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ABSTRACT 70 

Evaluation of canine renal biopsy tissue has generally relied on light microscopic (LM) 71 

evaluation of hematoxylin and eosin-stained sections ranging in thickness from 3 to 5µm.  72 

Advanced modalities, such as transmission electron microscopy (TEM) and 73 

immunofluorescence (IF), have been used sporadically or retrospectively. Diagnostic 74 

algorithms of glomerular diseases have been extrapolated from the World Health 75 

Organization classification scheme for human glomerular disease. With the recent 76 

establishment of two veterinary nephropathology services, which evaluate 3 µm sections 77 

with a panel of histochemical stains and routinely perform TEM and IF, a standardized 78 

objective species-specific approach for the diagnosis of canine glomerular disease was 79 

needed. Eight veterinary pathologists evaluated 114 parameters (lesions) in renal biopsy 80 

specimens from 89 dogs. Hierarchical cluster analysis of the data revealed two large 81 

categories of glomerular disease, based on the presence or absence of immune complex 82 

deposition. The immune complex-mediated glomerulonephritis category included cases 83 

with a membranoproliferative or membranous pattern on histology.  Non-immune 84 

complex mediated glomerulonephropathies included control dogs and dogs with 85 

glomerular amyloidosis or focal segmental glomerulosclerosis. Cluster analysis 86 

performed on only the LM parameters led to misdiagnosis of 22 of the 89 cases, i.e., 87 

ICGN cases moved to the non-ICGN branch of the dendrogram or vice versa, 88 

emphasizing the importance of advanced diagnostic modalities in the evaluation of 89 

canine glomerular disease. Salient LM, TEM and IF features for each pattern of disease 90 

were identified, and a preliminary investigation of related clinicopathologic data was 91 

performed.  92 



 93 

INTRODUCTION 94 

Diagnosis of canine glomerular disease has been based, in part, on the World 95 

Health Organization (WHO) classification system created to define and standardize the 96 

categories of human glomerular disease.
10,12,16,17,20,22,24,27,31-33,38,42,44,49,50,52,54

 Although 97 

human glomerular disease is routinely defined following (1) examination of thin (3 µm) 98 

light microscopic (LM) sections viewed with a specific panel of histochemical stains, (2) 99 

immunofluorescence (IF) to detect the presence of immunoglobulins and complement 100 

components, and (3) transmission electron microscopy (TEM), this has generally not 101 

been the case with diagnosis and classification of glomerular disease in 102 

dogs.
10,12,20,24,32,33,38,44,50,54

 Moreover, it is apparent that although canine glomerular 103 

diseases share many of the structural characteristics seen in their human counterparts, 104 

there are striking differences as well. The infrequent use of advanced diagnostic 105 

modalities and the uncertainty regarding the accuracy of a diagnosis based solely on 106 

histopathology has created concerns regarding the clinical utility of canine renal biopsy. 107 

Furthermore, the dearth of peer-reviewed literature examining epidemiological, 108 

therapeutic and outcome factors in dogs with spontaneous glomerular disease can be 109 

partly explained by the non-standardized, often retrospective, analysis of renal tissue by 110 

veterinary pathologists. 111 

To address these concerns, the World Small Animal Veterinary Association-Renal 112 

Standardization Study Group (WSAVA-RSSG) was conceived at Netherland’s Utrecht 113 

University in January 2005.
13,25

  This international group of veterinary nephrologists and 114 

pathologists set out to design a study that would develop a comprehensive understanding 115 



of glomerular disease in dogs by routinely using standardized LM, IF, and TEM methods 116 

to evaluate renal biopsies and by associating the pathologic findings with detailed clinical 117 

and case outcome data. Two veterinary diagnostic renal pathology centers, one in the 118 

U.S.A. and one in Europe, were established to perform the evaluations and facilitate the 119 

collection of cases for prospective studies. The U.S.A. center, created in 2005 at Texas 120 

A&M University as the Texas Veterinary Renal Pathology Service (TVRPS), was 121 

reorganized in 2013 as the International Veterinary Renal Pathology Service (IVRPS) 122 

and now operates as a joint effort between The Ohio State University and Texas A&M 123 

University. The Utrecht Veterinary Nephropathology Service (UVNS) began examining 124 

renal biopsies at Utrecht University, Netherlands, in 2008. The UVNS currently works in 125 

cooperation with the Department of Comparative Biomedicine and Food Science at the 126 

University of Padova, Italy. The IVRPS and UVNS demonstrated that canine renal 127 

biopsies could be evaluated with LM, IF and TEM in a reasonable diagnostic workflow 128 

to provide timely and useful information to clinicians.
11

 129 

The goals of this study are 1) Development of a digital pathology platform to 130 

allow WSAVA-RSSG pathologists in widely dispersed geographic locations to 131 

communicate and collaborate effectively. Using that platform, digitized LM slides, IF and 132 

TEM images can be remotely accessed and evaluated by individuals and by the group 133 

during online meetings. 2) Development of succinct definitions and scoring criteria for 134 

glomerular, tubular, interstitial and vascular lesions. 3) Use of hierarchical cluster 135 

analysis to objectively identify common patterns of glomerular injury in dogs in order to 136 

create a simplified, reproducible, and accurate guide for veterinary pathologists to use 137 

when evaluating renal biopsies from dogs with proteinuric renal disease.  138 



MATERIALS AND METHODS 139 

Case Selection 140 

 Dogs in this study had renal biopsies performed because they exhibited 141 

proteinuria indicative of the presence of glomerular disease, i.e., persistent renal 142 

proteinuria with urine protein to creatinine rations (UPC) values ≥2.0, which was 143 

subsequently confirmed by biopsy findings.
23

 Additionally, a case had to have biopsy 144 

specimens sufficient for diagnosis, i.e., either LM, TEM, and IF findings, or LM and 145 

TEM findings without IF findings if the LM and TEM findings alone were conclusive. 146 

Lastly, five dogs without clinicopathologic indications of renal disease were chosen from 147 

the TVRPS database to serve as controls. These dogs were racing Greyhounds from 148 

which renal biopsies were performed during ovariohysterectomy prior to adoption as 149 

pets.
45

 150 

Clinical Data 151 

 Dogs with glomerular disease exhibited a diverse spectrum of clinical illnesses 152 

that had been evaluated and treated in various ways before their renal biopsies were 153 

obtained. Detailed analysis of the clinicopathologic features of the illnesses exhibited by 154 

the dogs was beyond this study’s scope, which was focused on developing a prototype 155 

method for classification of canine glomerular diseases based on pathologic features. 156 

Nevertheless, several key clinical laboratory findings provided by submitting 157 

veterinarians were compiled for each dog. These findings included: magnitude of 158 

proteinuria, (defined as the highest UPC value observed before biopsy), serum creatinine 159 

concentration (defined as the last value observed before biopsy), and serum albumin 160 

concentration (defined as the lowest value observed before biopsy). Also, the presence or 161 



absence of hypertension, defined as a recorded systolic value consistently > 160 mmHg 162 

before biopsy or if the dog was being treated with any antihypertensive medication (other 163 

than an ACE-inhibitor drug alone) at the time of biopsy, was evaluated with the clinical 164 

laboratory data.  165 

Light Microscopy  166 

All specimens for LM evaluation were immersion-fixed in 10% buffered 167 

formalin, processed and embedded in paraffin. Tissues were serially sectioned at least ten 168 

times at 3 µm thickness and stained with hematoxylin and eosin (HE), periodic acid 169 

Schiff’s reagent (PAS), Masson’s trichrome (TRI), and the Jones methenamine silver 170 

method (JMS). Additionally, thicker (8µm) sections were cut from at least one cortical 171 

specimen and stained with Congo red (CR). All histochemical procedures were 172 

performed using established methods. 173 

Transmission Electron Microscopy  174 

Transmission electron microscopy was performed at Texas Heart Institute 175 

(Houston, TX) and at Department of Comparative Biomedicine and Food Science, 176 

University of Padova using similar techniques. Briefly, renal tissue containing glomeruli 177 

was fixed in chilled 3% phosphate buffered glutaraldehyde. Specimens were post-fixed in 178 

1% osmium tetroxide, serially dehydrated, infiltrated in an acetone/epoxy plastic, and 179 

embedded in plastic. In one dog, glomeruli were not present in the glutaraldehyde-fixed 180 

sample. For that case, the paraffin embedded tissue from the LM specimen was harvested 181 

and postfixed in 1% osmium tetroxide and embedded in EM BED 812 and Araldite 182 

(Electron Microscopy Sciences, Fort Washington, PA, USA). Plastic blocks were cut 183 

with a Sorvall MT2-B ultramicrotome. Thick sections (1 µm) were stained with toluidine 184 



blue. These sections were evaluated and appropriate areas were identified for thin 185 

sectioning. Thin sections were cut at silver-grey interference color (55-60 nm) and placed 186 

on copper mesh grids. Grids were stained with uranyl acetate and lead citrate and were 187 

examined with a JEOL-TEM-1230 transmission electron microscope and digital 188 

photomicrographs were obtained.   189 

Immunofluorescence 190 

Tissues were immersed in chilled Michel’s Transport Medium (Newcomer 191 

Supply, Middleton, WI, USA) for up to 72 hours during transport to the pathology 192 

laboratory where they were washed 3 times in Michel’s Wash (Newcomer Supply, 193 

Middleton, WI, USA), placed in plastic cryomolds filled with Tissue-Tek OCT 194 

embedding compound (Electron Microscopy Sciences, Fort Washington, PA, USA), and 195 

snap-frozen in liquid nitrogen. Blocks were stored at -80
o
C until sectioned. Thin (4µm) 196 

cryosections were cut on a Leica CM 1850 UV cryostat (Bannockburn, IL, USA) and 197 

stored at -80
o
C until thawed for one hour at room temperature for staining. Sections were 198 

fixed for five minutes in cold 100% acetone, air dried for one hour, then rehydrated in 199 

phosphate-buffered saline. Direct IF was performed with fluorescein isothiocyanate-200 

(FITC)-conjugated polyclonal goat anti-dog IgG, IgM, IgA, and C3 antibodies (Bethyl 201 

Labs, Montgomery, TX, USA), as well as with FITC-conjugated polyclonal rabbit anti-202 

human C1q, kappa light chain, and lambda light chain antibodies (Dako North America, 203 

Carpinteria, CA, USA). Sections were incubated for one hour with an appropriate 204 

dilution of each antibody, then washed with phosphate-buffered saline. Sections were 205 

coverslipped using a mounting medium that retarded fluorescence quenching (Prolong 206 

Gold, Invitrogen, Carlsbad, CA, USA), and were examined using appropriate filters with 207 



an epifluorescence microscope (Olympus, Center Valley, PA, USA).   208 

Image acquisition and viewing 209 

Renal biopsies prepared for LM were digitally scanned with a slide scanning 210 

instrument.
a
 Scanned slides along with digitized TEM and IF images were stored and 211 

managed by digital pathology software
b
 for review,

c,d
 both by individual pathologists and 212 

during group conferences.
e
 Specifically, digital images from all three modalities were 213 

reviewed and graded independently by all eight pathologists prior to group discussions.  214 

Scoring 215 

For each of the three methods of examination, changes in the renal tissue were 216 

deconstructed to their most basic components, which were then discussed by the 217 

pathologists to formulate the most appropriate way to assess each lesion. Some lesions 218 

were scored as present or absent, whereas others were given a severity grade. These 219 

discussions also facilitated the clarification of descriptive terms for the various lesions 220 

(Supplement Table 1). This process produced the LM, TEM, and IF scoring schemes 221 

described below. Pathologists filled out an electronic evaluation form for each case. 222 

Scores were collated by a single pathologist (REC), and either averages or consensus 223 

scores were used for data analysis, as discussed below. 224 

 LM: The histologic features evaluated are listed in Table 1a. Two different 225 

grading schemes were required in order to assess distribution and severity of features. 226 

