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ABSTRACT 7 

Concurrent with global economic development in the last 50 years, the opportunities for the 8 

spread of existing diseases, and emergence of new infectious pathogens, have increased 9 

substantially. The activities associated with the enormously intensified global connectivity 10 

have resulted in large amounts of data being generated, which in turn provides opportunities 11 

for generating knowledge that will allow more effective management of animal and human 12 

health risks. This so-called Big Data has, more recently, been accompanied by the Internet of 13 

Things which highlights the increasing presence of a wide range of sensors, interconnected 14 

via the Internet. Analysis of this data needs to exploit its complexity, accommodate variation 15 

in data quality and should take advantage of its spatial and temporal dimensions, where 16 

available. Apart from the development of hardware technologies and 17 

networking/communication infrastructure, it is necessary to develop appropriate data 18 

management tools that make this data accessible for analysis. This includes relational 19 

databases, geographical information systems and most recently, cloud-based data storage 20 

such as Hadoop distributed file systems. While the development in analytical methodologies 21 

has not quite caught up with the data deluge, important advances have been made in a 22 

number of areas, including spatial and temporal data analysis where the spectrum of 23 

analytical methods ranges from visualization and exploratory analysis to modelling. While 24 

there used to be a primary focus on statistical science in terms of methodological 25 

development for data analysis, the newly emerged discipline of data science is a reflection of 26 

the challenges presented by the need to integrate diverse data sources and exploit them using 27 

novel data- and knowledge-driven modelling methods while simultaneously recognising the 28 

value of quantitative as well as qualitative analytical approaches. Machine learning regression 29 

methods, which are more robust and can handle large datasets faster than classical regression 30 

approaches, are now also used to analyse spatial and spatio-temporal data. Multi-criteria 31 
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decision analysis methods have gained more widespread acceptance, also for spatial analysis, 32 

in the context of availability of large numbers of diverse data sources not suitable for 33 

integrated statistical analysis, published scientific information and the recognition for the 34 

need to use expert opinion to fill knowledge gaps. The opportunities for more effective 35 

prevention, detection and control of animal health threats arising from these developments 36 

are immense, but not without risks given the different types, and much higher frequency of 37 

biases, associated with these data. 38 

Keywords: 39 

Big data; internet of things; data science; visualization; exploratory analysis; modelling, 40 

spatial analysis 41 
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 43 

1. Introduction 44 

Economic and technological developments in the last 50 years have led to global eco-social 45 

system changes that greatly facilitate the emergence and spread of infectious diseases in both 46 

animals and humans. This represents a major challenge for the management of infectious 47 

disease risks and is likely to require a paradigm shift in analytical approaches rather than an 48 

evolution of existing ones. This change in approach is reflected in the widespread recognition 49 

of the need to adopt inter- and transdisciplinary approaches in risk research and management. 50 

In addition, the digital revolution has provided major opportunities with respect to data 51 

collection and analysis. This has now evolved into the Internet of Things where rapidly 52 

increasing types and numbers of physical objects are connected through information 53 

networks. The so-called Industry 4.0 reflects a vision for how the industrial sector may 54 

respond to the tight integration between the physical and digital world through the 55 

implementation of smart value chains.  56 

In the field of public health, the concepts of smart health, mHealth and eHealth can be seen as 57 

the starting point for these developments and, together with the recent increase in popularity 58 

of wearable sensors, have boosted the development of associated technologies. However, the 59 

sensors, other measurement devices and data sources are of limited use if the raw data they 60 

generate are not converted into information that can inform decision making, which has led to 61 

the need for  suitable data management and analytical methods that can handle the resulting 62 

large, heterogenous data.  63 

In animal health in general, and veterinary epidemiology specifically, the established 64 

methodological frameworks provide guidance for research of cause-effect relationships based 65 

on data generated through a priori designed field and laboratory studies. This review explores 66 
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recent developments, and future directions, for spatial and temporal analysis in support of 67 

managing complex animal health problems, starting with the different opportunities offered 68 

by new data sources, followed by a discussion of the spatio-temporal approaches available for 69 

analysing Big Data. 70 

2. The data revolution: from the Internet via Big Data to the Internet of Things 71 

Scientific approaches aimed at improving our understanding of the complexity of the systems 72 

of which animal and human diseases form a part, usually involve data collection. However, 73 

the way in which data are generated has changed radically over the last 30 years, mainly as a 74 

result of the emergence of electronic methods for measuring, recording, storing and 75 

distributing data. As part of this development, the Internet now forms the backbone of a 76 

globally-reaching information network. The resulting Big Data has been embraced by the 77 

business community but also represents an important opportunity for science.  78 

Big data are generally characterized by 3Vs: volume (relative magnitude of dataset), velocity 79 

(rate at which new data are generated) and variety (heterogenous structure of dataset [e.g. 80 

text, video, audio])  (Gandomi and Haider, 2015). A fourth ‘v’ frequently used to describe 81 

Big Data is veracity which acknowledges the inherent uncertainty frequently associated with, 82 

in particular, web-based Big Data and the corresponding need for analytical approaches that 83 

are able to account for this unreliability (Gandomi and Haider, 2015). Traditional database 84 

management systems based on tabular or relational data management structures are not suited 85 

to dealing with Big Data as most of it is unstructured. Cloud-based data storage using the 86 

Apache Hadoop® distributed file system (http://hadoop.apache.org) has been developed to 87 

allow efficient management of such data (O’Driscoll et al., 2013; Fernández et al., 2014).  88 

