 are cytosolic; loops 2 and 4 are 

facing the mitochondrial intermembrane space. The longer cytosolic loop 1 is implicated in dimerization, 

possible VDAC interaction, and the binding of ligands. b) The default colour scheme used for sequence 

alignments generated in ClustalX, the graphical interface for the ClustalW multiple sequence alignment 

programs. Residues in the alignment are assigned a colour according to the amino acid profile. The table shown 

gives the criteria as clauses +X%, xx, y; where X is the minimum percentage presence of any of the xx or y 

residues accompanied by a functional profile. White regions are unconserved. 



 Global C57BL/6-
Tspotm1GuMu(GuwiyangWurra) 

Global (Tu et al) Nr5a1-Cre Driven Tspo 
Conditional Knockout 

Mitochondria 
phenotype 

reduced microglial 
mitochondrial metabolic 
activity 

Mitochondrial volume in 
primary fibroblasts 
unchanged; Mitochondrial 
morphology unchanged in 
testis and ovary 

 

Body weight No differences observed Increased body weight in 
female mice (~1g, 1-5 weeks 
of age) 

 

Lipid metabolism  No effect on lipid deposits in 
adrenals 

Depletion of lipid storage in 
testis; Increased 
accumulation of lipids in 
adrenals 

Hormone-induced 
steroidogenesis 

 hCG-induced plasma 
testosterone unchanged 
Increased levels of plasma 
estradiol 

Impaired ACTH stimulation of 
corticosterone production 
hCG-induced plasma 
testosterone unchanged 
Increased epinephrine 
production 

Steroidogenesis No change in basal 
steroidogenesis 

No change in basal 
steroidogenesis 

No change in basal 
steroidogenesis 
 

Immune response Microglial activation 
following neuronal injury 
normal; 
Increased levels of NKT 
cells in female mice 

  

!

TSPO Function Gene Tissue  Protein product function Expression 

Immune Response Tmem178 Adrenal Negative regulator of macrophage 

activation 109 
!106!
 

Zbtb7b Adrenal T-cell maturation 110, 111 "106 
Trim12a Adrenal Anti-viral response 

 
!106!

 
Pydc4 Adrenal Anti-viral response 113 !106!

Hormone 
Regulation 

Cyp21a2 Adrenal P450 enzyme required for adrenal 
steroidogenesis 117 

"106 

Abca2 Adrenal Regulates cholesterol efflux to 

ApoE3 118 
"106 

Scarb1 Adrenal Mediates uptake of HDL-derived 

cholesterol and cholesteryl ester 
119 

"107 

Lhcgr Testes Hormone receptor, required for 

reproduction  
"107 

!

Table 1: Phenotypic characterization of global and conditional Tspo-/- mice 

Table 2: Compensatory gene expression in Tspo-/- mice: focus on the immune  
response and hormone regulation 



Ligand Chemical Class 
 

Disease-relevant study Outcome Ref 

ZBD-2 Phenylpurine 
acetamide 

Mouse: Middle cerebral artery 
occlusion 

Neuroprotection 168 

Mouse: Hindpaw injection of 
Freund's adjuvant (CFA) 

Altered excitatory and inhibitory 
transmission in the basolateral 
amygdala (BLA), reduced anxiolytic 
effects 

174 

Midazolam 
 

Benzodiazepine Rat: Single prolonged stress 
model 

Reversed PTSD-associated freezing 
and anxiety-like behaviour via 
neurosteroidogenesis 

175 

YL-IPA08 Pyridazinoindole 
acetamide 

Mouse: Inescapable electric 
foot shock induced model of 
PTSD 

Reduced anxiety and fear, mediated 
by allopregnanolone synthesis; 
antagonized by PK 11195 

176 

Mouse: Novelty suppressed 
feeding test, Vogel drinking 
conflict test, elevated plus-
maze test, forced swimming 
test; tail suspension test 

Anxiolytic and antidepressant effects 177 

PK 11195 Isoquinoline 
carboxamide 

Rat: Model of cortical contusion 
with hyperbaric oxygen therapy 

Reversed protective effects of 
hyperbaric hyperoxia in brain injury 

178 

Etifoxine Benzoxazine Mouse: Experimental 
autoimmune encephalomyelitits 
(EAE) model 

Reduced imflammatory pathology in 
spinal cord, promoted oligodendoglial 
regeneration; promoted recovery 
when administered before and after 
development of symptoms 

24 

Ro-5-4864 Benzodiazepine Rat: 30 min coronary occlusion/ 
15 min reperfusion  

Reduced infarct size and improved 
mitochondrial function post injury, 
reduced oxidative stress and oxysterol 
formation by lowering cholesterol 
accumulation 

179 

Mouse: Lesion to facial nerve in 
adults 

Treated mice showed improved 
recovery of whisker function and 
whisker pad reinnervation 

180 

Rat: Single injection of 
streptozotocin in sciatic nerve 
to simulate diabetes 

Stimulate levels of pregnenolone, 
progesterone and testosterone in 
sciatic nerves, restored skin 
innervation density, improved Na+,K+-
ATPase activit. 

181 

MPIGA Phenylindolylgly 
oxylamide 

Rat: Elevated maze test Anxiolytic effects 182 

FGIN-1-27 Arylindol 
acetamide 

Mouse: Subcutaneous 
xenograft of HT29 cells in right 
thigh  

40 % reduction in the growth rate of 
grafted tumors 

183 

Rat: L5 spinal nerve ligation  Reduced mechanical allodynia and 
thermal hyperalgesia; same effects 
observed with Ro5-4864 

184 

SSR 
180575 

Pyridazinoindole 
acetamide 

Mouse: MRL/lpr model TSPO ligands reduced pulmonary 
inflammation and alveolitis onset; 
similar effects seen with PK 11195 
and Ro5-4864 

185 

Mouse: MRL/lpr model Delayed onset of arthritis symptoms 28 
Emapunil Phenylpurine 

acetamide 
Rat: Social exploration test; rat 
elevated plus maze test 

Anxiolytic activity 31 

Mouse: Vogel-type conflict test; 
light/dark box, social interaction 
tests 

Anti-anxiety effects 31 

Rat: Forced swimming test Anti-anxiety effects 186 
!

Table 3: in vivo assessment of TSPO ligands in animal models of disease 
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