One set of lesions was scored based on whole slide evaluations of glomerular, interstitial, 227 

and vascular compartments. These lesions were scored on a scale of 0-4 representing 228 

different degrees of intensity including: not present, present but rare, mild, moderate, and 229 

severe, respectively. In instances of general agreement on the survey, the average score 230 



was used for statistical analysis; however, consensus scores (based upon discussions 231 

during online conferencing sessions) were used for the occasional instances in which 232 

survey responses varied widely. The second set of lesions was scored by evaluating 233 

individual glomeruli (4 to 32 glomeruli per case) and individual fields of 234 

tubulointerstitium, measuring 400 x 600µm (5 to 32 fields per case) to detect focal 235 

lesions. Each pathologist graded a set of unique glomeruli and tubulointerstitial fields. 236 

Scores were reported as percent of glomeruli (or tubulointerstitial fields) affected for 237 

statistical analysis. The percent of glomeruli affected would determine focal versus 238 

diffuse disease processes but not necessarily segmental versus global glomerular lesions.  239 

TEM: The digital TEM images from each case (9-26 images per case) were 240 

viewed and scored independently by the pathologists. The specific location of any 241 

glomerular electron-dense deposits and the remodeling of the glomerular basement 242 

membrane (GBM) (as listed in Table 1b) were scored as absent (0), rare (1) or not rare 243 

(2). Additional TEM lesions were scored as absent (0) or present (1). 244 

IF: Diagnostic evaluation of IF labeling patterns (Table 1b) were performed by 245 

GL and JvdL, and representative digital photographs of one to three glomeruli with 246 

notable labeling with each antibody were taken at that time. All pathologists evaluated 247 

the IF images for each case prior to group discussions, and by consensus agreement, the 248 

scores used in the data analysis for the IgG, IgM, IgA, and C3 immunostains were those 249 

provided by the pathologist (REC), who had extensive training and experience evaluating 250 

glomerular IF labeling patterns. Specifically, a score of 2 was given when there was 251 

consistent granular labeling in the mesangium or capillary walls above the background 252 

autofluorescence of the tubulointerstitial compartment. A stain was deemed equivocal 253 



and given a score of 1 when there were a few scattered granules or labeling of low 254 

intensity in the glomeruli. Non-specific labeling patterns (eg, not granular) and the 255 

absence of positive labeling were scored as 0.  256 

Statistical Analysis 257 

Hierarchical cluster analysis was used to organize the cases into groups. Within 258 

each group (cluster), cases had greater similarity to each other (in terms of the evaluated 259 

lesions) than they did to cases from other groups. Cluster analysis, therefore, objectively 260 

organized the cases into distinct groups of dogs having similar pathologic changes 261 

(patterns of injury). The procedure used for this analysis was Ward’s linkage with L2 262 

dissimilarity
f
. Results of each analysis were displayed as a dendrogram in which the 263 

shorter the vertical lines under the horizontal bar connecting two animals (or groups of 264 

animals), the lesser the dissimilarity among shared parameters. 265 

Cluster analysis was performed on three datasets containing the same number of 266 

cases but differing in the number of lesions (parameters) evaluated. The first dataset 267 

contained all 114 parameters (LM: 76, TEM: 30, IF: 8). The second, which had 59 268 

parameters (LM: 35, TEM: 16, IF: 8), was a limited list selected by the pathologists, 269 

based on their expertise gained during the course of the study. This limited list excluded 270 

parameters that were rarely observed or deemed to be uninformative. Lastly, the third 271 

dendrogram was generated from the 59-parameter dataset using only LM lesions (35 272 

parameters).  273 

Some of the categorical values for IF were missing because the biopsy tissue 274 

apportioned for IF did not contain glomeruli for some or all of the immunostains. This 275 

included cases of glomerular amyloidosis (5 cases), membranous glomerulonephropathy 276 



(3 cases) and glomerulosclerosis (1 case). Because cluster analysis cannot be performed 277 

on data sets with missing values, a method was developed to add imputed values for the 278 

missing data. Ordinal logistic regression was used to predict the probability of an 279 

individual with missing data falling into one of the three possible mutually exclusive 280 

categories (0, 1, 2) as a function of other variables believed a priori to be associated with 281 

IF. The category with the highest predicted probability was assigned for each individual’s 282 

missing IF value.  283 

Using the 59-parameter dataset, Mann-Whitney tests were performed with the 284 

same software to determine if significant differences existed for the parameters within 285 

clusters exhibiting similar glomerular disease patterns (Clusters 2 vs. Cluster 3, Cluster 5 286 

vs. Cluster 6 and Cluster 7 vs. Cluster 8).  287 

RESULTS 288 

Cluster Analysis 289 

Ninety-six dogs (including the five controls) were scored, and a preliminary 290 

cluster analysis was performed (data not shown). This preliminary cohort contained seven 291 

cases with rare diagnoses, including one collagenofibrotic glomerulonephropathy (based 292 

on the presence of type III collagen within the capillary wall and mesangium), one canine 293 

Alport syndrome (based on the lack of normal Type IV collagen in the GBM), two non-294 

amyloidotic fibrillary glomerulonephropathies, one podocytopathy, and two cases with 295 

GBM defects of undetermined pathogenesis. Given that these cases obscured the findings 296 

of the patterns of the larger clusters, the decision was made to remove them from the 297 

cohort so that the study could focus on the patterns of common types of canine 298 

glomerular disease. Exclusion of these seven cases resulted in a cohort of five controls 299 



(from the TVRPS center) and 84 proteinuric dogs (73 from the TVRPS center and 11 300 

from the UVNS center). Fifty-nine cases had been prospectively enrolled through the 301 

WSAVA-sponsored study, and the remaining cases had routine diagnostic samples that 302 

met the aforementioned criteria. Needle core biopsies were performed in 72 dogs; 16 303 

dogs had surgical wedge biopsies; one dog had a surgical punch biopsy.   304 

The dendrogram generated from the 114-parameter set is shown in Fig.1. There 305 

were two large branches. The cases on the right (n=46) were defined by the presence of 306 

electron-dense (immune complex) deposits and were considered to have immune 307 

complex-mediated glomerulonephropathies (ICGN), whereas cases on the left (n= 43, 308 

including the five controls) did not typically have immune deposits and were considered 309 

to be non-ICGN. Of note, there were 6 cases in the non-ICGN branch with equivocal 310 

evidence that immune complexes might have played a role in the evolution of their 311 

glomerular disease; however, the dominant phenotype at the time of biopsy was that of 312 

glomerulosclerosis. These exceptions are discussed below in the glomerulosclerosis 313 

section. The two large branches disaggregated into progressively smaller groups and 314 

eventually partitioned into eight distinct clusters. Cluster 1 was composed of the five 315 

control animals with normal glomerular morphology, clinical findings and laboratory 316 

values. Clusters 2 and 3 were comprised of cases with glomerulosclerosis. Interestingly, 317 

cases in Cluster 2 shared more similarities to controls in Cluster 1 than to cases in Cluster 318 

3, as demonstrated by the presence of a connecting link between Clusters 1 and 2. Cluster 319 

4 was comprised of cases of glomerular amyloidosis. Cases in Clusters 5 and 6 and 320 

Clusters 7 and 8 had patterns that were characteristic of membranoproliferative 321 

glomerulonephritis (MPGN) and membranous glomerulonephropathy (MGN), 322 



respectively. 323 

A dendrogram of the 59-parameter dataset was also generated (Fig. 2). Similar to 324 

the 114-parameter dataset, this dendrogram clearly showed a division of cases into 8 325 

distinct clusters. With one exception, the case composition of each cluster was identical 326 

to the case composition of the clusters formed from the larger, 114-parameter dataset. 327 

However, the ordering of cases and the formation of smaller subclusters differed between 328 

the two dendrograms, and one case moved from Cluster 6 to Cluster 7, representing a 329 

shift from a MPGN pattern to a MGN pattern. 330 

Often the only modality routinely available for evaluation of renal tissue is LM; 331 

therefore cluster analysis was also performed on only the LM lesions (31 parameters) 332 

from the 59-parameter dataset (Fig. 3). This enabled comparison of the LM-only 333 

dendrogram to Fig. 2. While Fig. 3 also contained eight clusters, it failed to correctly 334 

distinguish a number of ICGN cases from non-ICGN cases. Specifically, eight of the 335 

MGN cases (seven of 10 cases in Cluster 8 and one of 14 cases in Cluster 7), all of which 336 

had unequivocal evidence of immune deposits demonstrated with TEM and IF, moved to 337 

the non-ICGN side of the dendrogram. In addition, all 13 cases in Cluster 3 and one of 13 338 

cases in Cluster 2 (glomerulosclerosis clusters) moved to the ICGN side of the 339 

dendrogram. This demonstrates that evaluating renal biopsies solely by LM can introduce 340 

significant errors that would have adverse therapeutic and prognostic implications.  341 

Moreover, it clearly illustrates the importance of TEM and IF for the correct 342 

classification of canine glomerular disorders. 343 

Control kidneys 344 

Five controls had glomeruli with minimal lesions via all analyses of renal biopsies 345 



and were considered normal (Cluster 1). All five dogs were initially enrolled into the 346 

study as controls because they lacked proteinuria and azotemia. Most glomeruli were 347 

histologically normal. Specifically, glomerular tufts were usually normocellular, capillary 348 

walls were thin and the mesangium was not expanded (Figs. 4-7). Fuchsinophilic deposits 349 

were not observed (Fig. 6). Minimal histologic lesions were identified in a few glomeruli 350 

from each biopsy, including mild segmental mesangial cell hypercellularity (3 or more 351 

mesangial cell nuclei in close apposition) and mild mesangial expansion. Notably, 352 

segmental glomerulosclerosis was not present (Tables 2 and 3). Small synechiae and 353 

GBM hyalinosis were rarely observed (Table 2).   354 

Ultrastructurally, podocyte foot processes were largely intact and the GBM was 355 

uniform and homogeneous (Fig. 8). Electron-dense deposits or fibrils were not present 356 

(Tables 4 and 5). Cellular interpositioning, GBM rarefaction, and GBM wrinkling were 357 

rarely observed in control dogs. Immunofluorescence revealed unequivocal granular IgM 358 

labeling in the mesangium in two cases (Fig. 9); one of these cases also had IgM labeling 359 

within the capillary walls. Unequivocal labeling for other immunoreactants was not 360 

identified in the mesangium or capillary walls (Table 6). Because electron-dense deposits 361 

were not identified ultrastructurally, the IgM labeling was considered nonspecific. 362 

Control dogs were not proteinuric, azotemic, or hypoalbuminemic (Table 7). 363 

However, four of the five dogs had systolic blood pressures (SBP) between 160 and 180 364 

mmHg and the fifth dog had a SBP of 146 mmHg. The greyhound breed has been 365 

reported to have higher blood pressure than other breeds; this elevation in SBP has been 366 

attributed to the white-coat effect.
28

 Interestingly, the dog with the highest SBP 367 

(176mmHg) had the highest percentage of glomeruli with synechiae and hyalinosis (data 368 



not shown).   369 

Focal Segmental Glomerulosclerosis 370 

Twenty-six of 89 cases grouped into two clusters, with 13 cases in Cluster 2 and 371 

13 cases in Cluster 3; all had lesions characteristic of the pattern of focal segmental 372 

glomerulosclerosis (FSGS). The defining light microscopic lesion of these clusters was 373 

solidification of a portion of the capillary tuft in at least one glomerulus. This segmental 374 

solidification was attributed to mesangial matrix expansion and effacement of the 375 

capillary lumen, often in association with some degree of mesangial hypercellularity 376 

(Figs. 10-13). The distribution of the sclerosis within the glomerular tuft (hilar, near the 377 

origin of the proximal tubule, or not at the poles) was highly variable among the 378 

glomeruli even within a single biopsy core. Glomerulosclerosis was more severe and 379 

affected more glomeruli in Cluster 3 compared with Cluster 2 (Tables 2 and 3). 380 

Specifically, the percent of non-obsolescent glomeruli affected by FSGS ranged from 3 to 381 

100%, with a significantly higher percentage of affected glomeruli in Cluster 3 compared 382 

with Cluster 2. Synechiae and hyalinosis of the tuft were commonly observed lesions in 383 

FSGS and were likewise more extensive in Cluster 3 compared with Cluster 2 (Tables 2 384 

and 3). A significantly higher percentage of glomeruli in Cluster 3 had synechiae, 385 

mesangial matrix expansion, nuclear debris and periglomerular inflammation compared 386 

with glomeruli in Cluster 2. In 19 of the 26 cases comprising Clusters 2 and 3, 387 

obsolescent glomeruli were present, involving 0 to 43% of the total number of glomeruli 388 

in the biopsies. Obsolescent glomeruli were significantly more prevalent in Cluster 3 than 389 

in Cluster 2. Although not tested for significance, the mean percentage of obsolescent 390 

glomeruli in Cluster 3 was 22%, whereas it ranged from 0 to 8% in the other clusters. 391 



Capillary wall thickening was often mild in Cluster 2, but mild to moderate in Cluster 3 392 

(Table 2). Seven of 13 cases in Cluster 3 and one of 13 cases in Cluster 2 had rare 393 

changes in the GBM interpreted via LM to be spike or hole formation; however, none of 394 

these cases had evidence of GBM spikes or holes ultrastructurally. Three of 26 cases in 395 

Clusters 2 and 3 (12%) exhibited segmental distortion of glomerular tufts due to the 396 

presence of lipid-laden macrophages (glomerular lipidosis). This lesion was not present 397 

in control dogs or in any other disease category in this study. 398 

The percentages of tubulointerstitial fields with fibrosis and the severity of the 399 

fibrosis were not significantly different between Clusters 2 and 3. The percentages of 400 

fields affected by inflammation and the severity of inflammation were significantly 401 

greater in Cluster 3 compared with Cluster 2.  402 

Although TEM (Fig. 14) revealed extensive foot process effacement in FSGS, this 403 

lesion was not specific for Clusters 2 and 3, because it was identified in all proteinuric 404 

dogs. Common ultrastructural lesions included: wrinkling of the GBM, GBM rarefaction, 405 

mesangial cell interpositioning, microvillus transformation of podocytes, and (in Cluster 406 

3) diffuse GBM thickening (Table 5). Electron-dense deposits were not present in 19 407 

cases. However, four cases from Cluster 2 and two cases from Cluster 3 contained 408 

mesangial electron-dense deposits by TEM. Two of these cases also had subendothelial 409 

electron-dense deposits, which were rare in one case and not rare in the other. One 410 

additional case had rare intramembranous electron-dense deposits only. Other TEM and 411 

LM lesions in these 7 cases with demonstrable electron-dense deposits were similar to 412 

those present in FSGS cases without deposits. 413 

Immunofluorescence (Fig. 15) revealed positive capillary wall and/or mesangial 414 



labeling of varying intensity for various immunoreactants in many of the FSGS cases and 415 

did not distinguish between cases with or without electron-dense deposits. Of the 19 416 

FSGS cases without electron-dense deposits present ultrastructurally, 11 had positive 417 

unequivocal IF labeling. Of the seven cases with electron-dense deposits noted on TEM, 418 

four had granular IgM mesangial staining. One of these four also had granular IgG 419 

staining along capillary walls, whereas another had granular C3 staining within the 420 

mesangium and along capillary walls. 421 

As a group, dogs in Cluster 3 had slightly higher median UPC and SCr values and 422 

a greater frequency of hypertension than dogs in Cluster 2 (Table 7), suggesting a trend 423 

toward more severe clinical manifestations of disease for dogs in Cluster 3 compared 424 

with those in Cluster 2. However, the differences were small and the variation among 425 

dogs in each cluster was large, therefore statistically significant differences were not 426 

identified. 427 

Amyloid 428 

Twelve of 89 cases clustered into one group (Cluster 4), and all were diagnosed 429 

with glomerular amyloidosis. The defining LM feature of this cluster was expansion of 430 

the mesangium and compression of peripheral capillary loops by Congophilic material 431 

that was birefringent under polarized light. Amyloid was present as scattered small 432 

nodules in three of the cases and as larger, easily discernible, coalescing to occasionally 433 

global deposits in the remaining cases (Fig.16-21).  Amyloid was pink and waxy when 434 

stained with PAS, mottled blue to orange with TRI and did not take up silver with the 435 

JMS method. Endocapillary hypercellularity was not present in any case. When present, 436 

mesangial hypercellularity was mild. Small synechiae were present in all cases, and in 437 



one case involved all glomeruli. Interstitial changes were variable and mild, consisting of 438 

interstitial edema, interstitial amyloid, and amyloid deposition within vessel walls. Small 439 

amounts of interstitial amyloid were observed in seven of the 12 cases, four of which also 440 

had rare vascular amyloid deposits. An additional two cases had vascular amyloid 441 

without detectable interstitial deposits.     442 

Ultrastructurally, all cases had amyloid deposition characterized by the presence 443 

of non-branching 8-15 nm diameter fibrils within the mesangium and capillary wall 444 

predominantly in subendothelial and mesangial locations (Figs. 22-23). Foot process 445 

effacement was a consistent finding. Electron-dense deposits were not present 446 

ultrastructurally. Immunofluorescence labeling revealed occasional equivocal labeling 447 

with all immunoreactants (Table 6). 448 

  As a group, dogs with amyloidosis did not have categorically higher UPC or SCr 449 

values or lower SAlb values than other clusters (Table 7). Median UPC values from 450 

Clusters 2, 3, 6 and 7 were lower than the median value from dogs with amyloidosis, 451 

whereas the median UPC values of Clusters 5 and 8 were higher. Furthermore, three 452 

clusters of dogs had higher median SCr values and four clusters of dogs had lower 453 

median SAlb values than dogs with amyloidosis. Of note, however, dogs with 454 

amyloidosis were hypertensive less frequently than the dogs in any other cluster.  455 

Immune complex mediated diseases 456 

Membranoproliferative Glomerulonephritis 457 

Twenty-three of the 89 cases grouped into two clusters and had a glomerular 458 

pattern characteristic of MPGN. Ten cases clustered as one group (Cluster 5) and 13 459 

cases clustered as another group (Cluster 6).  460 



By LM, the cases in Cluster 5 and Cluster 6 shared many similar features that 461 

were also greater in severity or prevalence than in other clusters. The defining LM feature 462 

of MPGN was glomerular hypercellularity that was both endocapillary and mesangial 463 

with a global and diffuse distribution (Figs. 24-27). Neutrophils were present within some 464 

glomerular capillary loops in all but one case; specifically, they were present in up to 465 

91% of examined glomeruli. This lesion was more frequent in Clusters 5 and 6 compared 466 

with other clusters. Glomerular basement membrane duplication (Figs. 25 and 27), 467 

highlighted by PAS stains and the JMS method, was prominent in Clusters 5 and 6 and 468 

contributed to the observed capillary wall thickening. Nuclear debris, which was 469 

scattered in the expanded mesangial matrix, was another prominent characteristic of 470 

Clusters 5 and 6. Other LM features shown to be more prevalent in Clusters 5 and 6 were 471 

parietal cell hypertrophy and tubular regeneration. Cluster 5 had LM parameters that 472 

were greater in intensity or prevalence than those in Cluster 6 including synechiae, GBM 473 

hyalinosis, afferent and efferent arteriolar hyalinosis, parietal cell proliferation, splitting 474 

of Bowman’s capsule and periglomerular fibrosis (Tables 2 and 3). Two tubulointerstitial 475 

parameters were more common in Cluster 5 than in Cluster 6: interstitial fibrosis and 476 

inflammation.  477 

The major ultrastructural features that distinguished Clusters 5 and 6 from other 478 

clusters were the presence of prominent subendothelial and mesangial electron-dense 479 

deposits in 23 of 23 cases and 20 of 23 cases, respectively (Fig 28). Other TEM features 480 

commonly identified in Clusters 5 and 6 were mesangial cell interpositioning and 481 

endothelial cell swelling with lumen effacement. Prominent subepithelial electron-dense 482 

deposits were present in one of 10 cases in Cluster 5 and eight of 13 cases in Cluster 6. 483 



These subepithelial deposits were often associated with GBM remodeling. Seven cases in 484 

Cluster 6 had ultrastructural evidence of GBM spikes and encircled deposits, while three 485 

cases in Cluster 5 had evidence of encircled deposits with no observable GBM spikes. As 486 

these cases with subepithelial electron-dense deposits shared the defining light 487 

microscopic lesions and prominent subendothelial deposits of MPGN, they were 488 

considered a variant of MPGN (“mixed MPGN”). 489 

While unequivocal positive labeling for IgA was not observed in any cases in 490 

Clusters 5 and 6, clear positive labeling was observed in the capillary wall and/or 491 

mesangium for IgG, IgM, and /or C3 in all cases (Fig. 29). There were no significant 492 

differences in the IF patterns of all immunoglobulins and C3 between the two clusters.   493 

As a group, dogs in Cluster 5 had somewhat higher median UPC and SCr values 494 

and lower median SAlb values than dogs in Cluster 6 (Table 7). These observations 495 

suggested a trend toward more severe clinical manifestations of disease for dogs in 496 

Cluster 5 compared with those in Cluster 6. However, the ranges of observed values for 497 

these variables among dogs in both clusters overlapped so much that it was impossible to 498 

discriminate dogs in these two clusters from one another based on these clinical 499 

observations. Of note, hypertension was very frequent in these groups; hypertension was 500 

more frequent among dogs in Clusters 5 and 6 than among the dogs in any other cluster. 501 

Membranous Glomerulonephropathy 502 

Twenty-three of the 89 cases grouped into Clusters 7 (13 cases) and 8 (10 cases) 503 

and had a glomerular pattern characteristic of MGN. Endocapillary hypercellularity was 504 

absent to minimal, except for one case in which it was scored as moderate. This 505 

parameter did not distinguish MGN clusters from non-ICGN clusters, but clearly 506 



distinguished the MGN pattern from the MPGN pattern (Table 2). Mesangial 507 

hypercellularity was minimal to mild in most MGN cases, wherein 3 to 5 mesangial cells 508 

per segment were commonly seen in 20 of 23 cases. By LM, most cases of MGN were 509 

associated with remodeling of the GBM, consisting of spikes radiating outward from the 510 

abluminal surface and/or holes within a thickened GBM (Figs. 30-33). Remodeling was 511 

more frequent and more prominent in Cluster 7 compared with Cluster 8. Red nodular 512 

deposits, suggestive of immune complexes, visible on the TRI stain were observed via 513 

LM in 22 of 23 cases (Fig. 32); however, the deposits were scored as rare in five of these 514 

22 cases. Red nodular deposits observable via LM were more prominent in the MGN 515 

pattern compared with the MPGN pattern. Importantly, capillary wall thickening was not 516 

specific for the MGN pattern as this feature was also present in other clusters. Significant 517 

differences in lesions were noted between Clusters 7 and 8 (Table 2 and 3). Cases in 518 

Cluster 7 had more severe GBM remodeling associated with subepithelial immune 519 

deposits than did cases in Cluster 8, suggesting that Cluster 7 was associated with more 520 

chronic or severe disease. Both synechiae and secondary segmental glomerulosclerosis 521 

were significantly more common and / or more severe in Cluster 7 compared with Cluster 522 

8. Hyalinosis of the GBM was mild in Cluster 7 and minimal in Cluster 8. Although these 523 

latter parameters were helpful in delineating Cluster 7 from Cluster 8, they were also very 524 

prominent features of the FSGS and MPGN patterns (Table 2). Interstitial fibrosis was 525 

more common in Cluster 7 compared with Cluster 8. Generally, tubulointerstitial lesions 526 

did not differentiate the MGN pattern from other patterns, except for tubular epithelial 527 

cell isometric vacuolation, which was more frequent in Cluster 8, compared with all other 528 

clusters.   529 



The defining feature of the MGN pattern was the presence of predominantly 530 

subepithelial electron-dense deposits on TEM. Electron-dense deposits or GBM changes 531 

induced by deposits were usually regularly spaced along the abluminal surface of at least 532 

one capillary loop in 22 of 23 cases, whereas the last case had ultrastructural evidence of 533 

dissolution of the deposits with only rare electron-dense deposits remaining. Although all 534 

MGN cases had subepithelial deposits observed ultrastucturally, red nodular deposits 535 

(TRI) were rare or absent via LM in six of these cases. Ultrastructural evidence of GBM 536 

remodeling (Fig. 34) was observed in 22 of 23 cases.  In addition to prominent 537 

subepithelial deposits and GBM remodeling on TEM, seven of the 23 cases also had 538 

subendothelial deposits. Despite the presence of subendothelial deposits, the absent to 539 

minimal endocapillary hypercellularity observed via LM in all but one MGN case 540 

separated them from the MPGN pattern. These cases were considered to be a variant of 541 

the membranous pattern “mixed MGN”. 542 

Immunofluorescence (Fig. 35) revealed unequivocal granular staining patterns for 543 

IgG, IgM and C3 within the mesangium and along the GBM in all cases. Similar IF 544 

staining patterns were present in cases of the MPGN pattern and could not be used to 545 

differentiate between these two classes of immune complex mediated 546 

glomerulonephritides.   547 

As a group, dogs in Cluster 8 had somewhat higher median UPC values and were 548 

more frequently hypertensive than those in Cluster 7; however, the median SCr and SAlb 549 

values for dogs in these 2 clusters were similar (Table 7).  550 

Clinical Observations 551 

 Detailed analyses of clinical and laboratory parameters associated with the 552 



various patterns of canine glomerular injury included in this study was beyond the scope 553 

of this investigation. Nonetheless, key clinical variables were examined to provide a 554 

starting point for ongoing and future research that will include a larger number of 555 

affected dogs. Several potentially useful observations, which will require verification and 556 

further study to define their clinical utility, were made. One was that the magnitude of 557 

proteinuria, i.e., UPC values, did not discriminate between different clusters of affected 558 

dogs from one another (Table 7). Second, dogs with the MPGN pattern of injury 559 

(Clusters 5 and 6) had the most severe constellation of associated clinical abnormalities: 560 

their median UPC values were as high or higher, and median SAlb values were as low or 561 

lower, than those of dogs in other clusters. Also, dogs with MPGN had higher median 562 

SCr values and hypertension more often than dogs in any other clusters. Third, although 563 

dogs with glomerulosclerosis (Clusters 2 and 3) generally had the least severe 564 

constellation of clinical abnormalities (lower median UPC values and SCr values and 565 

higher median SAlb values than those of dogs in other clusters, with hypertension only 566 

moderately often), the ranges of clinical data were large (Table 7). Finally, dogs with 567 

amyloidosis (in Cluster 4) were hypertensive less often than dogs in any other cluster, but 568 

they were otherwise more comparable to dogs with MGN (in Clusters 7 and 8) than to 569 

dogs in any other clusters.  570 

DISCUSSION 571 

The purpose of this project was to objectively formulate a prototype scheme for 572 

classification of glomerular diseases in proteinuric dogs.
13

 While the human WHO 573 

classification system for glomerular disease has been used to evaluate canine kidneys, the 574 

validity of adopting the human classification scheme for canine patients has not been 575 



assessed. Eight veterinary pathologists graded 114 parameters representing a wide array 576 

of glomerular, tubulointerstitial and vascular lesions examined with LM, TEM and IF. 577 

The dataset was analyzed by hierarchical cluster analysis, which enabled the development 578 

of an objectively derived prototype classification scheme. With this scheme now 579 

developed, a larger number of cases will be studied in the next phase to validate the 580 

classification system and to correlate pathologic findings with clinical and laboratory 581 

parameters and patient outcome. 582 

The method of hierarchical cluster analysis, which included Wards linkage and L2 583 

dissimilarity, works particularly well for the dataset created for this study because it 584 

performs best with clearly defined clusters and when there are few outliers.
39

 The greatest 585 

dissimilarity between clusters is present at the top part of the dendrogram, where two 586 

distinct clusters emerged separating the patterns of predominantly non-immune-complex 587 

glomerular diseases (normal, amyloid, and FSGS) from patterns of immune-complex 588 

glomerular diseases (MPGN and MGN). Typically a bar parallel to the X-axis is drawn to 589 

denote the number of clusters at a particular level of dissimilarity. For our evaluation, a 590 

bar that delineates eight clusters was drawn, seven of which were distinguishable from 591 

the control cluster.  592 

While these eight clusters encompass the most commonly observed patterns of 593 

glomerular lesions seen in dogs, there are a number of specific, but uncommon, diagnoses 594 

that were excluded from cluster analysis. In fact, after a preliminary dendrogram was 595 

created, seven cases with seemingly rare diagnoses were identified and excluded from 596 

analysis. Cluster analysis is an iterative process in which the investigator attempts to find 597 

a dendrogram pattern that makes physiologic (or pathophysiologic) sense. Exclusion of 598 



these seven cases that appeared to be outliers resulted in a dendrogram that could be more 599 

cogently interpreted.   600 

Focal segmental glomerulosclerosis (FSGS) is a common morphologic pattern of 601 

glomerular disease in humans with the nephrotic syndrome and is due to injury to the 602 

glomerular visceral epithelial cell (podocyte). The podocyte plays a central role in 603 

glomerular filtration permselectivity and responds to injury with reversible changes of 604 

hypertrophy, foot process effacement, cell body attenuation, and microvillus formation.
21

 605 

With continued injury, the podocyte irreversibly detaches from the outer aspect of the 606 

GBM. Since the podocyte is a terminally differentiated cell with minimal proliferative 607 

capability, podocyte loss results in hypertrophy of the remaining podocytes in order to 608 

cover the denuded GBM. Experimental data indicates that if >40% of the podocytes are 609 

lost the remaining podocytes are unable to cover the entire tuft.
51

 Denuded areas of GBM 610 

adhere to Bowman’s capsule (synechiae), and the tuft undergoes segmental sclerosis or 611 

scarring.  612 

Podocyte loss and FSGS may be primary or secondary. Primary (or idiopathic) 613 

FSGS is assumed to be due to innate defects in podocyte or slit diaphragm genes or 614 

proteins. In humans, once a causative mutation is identified and the pathogenesis of 615 

podocyte injury is elucidated, then that type of FSGS is considered to be secondary, 616 

which is discussed below. While primary FSGS is a common morphologic pattern of 617 

glomerular disease in people with the nephrotic syndrome, it has only recently been 618 

recognized in dogs. Well-documented primary canine FSGS, with histopathologic, 619 

immunofluorescence, and electron microscopic findings similar to the cases in this study, 620 

was first described in 2010.
3
 With the advent of improved renal diagnostics, the lesion of 621 



primary FSGS has recently been recognized as a common cause of glomerular disease in 622 

dogs. In a larger retrospective study, that also included cases used in this project, LM, IF, 623 

and TEM evaluation of canine renal disease showed that FSGS was a common cause of 624 

proteinuria accounting for 20.6% of the cases. In that group of dogs, FSGS was more 625 

common than amyloidosis, which accounted for only 15.2% of the cases.
40

 Recently, 626 

genome-wide association studies of protein losing nephropathy of soft coated wheaten 627 

terriers revealed mutations in two genes, NPHS1 and KIRREL2, encoding nephrin and 628 

filtrin, respectively. These proteins are part of the podocyte slit diaphragm, and FSGS is 629 

the dominant pathologic phenotype in proteinuric soft coated wheaten terriers; however 630 

the exact pathogenesis of how this mutation interferes with podocyte function remains 631 

unknown.
26

 Similar genetic causes of primary / familial FSGS have been identified in 632 

humans. 633 

Secondary (or adaptive) FSGS is well-recognized in dogs with decreased 634 

functional renal mass associated with naturally occurring chronic renal disease or 635 

following experimental partial nephrectomy 
7
, and until relatively recently was thought to 636 

be the only form of FSGS occurring in dogs. In this type of secondary FSGS, decreased 637 

renal mass leads to glomerular hypertrophy and glomerular hyperfiltration of the 638 

remaining nephrons. While these glomerular changes are initially adaptive responses that 639 

increase glomerular filtration rate, they eventually become maladaptive causing podocyte 640 

injury, podocyte detachment, and eventually glomerulosclerosis. Dogs with 11/12 641 

nephrectomy and secondary glomerulosclerosis are azotemic (SCr 2.0 – 2.5 mg/dl) and 642 

mildly proteinuric (mean UPC < 0.8) 
8
, in contrast to the variable occurrence of azotemia 643 

and more profound proteinuria observed in dogs with primary FSGS. Similar 644 



pathogeneses are likely occurring in cases of congenital nephron paucity, such as in dogs 645 

with juvenile-onset nephropathies.  646 

Secondary FSGS may also be caused by other types of injury to the podocyte.
36

 647 

Immune-complex glomerulonephritis can induce podocyte injury and secondary 648 

segmental glomerulosclerosis in humans and dogs, which leads to a diagnostic dilemma. 649 

Cases with segmental sclerosis evaluated solely with LM might have histologically 650 

undetectable immune-complex deposits in the capillary walls for which 651 

immunosuppression would be recommended, emphasizing the importance of TEM and 652 

IF. Hypertension is also known to injure podocytes and cause FSGS in humans and might 653 

have a similar effect in some dogs. 
14

 Although obesity and hypertension have been 654 

associated with proteinuria in dogs, 
4,48

 other studies have found conflicting results.
46

 It is 655 

important to realize that renal tissue was not consistently evaluated with advanced 656 

diagnostic modalities in these veterinary studies so the association of hypertension and 657 

obesity with FSGS requires further investigation. 658 

All dogs in the FSGS group had similar lesions histologically, with increased 659 

severity of lesions in Cluster 3 compared with Cluster 2. Cases in Cluster 3 had a 660 

significantly greater percentage of glomeruli with sclerosis and significantly more 661 

synechiae compared with Cluster 2.  GBM hyalinosis, characterized by insudation of 662 

plasma lipoproteins into the damaged capillary wall, and obsolescent glomeruli were also 663 

more prevalent in Cluster 3. The co-existence of glomerular lipidosis encountered only 664 

among cases of FSGS (clusters 2 and 3) was also noted.  Glomerular lipidosis in dogs has 665 

most often been reported as a sporadic, incidental glomerular change in kidneys which 666 

otherwise lack significant pathology.
47,55

 This association between glomerular lipidosis 667 



and FSGS may change as larger numbers of cases are eventually considered, but its 668 

occurrence in a small number of FSGS in this study suggests that glomerular lipidosis 669 

may have pathologic significance. Future studies of the lesion of glomerular lipidosis in 670 

dogs are warranted. 671 

Seven cases within the FSGS group were exceptions to the ICGN vs non-ICGN 672 

division of the dendrogram, because TEM revealed the presence of electron-dense 673 

deposits. Review of these cases revealed that although electron-dense material consistent 674 

with immune deposits was observed in the mesangium, involvement of the capillary 675 

walls was absent or rare. The significance of having electron-dense deposits limited to the 676 

mesangial regions is unknown; however, it is clear that the histopathologic pattern is one 677 

of mesangial expansion, mesangial hypercellularity and segmental sclerosis as opposed to 678 

endocapillary hypercellularity and remodeling of the glomerular basement membrane. 679 

These seven cases might represent primary FSGS with secondary nonspecific trapping of 680 

plasma constituents. Recent research in mice and humans has suggested that non-immune 681 

mediated injury to the glomerulus can entrap circulating IgM, which can subsequently 682 

activate the complement system leading to progressive glomerular injury.
43

 Alternatively, 683 

these seven cases could represent a sclerosing response of the glomerulus secondary to 684 

previous mesangial deposition of immune complexes, similar to what occurs in the 685 

sclerosing phenotype of mesangioproliferative IgA or C1q glomerulopathy in humans. 686 

30,53
 Given that glomerulosclerosis, an irreversible lesion, was prominent in these seven 687 

cases, whereas the electron-dense deposits were less so, it is justifiable to keep these 688 

cases in the FSGS cluster. It is important to realize, however, that the presence of these 689 

electron-dense deposits might exacerbate glomerular injury, and immunosuppressive 690 



therapy might be a consideration in situations where standard therapies are unsuccessful.  691 

The FSGS pattern raises three important points. First, FSGS is sufficient to result 692 

in proteinuria, which can sometimes be severe. Second, because this disease begins as a 693 

focal process, every glomerulus in a renal biopsy specimen should be examined. In 694 

humans, approximately 20-25 glomeruli need to be evaluated to be able to confidently 695 

rule out this diagnosis.
18

 Third, and most importantly, the correct diagnosis of this lesion 696 

is crucial because it can greatly influence treatment decisions.  697 

Glomerular amyloidosis typically is not a diagnostic dilemma, although 698 

occasional cases will have only minimal amyloid deposits. In these situations, the 699 

diagnosis will rest upon the detection of small aggregates of fibrils with TEM and 700 

negative IF results.   701 

The ICGN branch of the dendrogram was comprised of four clusters, two of 702 

which had MPGN patterns and two of which had MGN patterns. Membranoproliferative 703 

glomerulonephritis is a pattern characterized by the presence of endocapillary 704 

hypercellularity and double contours of the GBM. With rare exception (discussed below), 705 

both lesions are due to the presence of subendothelial immune complexes. Theories have 706 

been proposed for the pathogenesis of immune complex deposition, ranging from 707 

entrapment of circulating immune complexes, to entrapment of a non-glomerular antigen 708 

in the subendothelial space followed by eventual interaction with circulating antibody.
34

 709 

Regardless of how they are deposited beneath the endothelium, it is their ability to 710 

activate the complement cascade in proximity to the capillary lumen that results in a 711 

hypercellular appearance. It is important to distinguish endocapillary hypercellularity 712 

from mesangial hypercellularity when evaluating glomeruli. Endocapillary 713 



hypercellularity consists of increased numbers of circulating inflammatory cells together 714 

with hypertrophied or hyperplastic endothelial cells and / or interposed mesangial cells 715 

within peripheral capillaries. In contrast, mesangial cell proliferation is confined to the 716 

central mesangial matrix. Confusion arises because both endocapillary hypercellularity 717 

and mesangial cell proliferation are not mutually exclusive lesions and because 718 

evaluation of 5µm thick sections leads to overestimation of the number of nuclei within a 719 

segment of the glomerular tuft. Use of the PAS stain and JMS method enabled the 720 

pathologists to readily determine the location of the hypercellularity. While mesangial 721 

proliferation was present in our cases of FSGS, endocapillary proliferation was not a 722 

feature.  723 

  The PAS stain and JMS method also allowed the pathologists to discern between 724 

GBM thickening and definitive double membrane contours, which are the result of 725 

synthesis of new GBM material by the glomerular endothelium. The use of TEM and IF 726 

verified the presence of immune complexes, thereby justifying a diagnosis of MPGN. 727 

Importantly, there are diseases that demonstrate a MPGN pattern on histology without the 728 

presence of immune complexes. Examples in humans include thrombotic 729 

microangiopathy, 
19

 fibrillary glomerulonephritides, 
1
 and C3 glomerulopathy.

6,41
 Of 730 

these, thrombotic microangiopathy 
9
and C3 glomerulopathy have been reported in 731 

veterinary species.
2,5,37

 Immunofluorescence and TEM are needed to differentiate 732 

immune-complex MPGN from these rare diseases with alternate pathogeneses, because 733 

therapeutic plans and prognoses depend on the correct diagnosis.  734 

Membranous glomerulonephropathy is a pattern of injury caused by the presence 735 

of immune complexes on the subepithelial (abluminal) side of the GBM. The presence of 736 



a thickened GBM is insufficient to warrant this diagnosis. This represents a distinct shift 737 

from the era in which MGN was diagnosed solely on the LM appearance of a thick 738 

capillary wall. In the pattern of MGN proposed by the current study, the immune 739 

complexes induce production of new GBM in between deposits (giving the appearance of 740 

spikes), which eventually become encircled by new GBM. The encircled deposits take on 741 

the appearance of clear holes when viewing by LM sections prepared by the JMS 742 

method. Therefore GBM remodeling (spikes or holes) is a more important histologic 743 

finding than thickened capillary walls. Because subepithelial immune complexes are 744 

separated from the capillary lumen by GBM, endocapillary hypercellularity is minimal to 745 

non-existent. One feature that separated Clusters 7 and 8 was the presence of segmental 746 

sclerosis, which is presumed to be secondary to podocyte injury driven by the 747 

subepithelial immune complexes. The subepithelial immune complexes activate 748 

complement causing podocyte injury with podocyte foot process effacement and 749 

increased loss of podocytes via C5b-9-mediated cellular injury.
35

 Secondary segmental 750 

glomerulosclerosis has prognostic significance in humans 
35

 and likely a similar 751 

relationship might eventually be identified in dogs.  752 

Cases from Cluster 5 and 8 were more severely affected, i.e., had more severe 753 

lesions) than Clusters 6 and 7, respectively. This might represent a greater impetus for 754 

immune complex deposition or different stages of the diseases. Future studies will 755 

investigate the relationship between underlying systemic diseases, which could be a 756 

source of antigenemia. We did not detect significant associations between the 757 

composition of immune-complex deposits as shown by the IF labeling and the various 758 

patterns of histologic and ultrastructural lesions demonstrated by the LM and TEM 759 



findings. Of interest, IgA staining was infrequent to rare (as opposed to the frequency of 760 

IgA nephropathy in humans).  We also did not identify cases of C3-only staining, which 761 

would be supportive of a C3 glomerulopathy
6
.  That does not mean that these types of 762 

glomerular diseases do not exist in dogs, but merely that they were not identified in our 763 

cohort of 89 cases. It remains necessary to perform a panel of IF staining so that 764 

uncommon or rare diseases can be identified and properly investigated. 765 

It is possible that the ICGN might represent a spectrum ranging from a pure 766 

membranous form—with only subepithelial immune complexes and lacking 767 

hypercellularity—to a pure membranoproliferative form with immune complexes located 768 

solely in a subendothelial location and associated with fulminate inflammatory cell 769 

accumulation. The middle portion of the spectrum may have both subepithelial and 770 

subendothelial IC deposition with varying degrees of endocapillary hypercellularity. In 771 

fact, this middle ground was previously diagnosed as Type III MPGN (Burkholder 772 

variant) in both humans and dogs. The WHO classification of glomerular disease in 773 

humans is currently in a state of reorganization, with the recent identification of 774 

complementopathies and associated C3 glomerulopathies 
41

 as well as the development of 775 

the International Society for Nephrology / Renal Pathology Society proposal for 776 

classification of Lupus Nephritis.
29

 This calls into question the validity of adopting 777 

terminology such as Type III MPGN from a human nephropathology, when it is rarely 778 

used and considered controversial. Therefore, we were very interested in how cases with 779 

deposits in multiple locations would cluster in our cohort. Cluster analysis did not 780 

separate out these “mixed cases” from purer patterns suggesting that the ultrastructural 781 

localization of ICs was not a driving force for cluster grouping in this particular cohort of 782 



patients. Determining whether or not canine cases will eventually be associated with an 783 

underlying infection, complementopathy, or autoimmune disease is a future goal of this 784 

initiative. It is possible that the variation in immune complex location will have etiologic 785 

or prognostic implications. Therefore, we have opted to diagnose these cases as Mixed 786 

MPGN and Mixed MGN so that the clinical presentation, progression and outcome of 787 

these “variants” can be investigated.  788 

 Notably, cluster analysis based solely on the LM features of glomeruli resulted in a 789 

strikingly different dendrogram with many misclassified cases. Seven of the eight MGN 790 

cases in Cluster 8 incorrectly clustered with dogs without evidence of immune complex 791 

deposition. Re-examination of these cases revealed fewer spikes and holes on the silver 792 

stain and only mildly thickened GBMs. This demonstrates that GBM remodeling can be 793 

subtle or absent in early cases of MGN and emphasizes the importance of additional 794 

modalities for the correct diagnosis. Likewise, all of the cases from Cluster 3 were 795 

incorrectly clustered with ICGN cases, likely because FSGS cases may have mesangial 796 

hypercellularity and thickened capillary walls. 797 

The main limitation of the study is that certain rare diseases had to be excluded 798 

from the cluster analysis. Although this step was necessary to generate an interpretable 799 

dendrogram, it also meant that we were unable to identify patterns associated with these 800 

diagnoses. Additionally, the collection of renal biopsy material from control dogs was 801 

difficult, as it is an invasive procedure. Therefore, we used tissue obtained during 802 

ovariohysterectomy prior to adoption of racing greyhounds, which precluded any breed 803 

or age matching with the case cohort. Lastly, certain clinical parameters such as 804 

signalment, body condition score, and infectious disease exposure was not examined in 805 



this study, as those data will be analyzed in future publications from the veterinary 806 

nephrologists associated with the WSAVA-RSSG.   807 

The question arises as to whether classification of these lesions by evaluation of a 808 

large number of morphological parameters is worth the additional effort. Clearly, the 809 

comparison of dendrogram in Figure 3 (only LM parameters) to that of Figure 2 (all 810 

modalities) demonstrates the necessity of advanced diagnostics. Using only LM features 811 

resulted in the misclassification that might have led to inappropriate treatment of 22 of 89 812 

cases (25%). With the advent of immunosuppressive agents for ICGN, considerable care 813 

should be taken to determine which patients will likely benefit from these therapeutic 814 

regimens.  It is also our opinion that valuable phenotypic data will be lost if the lesions 815 

are not clearly defined and quantified. This lesion-based phenotypic approach could help 816 

better categorize cases for epidemiologic analyses, investigation of molecular 817 

pathogenesis, prognostication and treatment decisions. A similar approach is the basis of 818 

the Nephrotic Syndrome Study Network (NEPTUNE) study, in which lesions identified 819 

in renal biopsy specimens of nephrotic human patients are accurately phenotyped for 820 

ongoing and future molecular tissue analysis.
15

   821 

  A number of the dogs in this study are part of an ongoing project designed to follow 822 

clinical progression of disease after assessment of their renal biopsy using this 823 

prototypical classification scheme.  Biopsies of additional dogs enrolled in this 824 

prospective study will be similarly evaluated, and outcome data will be analyzed. 825 

 The classification scheme that we propose in this study is intended to be modifiable 826 

when outcome data becomes available from these ongoing incident cohort studies.   In its 827 

current form, however, our proposed clusters will facilitate communication among 828 



clinicians and pathologists, whereas our list of lesions will clarify the terminology used in 829 

histopathologic descriptions. With this scheme in hand a larger number of cases (patients) 830 

will be studied in the next phase to validate the classification system and to correlate 831 

histological findings with clinical and clinical laboratory parameters and outcomes. 832 

Footnotes:  833 

a 
ScanScope CS, Aperio, Vista CA 834 

b 
Spectrum, Aperio, Vista CA 835 

c 
ImageScope CS, Aperio, Vista CA 836 

d 
WebScope CS, Aperio, Vista CA 837 

e 
GoToMeeting, Citrix Systems, Inc, Santa Barbara, CA 838 

f 
Stata/IC 12 for Windows, StataCorp LP, College Station, TX 839 
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Table 1a. Parameter Identification and Method of Scoring: Light Microscopy 

 

Light Microscopy Scoring method  Light Microscopy Scoring method Light Microscopy Scoring method 

Endocapillary  hypercellularity Severity 0-1-2-3-4 Arteriolar MHH Frequency (%) Dilation of Bowman’s capsule Frequency (%) 

Hypercellularity from neutrophils Severity 0-1-2-3-4 Arteriolar hyalinosis Frequency (%) Fibrin in Bowman’s space Frequency (%) 

Mesangial hypercellularity Severity 0-1-2-3-4 Glom. inflammatory cells Frequency (%) Periglomerular inflammation Frequency (%) 

Amyloid Severity 0-1-2-3-4 Podocyte hypertrophy Frequency (%) Periglomerular fibrosis Frequency (%) 

Capillary loop thickening Severity 0-1-2-3-4 Podocyte hyperplasia Frequency (%) Tubular lumen dilation Frequency (%) 

Immune deposits Severity 0-1-2-3-4 Podocyte vacuoles Frequency (%) Tubular atrophy Frequency (%) 

GBM spikes Severity 0-1-2-3-4 Podocyte protein droplets Frequency (%) Tubular epith. single cell necrosis Frequency (%) 

GBM holes Severity 0-1-2-3-4 GBM duplication Frequency (%) Tubular necrosis Frequency (%) 

Synechiae Severity 0-1-2-3-4 Synechiae Frequency (%) Tubular regeneration Frequency (%) 

GBM hyalinosis Severity 0-1-2-3-4 Obsolescent glomeruli Frequency (%) Hyaline (protein) casts Frequency (%) 

Interstitial edema Severity 0-1-2-3-4 Glomerular lipidosis Frequency (%) Tubular proteinosis Frequency (%) 

Interstitial amyloid Severity 0-1-2-3-4 Glomerular thrombi Frequency (%) Intratubular cellular casts Frequency (%) 

Interstitial hemorrhage Severity 0-1-2-3-4 Capill. aneurysmal dilation Frequency (%) Intratubular crystals Frequency (%) 

Amyloid in vascular walls Severity 0-1-2-3-4 Glom. tuft nuclear debris Frequency (%) Intratubular pigment Frequency (%) 

Interstitial small artery MHH Absence (0), Presence (1) GBM wrinkling Frequency (%) Tubulitis Frequency (%) 

Interstitial small artery hyalinosis Absence (0), Presence (1) GBM hyalinosis Frequency (%) Tubular rupture Frequency (%) 

Interstitial large artery MHH Absence (0), Presence (1) Kimmelstiel-Wilson nodules Frequency (%) Tubular epith. cell vesiculation Frequency (%) 

Interstitial large artery hyalinosis Absence (0), Presence (1) Parietal cell hypertrophy Frequency (%) Tubular epith. cell isometric vesicul. Frequency (%) 

Degree of mesangial matrix expansion Extent 0-1-2-3-4 Parietal cell hyperplasia Frequency (%) Tubular epith. cell protein droplets Frequency (%) 

Percent mesangial matrix expansion Frequency (%) Parietal cell protein droplets Frequency (%) Tubular epithelial cell pigment Frequency (%) 

Degree of glomerulosclerosis  Extent 0-1-2-3-4 Crescents Frequency (%) Percent interstitial fibrosis Frequency (%) 

Percent  glomerulosclerosis Frequency (%) Symm. Bowman’s cap. thick. Frequency (%) Percent interstitial inflammation Frequency (%) 

Hilar glomerulosclerosis Frequency (%) Asymm. Bowman’s cap. thick. Frequency (%) Interstitial fibrosis Severity 0-1-2-3 

Tip glomerulosclerosis Frequency (%) Bowman’s capsule BM splitting Frequency (%) Interstitial inflammation Severity 0-1-2-3 

Glomerulosclerosis not at poles Frequency (%) Bowman’s capsule BM mineral. Frequency (%)   

Glomerulosclerosis location undet Frequency (%) Fetal glomeruli Frequency (%)   

  Parameters selected for the 59-parameter dataset are underlined.  See the text for a description of the grading schemes. Note some parameters appear twice in table 

because data was collected for both frequency and severity or extent. GBM: glomerular basement membrane, MHH: medial hypertrophy/hyperplasia, Undet: 

undetermined, BM: basement membrane. 

 



Table 1b. Parameter Identification and Method of Scoring for Transmission Electron Microscopy and Immunofluorescence Microscopy 

 

Transmission Electron Microscopy Scoring method  Transmission Electron Microscopy Scoring 

method 

Immunofluorescence

microscopy 

Scoring 

method 

Subepithelial electron-dense deposits Prevalence 0-1-2 Mesangial cell interpositioning Occurrence 0-1 IgG mesangium GranLbl  0-1-2 

Subendothelial electron-dense deposits Prevalence 0-1-2 Amyloid fibrils Occurrence 0-1 IgG capillary wall GranLbl  0-1-2 

Mesangial electron-dense deposits Prevalence 0-1-2 Other fibrils Occurrence 0-1 IgM mesangium GranLbl  0-1-2 

Paramesangial electron-dense deposits Prevalence 0-1-2 Podocyte microvillus transformation Occurrence 0-1 IgM capillary wall GranLbl  0-1-2 

Intramem. electron-dense deposits Prevalence 0-1-2 Podocyte cytoplasmic vacuoles Occurrence 0-1 IgA mesangium GranLbl  0-1-2 

GBM spikes Prevalence 0-1-2 Podocyte myelin figures Occurrence 0-1 IgA capillary wall GranLbl  0-1-2 

Encircled electron-dense deposits Prevalence 0-1-2 Podocyte swelling Occurrence 0-1 C3 mesangium GranLbl  0-1-2 

Encircled deposits with dissolution Prevalence 0-1-2 Endothelial cell swelling Occurrence 0-1 C3 capillary wall GranLbl  0-1-2 

Podocyte foot process effacement Prevalence 0-1-2 Tubuloreticular inclusions Occurrence 0-1   

GBM thinning Prevalence 0-1-2 Endothelial cell cytoplasmic vacuoles Occurrence 0-1   

GBM splitting Prevalence 0-1-2 Endothelial cell myelin figures Occurrence 0-1   

GBM rarefaction Prevalence 0-1-2 Intravascular inflammatory cells Occurrence 0-1   

Subendothelial widening Prevalence 0-1-2 Mesangial cell cytoplasmic vacuoles Occurrence 0-1   

Diffuse GBM thickening Prevalence 0-1-2 Mesangial cell myelin figures Occurrence 0-1   

GBM wrinkling Prevalence 0-1-2 Mesangial electron dense material Occurrence 0-1   

Parameters selected for the 59-parameter set are underlined.  GranLbl indicates positive fluorescent labeling in a granular pattern consistent with the 

presence of immune deposits.    
 

. 

 



 

 

Table 2.  Parameter Scores for Whole Renal Biopsy Evaluation by Light Microscopy 

 
PATTERN OF INJURY Cluster 1 

(Control) 

Cluster2 

(FSGS) 

Cluster 3 

(FSGS) 

Cluster 4 

(Amyloidosis) 

Cluster 5 

(MPGN) 

 

Cluster 6 

(MPGN) 

Cluster 7 

(MGN) 

Cluster 8 

(MGN) 

Endocapillary 

hypercellularity 

0.0 

(00-0.0) 

0.3 

(0.0-0.8) 

0.5 

(0.0-2.0) 

0.0 

(0.0-0.3) 

3.0 

(0.7-3.9) 

2.4 

(1.8-4.0) 
0.7

a
 

(0.0-2.8) 

0.1 

(0.0-1.0) 

Mesangial hypercellularity 0.4 

(0.4-0.7) 

1.6 

(0.8-2.0) 
2.1

b
 

(1.3-2.9) 

0.6 

(0.0 -1.0) 

2.8 

(2.4-3.4) 

2.6 

(1.1-3.3) 
2.0

b
 

(1.1-3.0) 

1.3 

(0.3-1.9) 

Hypercellularity from 

neutrophils 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.6) 
0.3

a
 

(0.0-0.8) 

0.0 

(0.0-0.6) 

1.5 

(0.1-2.8) 

1.1 

(0.0-2.8) 
0.3

a
 

(0.0-1.3) 

0.0 

(0.0-0.4) 

Synechiae 0.1 

(0.0-0.7) 

1.8 

(0.8-2.0) 
3.0

d
 

(2.0-3.4) 

1.2 

(0.4-4.0) 
3.0

d
 

(2.3-4.0) 

1.6 

(0.6-2.8) 
2.5

c
 

(1.3-3.0) 

1.1 

(0.5-2.0) 

Hyalinosis 0.0 

(0.0-0.6) 

1.0 

(0.0-1.7) 
2.0

c
 

(0.3-3.4) 

0.0 

(0.0-0.3) 
3.2

d
 

(2.0-3.8) 

0.8 

(0.0-1.6) 
1.0

a
 

(0.3-2.0) 

0.3 

(0.0-1.3) 

Capill. Loop thickening 0.0 

(0.0-0.1) 

1.0 

(0.3-1.8) 
1.8

c
 

(0.8-2.6) 

0.8 

(0.3-3.0) 

2.9 

(1.4-4.0) 

2.5 

(1.5-3.0) 
3. 0

d
 

(2.3-3.8) 

1.7 

(1.1-2.3) 

Immune Deposits
1
 0.0 

(0.0-0.0) 

0.0 

(0.0-0.4) 

0. 0 

(0.0-0.1) 

0.0 

(0.0-0.0) 

0.4 

(0.0-1.9) 

0.3 

(0.0-2.4) 
2.3

a
 

(0.7-3.7) 

1.6 

(0.0-3.0) 

GBM spikes 0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-1.0) 

0. 0 

(0.0 -0.0) 

0.0 

(0.0-0.8) 

0.3 

(0.0-0.8) 
2.4

c
 

(2.0-3.8) 

0.9 

(0.1-2.4) 

GBM holes 0.0 

(0.0-0.0) 

0.0 

(0.0-0.3) 

0.0
a
 

(0.0-0.5) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.5) 

0.3 

(0.0-0.8) 

1.8
c
 

(0.3-2.8) 

0.2 

(0.0-1.0) 

Amyloid 0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

3.0 

(1.9-4.0) 

0.0 

(0.0 -0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

Mesang. Matrix expan. 0.2 

(0.0-0.5) 

0.9 

(0.4-3.0) 
1.8

b
 

(1.0-2.3) 

2.8 

(1.8-3.8) 

2.7 

(2.0-3.0) 

2.0 

 (0.8-3.0) 

1.1 

(0.5-2.7) 

0.8 

(0.0-1.8) 

Degree of sclerosis
2 0.0 

(0.0-0.0) 

0.3 

(0.0-1.4) 
1.3

c
 

(0.9-2.6) 

0.0 

(0.0-0.0) 

1.2 

(0.0-3.3) 

0.5 

(0.1-1.8) 
0.6

b
 

(0.0-2.1) 

0.1 

(0.0-0.9) 



 

 

Interstitial Small Arterial 

MHH
3
 

0.0 

(0.0-0.0) 

0.3 

(0.0-0.8) 
0.8

b
 

(0.1-1.0) 

0.0 

(0.0-0.5) 

0.5 

(0.0-1.0) 

0.6 

(0.0-1.0) 
0.5

a
 

(0.0-1.0) 

0.0  

(0.0-0.6) 

Interstitial fibrosis
4
 0.0 

(0.0-0.0) 

 

0.5 

(0.0-1.6) 

0.5 

(0.2-1.7) 

0.3 

(0.0-1.4) 

0.8 

(0.1-1.7) 

0.3 

(0.1-0.9) 
0.4

a 

(0.0-1.2) 

0.1 

(0.0-0.4) 

Interstitial inflammation
4
 0.0 

(0.0-0.3) 

0.4 

(0.0-1.2) 
0.8

a 

(0.2-1.8) 

0.2 

(0.0-0.9) 
1.0

b 

(0.6-1.4) 

0.5  

(0.3-1.3) 

0.6 

(0.0-1.4) 

0.3 

(0.0-1.0) 

Values were medians with (Minimum and Maximum values) and were based on scores that range from 0-4 with exceptions noted below. All parameter listed were 

part of the 59-parameter dataset. GBM: glomerular basement membrane, MHH: medial hypertrophy/hyperplasia. 
1
Fuchsinophilic deposits with Masson trichrome 

staining. 
2

Criteria based on distribution of sclerosis in the glomerular tuft (0, no sclerosis, 1, <25%; 2, 25-50; 3, 51-75%; 4, > 75% involvement). 
3
Values were based 

on a 0 (absent) or 1 (present) scale. 
4
Values represented the character of either interstitial fibrosis or inflammation (no fibrosis/inflammation, no distortion of 

architecture by fibrosis/inflammation, separation of tubules by fibrosis/inflammation, and replacement of tubules by fibrosis/inflammation) and were graded on 0-3 

scale.   
a
p < 0.05,  

b
p<0.01,  

c
p<0.001,  

d
p<0.0001 with comparisons made between Clusters 2 and 3 or Clusters 5 and 6 or Clusters 7 and 8.  



Table 3. Parameter Scores for Individual Glomeruli and Tubulointerstitial Fields by Light Microscopy 
 

PATTERN OF INJURY Cluster 1 

(Control) 

Cluster 2 

(FSGS) 

Cluster 3 

(FSGS) 

Cluster 4 

(Amyloidosis) 

Cluster 5 

(MPGN) 

Cluster 6 

(MPGN) 

Cluster 7 

(MGN) 

Cluster 8 

(MGN) 

 

GBM hyalinosis 2 

(0-7) 

11 

(0-28) 

21 

(0-66) 

5 

(0-14) 
63

c
 

(27-95) 

17 

(0-41) 
19

b
 

(0-63) 

3 

(0-19) 

Synechiae 6 

(0-14) 

28 

(14-65) 
60

b
 

(39-86) 

42 

(13-100) 
73

b
 

(50-86) 

51 

(12-76) 
43

b
 

(9-75) 

26 

(16-50) 

Percent mesangial matrix 

expansion 

25 

(0-45) 

63 

(28-100) 
82

a
 

(55-94) 

97 

(79-100) 

95 

(85-100) 

85 

(50-100) 

74 

(31-100) 

50 

(0-93) 

Percent glomerulosclerosis 0 

(0-0) 

28 

(3-60) 
72

c
 

(47-100) 

0 

(0-0) 

61 

(0-100) 

35 

(3-75) 
33

b
 

(0-95) 

9 

(0-58) 

Obsolescent glomeruli 0 

(0-0) 

7 

(0-33) 
22

b
 

(0-43) 

4 

(0-25) 

7 

(0-38) 

2 

(0-13) 

8 

(0-28) 

2 

(0-12) 

Nuclear debris 1 

(0-4) 

8 

(0-25) 
20

b
 

(0-42) 

24 

(5-75) 

43 

(19-73) 

36 

(0-73) 

21 

(0-69) 

10 

(0-36) 

Periglomerular inflammation 3 

(0-11) 

8 

(0-30) 
30

b
 

(3-75) 

15 

(0-39) 

43 

(15-82) 

27 

(0-72) 

22 

(0-55) 

17 

(0-74) 

Periglomerular fibrosis 3 

(0-7) 

12 

(0-33) 

19 

(0-50) 

11 

(0-50) 
51

b
 

(15-86) 

18 

(0-50) 

14 

(0-56) 

4 

(0-15) 

Parietal cell hypertrophy 6 

(0-14) 

27 

(9-58) 

36 

(19-60) 

24 

(9-63) 

60 

(21-85) 

46 

(13-75) 

34 

(10-58) 

33 

(14-56) 

Parietal cell hyperplasia 4 

(0-14) 

14 

(0-44) 

24 

(6-58) 

18 

(0-75) 
44

b
 

(25-62) 

27 

(12-50) 

21 

(10-34) 

18 

(0-50) 

Glomerular inflammatory cells 3 

(0-7) 

7 

(0-27) 

9 

(0-25) 

10 

(0-33) 

42 

(8-73) 

39 

(0-91) 

12 

(0-50) 

12 

(0-29) 

GBM duplication 3 

(0-11) 

7 

(0-37) 

12 

(0-43) 

6 

(0-38) 

40 

(13-58) 

45 

(9-82) 

20 

(0-67) 

20 

(0-75) 

Bowman’s capsule Basement 

membrane splitting 

10 

(0-18) 

15 

(0-43) 

20 

(6-38) 

7 

(0-25) 
40

c
 

(0-75) 

13 

(0-28) 
17

a
 

(0-63) 

4 

(0-15) 

Tubular epithelial single cell 

necrosis 

1 

(0-4) 

22 

(0-67) 

34 

(9-58) 

32 

(8-67) 

44 

(17-71) 

33 

(5-67) 

23 

(0-50) 

18 

(0-61) 

Tubular regeneration 2 

(0-7) 

11 

(0-35) 

12 

(0-30) 

15 

(0-33) 

26 

(0-57) 

18 

(0-44) 

11 

(0-39) 

11 

(0-21) 



Tubular epithelial cell pigment 19 

(4-50) 

27 

(0-73) 

38 

(7-79) 

30 

(8-96) 

26 

(0-63) 

50 

(4-100) 

37 

(4-75) 

35 

(0-81) 

Tubular epithelial cell isometric 

vesiculation 

9 

(0-21) 

7 

(0-33) 

7 

(0-20) 

11 

(0-93) 

8 

(0-33) 

6 

(0-32) 

4 

(0-14) 
18

a
 

(0-42) 

Arteriolar hyalinosis
1
 0 

(0-0) 

11 

(0-67) 

16 

(0-47) 

1 

(0-7) 
34

b
 

(0-75) 

7 

(0-33) 

6 

(0-43) 

5 

(0-20) 

Interstitial fibrosis
2 

  0 

(0-0) 

9 

(0-34) 

8 

(1-25) 

6 

(0-31) 
11

b
 

(1-35) 

2 

(0-4) 
5

a
 

(0-28) 

1 

(0-3) 

Interstitial inflammation
2
 0 

(0-1) 

3 

(0-9) 
9

a
 

(1-20) 

3 

(0-12) 
7

c
 

(3-11) 

3 

(1-6) 

3 

(0-7) 

2 

(0-10) 

 
Values were means percent with (Minimum and Maximum values) and were based on scoring a range of 4-32 glomeruli. All parameters listed were part of the 59-

parameter dataset. 1Both afferent and efferent arterioles.  2Interstitial fibrosis and inflammation based on percentage of fields affected.  ap < 0.05, bp<0.01, cp<0.001 

with comparisons made between Clusters 2 and 3 or Clusters 5 and 6 or Clusters 7 and 8. 

 

 

 
 

 

 

 

  



Table 4.  Parameter Scores for Electron-Dense Deposit Location and Glomerular Basement Membrane Remodeling Evaluated by TEM 

 
PATTERN OF INJURY Cluster1 

(Control) 

Cluster 2 

(FSGS) 

Cluster 3 

(FSGS) 

Cluster 4 

(Amyloidosis) 

Cluster 5 

(MPGN) 

Cluster 6 

(MPGN) 

Cluster 7 

(MGN) 

Cluster 8 

(MGN) 

Subepithelial electron-dense 

deposits 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 
2.0a 

(0.0-2.0) 

2.0 

(1.0-2.0) 

2.0 

(2.0-2.0) 

Subendothelial electron-dense 

deposits 

0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

2.0 

(2.0-2.0) 

2.0 

(2.0-2.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

Mesangial electron-dense 
deposits 

0.0 
(0.0-0.0) 

0.0 
(0.0-2.0) 

0.0 
(0.0-2.0) 

0.0 
(0.0-0.0) 

2.0 
(0.0-2.0) 

2.0a 

(2.0-2.0) 

2.0 
(0.0-2.0) 

0.5 
(0.0-2.0) 

Paramesangial electron-dense 

deposits 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 
2.0a 

(0.0-2.0) 

2.0 

(1.0-2.0) 

2.0 

(1.0-2.0) 

Intramembranous electron-dense 

deposits 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-0.0) 

1.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 
2.0a 

(1.0-2.0) 

1.0 

(0.0-2.0) 

GBM spikes 0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 
1.0b 

(0.0-2.0) 

2.0a 

(1.0-2.0) 

1.0 

(0.0-2.0) 

Encircled electron-dense deposits 0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-0.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-2.0) 
2.0a 

(1.0-2.0) 

1.0 

(0.0-2.0) 

Values were medians with (Minimum and Maximum values) and were based on scores ranging from 0-2 (0, absent; 1, rare; 2, not rare). All parameters listed were part 

of the 59-parameter dataset.  ap < 0.05, bp<0.01 with comparisons made between Clusters 2 and 3 or Clusters 5 and 6 or Clusters 7 and 8.  

 



Table 5. Parameter Scores for Glomeruli Evaluated by TEM 
 
PATTERN OF INJURY Cluster 1 

(Control) 

Cluster 2 

(FSGS) 

Cluster 3 

(FSGS) 

Cluster 4 

(Amyloidosis) 

Cluster 5 

(MPGN) 

Cluster 6 

(MPGN) 

Cluster 7 

(MGN) 

Cluster 8 

(MGN) 

Mesangial cell interpositioning 0.43 

(O.00-0.43) 

0.75 

(0.00-1.00) 

0.86 

(0.25-1.00) 

0.00 

(0.00-0.50) 

1.00 

(0.88-1.00) 

1.00 

(0.75-1.00) 

0.75 

(0.25-1.00) 

0.63 

(0.00-1.00) 

Endothelial cell swelling 0.00 

(0.00-0.00) 

0.00 

(0.00-0.50) 

0.00 

(0.00-0.25) 

0.00 

(0.00-0.14) 

0.50 

(0.29-1.00) 

0.29 

(0.13-0.75) 

 

0.00 

(0.00-0.50) 

0.00 

(0.00-0.83) 

Diffuse GBM thickening 0.00 

(0.00-0.00) 

0.00 

(0.00-0.75) 
0.25a 

(0.00-1.00) 

0.00 

(0.00-01.00) 

0.00 

(0.00-0.43) 

0.13 

(0.00-0.57) 
0.25a 

(0.00-0.75) 

 

0.00 

(0.00-0.43) 

Intravascular inflammatory cells 

 

0.00 

(0.00-014) 

0.00 

(0.00-0.50) 

0.00 

(0.00-0.50) 

0.00 

(0.00-0.38) 

0.25 

(0.00-0.71) 

0.25 

(0.00-0.75) 

0.00 

(0.00-0.25) 

0.06 

(0.00-0.14) 

GBM rarefaction 0.29 
(0.14-0.43) 

0.38 
(0.00-0.75) 

0.50 
(0.00-0.75) 

0.07 
(0.00-0.50) 

0.20 
(0.00-0.67) 

0.13 
(0.00-0.50) 

0.25 
(0.00-0.57) 

0.13 
(0.00-0.57) 

GBM wrinkling 0.43 

(0.00-0.71) 

0.43 

(0.00-0.88) 

0.50 

(0.00-1.00) 

 

0.15 

(0.00-0.75) 

 

0.43 

(0.13-1.00) 

0.25 

(0.00-0.50) 

0.25 

(0.00-0.60) 

0.13 

(0.00-0.38) 

Podocyte microvillous  

transformation 

0.00 

(0.00-0.00) 

0.25 

(0.00-1.00) 

0.50 

(0.00-0.86) 

0.25 

(0.00-1.00) 

0.50 

(0.00-071) 

0.50 

(0.00-0.88) 

0.75 

(0.00-1.00) 

0.80 

(0.38-1.00) 

Endothelial cell cytoplasmic 

vacuoles 

0.00 

(0.00-0.00) 

 

0.00 

(0.00-0.75) 

0.25 

(0.00-0.75) 

0.00 

(0.00-0.25) 

0.21 

(0.00-0.80) 

0.25 

(0.00-0.43) 

0.00 

(0.00-0.25) 

0.13 

(0.00-0.33) 

Amyloid fibrils 0.00 

(0.00-0.00) 

0.00 

(0.00-0.00) 

0.00 

(0.00-0.13) 

1.00 

(1.00-1.00) 

0.00 

(0.00-0.00) 

0.00 

(0.00-0.00) 

0.00 

(0.00-0.00) 

0.00 

(0.00-0.00) 

Values were median scores with (Minimum and Maximum values) and were based on scores ranging from 0 (absent) to 1 (present). All parameters  

listed were part of the 59-parameter dataset.  ap < 0.05 with comparisons made between Clusters 2 and 3 or Clusters 5 and 6 or Clusters 7 and 8.  

 



Table 6.  Parameter Scores for Glomeruli Evaluated by Immunofluorescence Microscopy 

 
PATTERN OR INJURY Cluster 1 

(Control) 

Cluster 2 

(FSGS) 

Cluster 3 

(FSGS) 

Cluster 4 

(Amyloidosis) 

Cluster 5 

(MPGN) 

Cluster 6 

(MPGN) 

Cluster 7 

(MGN) 

Cluster 8 

(MGN) 

IgG mesangium 0.0 

(0.0-1.0) 

1.0 

(0.0-2.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

1.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 

0.5 

(0.0-2.0) 

IgG capillary wall 0.0 
(0.0-0.0) 

0.0 
(0.0-2.0) 

0.0 
(0.0-1.0) 

0.0 
(0.0-1.0) 

2.0 
(0.0-2.0) 

2.0 
(1.0-2.0) 

2.0 
(1.0-2.0) 

2.0 
(1.0-2.0) 

IgM mesangium 1.0 

(1.0-2.0) 

2.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 

1.5 

(0.0-2.0) 

IgM capillary wall 0.0 

(0.0-2.0) 
1.0a 

(0.0-2.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

1.5 

(0.0-2.0) 

2.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 

1.5 

(0.0-2.0) 

IgA mesangium 0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

IgA capillary wall 0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-1.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

C3 mesangium 0.0 

(0.0-1.0) 

 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

2.0 

(0.0-2.0) 

1.0 

(0.0-2.0) 

C3 capillary wall 0.0 

(0.0-0.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-2.0) 

0.0 

(0.0-1.0) 

2.0 

(0.0-2.0) 

2.0 

(1.0-2.0) 

2.0 

(1.0-2.0) 

2.0 

(0.0-2.0) 

Values were median scores with (Minimum and Maximum values) and were based on the absence or presence of a fluorescent granular pattern ranging 

from 0-2 (0, absent; 1, equivocal; 2, present). All parameters listed were part of the 59-parameter dataset.  ap < 0.05 with comparisons made between 

Cluster 2 and 3, Cluster 5 and 6, and Cluster 7 and 8. 

 

 



 

Table 7. Summary of clinical data  

All control dogs were female greyhounds. 
1
Hypertension as defined in the text. UPC: urine protein:creatinine ratio (reference interval, <0.5), SCr: serum 

creatinine concentration (reference interval, 0.5-1.5mg/dL), SAlb: serum albumin concentration (reference interval, 2.5-4.0g/dL). 

 

 
 

CLINICAL VARIABLE 

 

Cluster 1 

Control 

n=5 

Cluster 2 

(FSGS) 

n=13 

Cluster 3 

(FSGS) 

n=13 

Cluster 4 

(Amyloidosis) 

n=12 

Cluster 5 

(MPGN) 

n=10 

Cluster 6 

(MPGN) 

n=13 

Cluster 7 

(MGN) 

n=13 

Cluster 8 

(MGN) 

n=10 

UPC         

Median 0.13 5.6 8.7 9.8 16.1 9.6 8.9 16.0 

Min - Max 0.05 – 0.25 2.6 - 26.3  5.1 – 24.5 6.2 – 26.1 6.9 – 23.6 3.7 – 30.1 3.4 – 21.9 4.2 – 42.7 

         

SCr (mg/dL)         

    Median 1.6 1.1 1.3 1.2 3.6 1.6 1.1 1.0 

    Min - Max 1.1 – 1.8 0.5 – 4.8 0.5 – 4.2 0.6 – 8.6 1.0 – 5.7 0.7 – 3.6 0.8 – 3.7 0.6 – 4.2 

         

SAlb (g/dL)          

Median 3.8 2.3 2.4 1.8 1.4 1.6 1.6 1.6 

    Min - Max 3.6 – 4.4 1.3 – 3.8 1.5 – 4.1 0.9 – 2.4 1.0 – 1.9 1.1 – 3.1 1.1 – 3.1 0.7 – 2.7 

         

Hypertension
1
         

No.  hypertensive 4 of 5 5 of 13  9 of 13 3
 
of 11 9 of 10 10

 
of 12 4

 
of 10 6

 
of 8 



Figure 1. Dendrogram of 89 patients based on cluster analysis evaluation of 114 parameters related 

to all compartments of the kidney. Evaluation was performed by light microscopy, transmission 

electron microscopy, and immunofluorescence microscopy. The numbered (1–8) horizontal bar 

shows the level of discrimination that delineates the 8 clusters identified. Cluster 1 was composed of 

5 control animals with normal glomerular morphology, clinical findings, and laboratory values. 

Clusters 2 and 3 comprised cases with glomerulosclerosis. Interestingly, cases in cluster 2 shared 

more similarities to controls in cluster 1 than to cases in cluster 3, as demonstrated by the presence 

of a connecting link between clusters 1 and 2. Cluster 4 comprised cases of glomerular amyloidosis. 

Cases in clusters 5 and 6 and clusters 7 and 8 had patterns that were characteristic of 

membranoproliferative glomerulonephritis and membranous glomerulonephropathy, respectively. 

 

 

 

 

 

 

 

 

 



Figure 2. Dendrogram of 89 patients based on cluster analysis of 59 parameters related to all 

compartments of the kidney and evaluated by light microscopy, transmission electron microscopy, 

and immunofluorescence microscopy. The numbered (1–8) horizontal bar shows the level of 

discrimination that delineates the 8 clusters identified. The star indicates a case that moved from 

cluster 6 in the 114-parameter dendrogram to cluster 7 in the 59-parameter dendrogram. 

 

  



Figure 3. Evaluation of 35 light microscopic parameters derived from the 59-parameter data set. The 

numbered (1–8) horizontal bar shows the level of discrimination that delineates the 8 clusters 

identified. Ovals indicate cases that moved from clusters 7 and 8 of the 59-parameter data set 

(represented by Fig. 2) to clusters 2 and 3 of the 35-parameter data set. Rectangles indicate cases 

that moved from clusters 2 and 3 of the 59-parameter data set to cluster 5 of the 35-parameter data 

set. 

 

  



Figures 4–9. Normal glomerulus, control dog, cluster 1. Figures 4–7. The glomerulus is normocellular; 

mesangium is not expanded; and the glomerular basement membrane is of normal thickness with a 

smooth outer contour. There is mild thickening and splitting of the basement membrane of Bowman 

capsule. Figure 4. Hematoxylin and eosin. Figure 5. Periodic acid–Schiff reaction. Figure 6. Masson 

trichrome. Figure 7. Jones methenamine silver. Figure 8. Normal glomerular capillary loops from the 

same dog. Capillary lumens are open, and endothelial cells are at the base of the capillary loops. 

Podocyte foot processes are perpendicularly oriented along the capillary walls. One capillary loop in 

upper-right corner has subendothelial widening. Bar ¼ 2 mm. Transmission electron microscopy. 

Figure 9. Immunofluorescence for IgM shows scattered, equivocal staining at the periphery of the 

tuft 

 



Figures 10–15. Focal segmental glomerulosclerosis, dog, cluster 3. Figures 10–13. There is segmental 

consolidation of capillary lumens by extracellular matrix and multiple synechiae (arrows). Some 

parietal epithelium and podocytes are hypertrophied. Figure 10. Hematoxylin and eosin. Figure 11. 

Periodic acid–Schiff reaction. Figure 12. There is moderate periglomerular fibrosis (*). Masson 

trichrome. Figure 13. Jones methenamine silver. Figure 14. Glomerulus from the same dog. There is 

global effacement of podocyte foot processes (arrowheads) and swelling of podocyte cytoplasm 

such that the urinary space cannot be identified. Bar ¼ 2 mm. Transmission electron microscopy. 

Figure 15. Immunofluorescence for IgG is negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 16–23. Glomerular amyloidosis, dog, cluster 4. Figure 16. There is expansion of the 

mesangium by eosinophilic material. Hematoxylin and eosin. Figure 17. The material appears waxy 

pink. Periodic acid–Schiff reaction. Figure 18. The material is mottled blue to peach. Masson 

trichrome. Figure 19. The material does not take up silver. Jones methenamine silver. Figure 20. The 

material is congophilic. Congo red. Figure 21. The material demonstrates apple green birefringence. 

Congo red viewed with polarized light. Figure 22. Glomerulus from the same dog. The mesangium is 

expanded by amorphous electron-dense material (*). Bar ¼ 5 mm. Transmission electron 

microscopy. Figure 23. Higher magnification of the same glomerulus demonstrates amyloid fibrils 

organized into spikelike projections along capillary wall. There is podocyte foot process effacement. 

Bar ¼ 1 mm. Transmission electron microscopy 

 

  



Figures 24–29. Membranoproliferative glomerulonephritis, dog, cluster 5. Figures 24, 25. There are 

global mesangial hypercellularity and segmental endocapillary hypercellularity. Capillary lumens are 

compressed by the expanded mesangium, thickened glomerular basement membrane (GBM), 

swollen endothelial cells, and interposed mesangial cells. Figure 24. Hematoxylin and eosin. Figure 

25. Periodic acid–Schiff reaction. Figure 26. There is peach to orange material in the mesangium and 

capillary walls (hyalinosis). Masson trichrome. Figure 27. There are double contours of the GBM. 

Small synechiae are present. Jones methenamine silver. Figure 28. Glomerulus from the same dog. 

The GBM is thickened due to the presence of variably electron-dense deposits in a subendothelial 

location. There is endothelial swelling and podocyte foot process effacement. Bar ¼ 2 mm. 

Transmission electron microscopy. Figure 29. Immunofluorescence for IgG shows unequivocal 

granular staining along capillary loops and mesangium. 

 



Figures 30–35. Membranous glomerulonephropathy, dog, cluster 7. Figures 30, 31. There is mild 

segmental mesangial hypercellularity and moderate thickening of the capillary walls. Podocytes are 

markedly hypertrophied. Figure 30. Hematoxylin and eosin. Figure 31. Periodic acid–Schiff reaction. 

Figure 32. There are regularly spaced red nodules along the abluminal surface of the capillary walls, 

consistent with immune deposits (arrows). Masson trichrome. Figure 33. There are ‘‘spikes’’ and 

‘‘holes’’ along the abluminal surface. Jones methenamine silver. Figure 34. Glomerulus from the 

same dog. There are numerous electron dense deposits (*) on the abluminal surface of the capillary 

wall, some of which have a moth-eaten appearance indicative of dissolution. Deposits are separated 

by spikes (arrows) or encircled by the glomerular basement membrane (arrowhead). Podocyte foot 

processes are globally effaced, and microvillus transformation of podocyte cytoplasm is prominent. 

Bar¼ 2 mm. Transmission electron microscopy.Figure 35. Immunofluorescence for IgG shows 

unequivocal granular staining along capillary loops. 

 

 