A data mining approach was used to examine the frequency of particular words from a vast 89 

number of digitised books published since the 1500s and their potential association with 90 



6 
 

historical events (Michel et al., 2011); for example, there was an association between the 91 

frequency of the word ‘influenza’ and known historical occurrence of influenza epidemics. A 92 

similar methodology was used to explore the use of search term data for prediction of flu 93 

trends (Ginsberg et al., 2009a) based on the assumption that changes in information and 94 

communication patterns on the Internet can act as early warning of changes in population 95 

health (Wilson and Brownstein, 2009). This resulted in the development of the search-term 96 

surveillance system, Google Flu Trends (GFT) (http://www.google.org/flutrends); by 97 

combining data-mining of Google search queries and statistical modelling, GFT provides a 98 

baseline indicator of the trend or changes in the rate of influenza, thereby providing estimates 99 

of weekly regional US influenza activity with a reporting lag of only one day compared with 100 

the 1-2 week delays associated with the CDC Influenza Sentinel Provider Surveillance 101 

reports (Ginsberg et al., 2009b). However, the results generated by this algorithm have been 102 

the subject of controversy as predictions were incorrect at specific time points when they 103 

particularly mattered (Butler, 2013; Lazer et al., 2014). The fact remains though, that the 104 

relative immediacy of web-based  surveillance systems allows for much quicker targeting of 105 

infection hot-spots in pandemic situations, as was done by companies such as Google, in the 106 

recent H1N1 crisis (Chew and Eysenbach, 2010; Signorini et al., 2011; St Louis and Zorlu, 107 

2012). 108 

Although search-term surveillance systems such as GFT are currently best suited to track 109 

disease activity in developed countries [the system requires large populations of web-search 110 

users in order to be most effective (Carneiro and Mylonakis, 2009) and a robust existing 111 

surveillance system to provide data for calibration (Wilson et al., 2009)], retrospective 112 

analysis of Google Trend’s search frequency for the term ‘Ebola’ in Guinea, Liberia and 113 

Sierra Leone showed a moderate-to-high correlation with epidemic curves for the outbreak in 114 

those countries (Milinovich et al., 2015) suggesting that web-based surveillance systems have 115 
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the potential to form an early-warning system in developing countries. However, systems 116 

which mine secondary (e.g. news reports) rather than primary web-based data sources (e.g. 117 

search queries) are possibly better suited for disease surveillance in developing countries. 118 

Examples of such systems include BioCaster (Osborne et al., 2001; Collier et al., 2006; 119 

Collier et al., 2008), EpiSPIDER (Tolentino et al., 2007; Keller et al., 2009), HealthMap 120 

(Osei-Bryson, 2003; Brownstein et al., 2008; Freifeld et al., 2008; Brownstein et al., 2009; 121 

Keller et al., 2009; Wilson and Brownstein, 2009; Brownstein et al., 2010), ProMED-mail 122 

(Ostle et al., 1986; Cowen et al., 2006; Tolentino et al., 2007; Zeldenrust et al., 2008) and 123 

Canada’s Global Public Health Intelligence Network (GPHIN) (Mykhalovskiy and Weir, 124 

2006). 125 

The value of such systems for flagging potential health threats is evidenced by the fact that 126 

GPHIN identified the 2002 severe acute respiratory syndrome (SARS) outbreak in 127 

Guangdong Province, China, more than two months before the World Health Organisation’s 128 

(WHO) official announcement (Mykhalovskiy and Weir, 2006). Similarly, HealthMap 129 

identified news stories reporting a strange fever in Guinea 9 days before official notification 130 

of the 2014 West Africa Ebola outbreak (Milinovich et al., 2015). Although the inadequate 131 

initial response by the international community to the 2014 Ebola outbreak has been 132 

highlighted by some as a failure of Big Data analytical approaches for purposes of early 133 

warning (Leetaru, 2014; Milinovich et al., 2015), the fact remains that the primary value of 134 

such systems currently lies in their ability to flag events that may warrant further 135 

investigation rather than acting as the primary surveillance system (Wilson and Brownstein, 136 

2009; Hartley et al., 2013). As such, although web-based surveillance systems are still a long 137 

way from replacing traditional surveillance methods, they provide a useful complement to 138 

conventional approaches (Milinovich et al., 2014), to the extent that they have become an 139 

important component of the influenza surveillance scene. For example, WHO’s Global 140 
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Outbreak Alert and Response Network use such data as part of their day-to-day surveillance 141 

activities (Grein et al., 2000; Heymann and Rodier, 2001) and are authorized to act on this 142 

information (Wilson et al., 2008). Moving from surveillance to delivery of health care, 143 

precision medicine aims to utilise Big Data for the purpose of optimising the use of 144 

diagnostic tools, therapeutics and preventive management (Anonymous, 2011; Collins and 145 

Varmus, 2015). 146 

More recently, an increasing number of sensor and other measurement devices have become 147 

connected to the internet. These have given rise to the so-called Internet of Things 148 

(Anonymous, 2014b; Kamel Boulos and Al-Shorbaji, 2014). It also includes data collected 149 

through participatory, crowdsourcing or citizen science mechanisms (Heipke, 2010; Kamel 150 

Boulos et al., 2011; Chunara et al., 2013). The opportunities and challenges arising from the 151 

Internet of Things are only just being recognised by manufacturing industries, and this has 152 

been referred to as the fourth industrial revolution or Industry 4.0 (Lee et al., 2014). In animal 153 

production, precision livestock farming is considered to have significant potential to improve 154 

animal health, production and welfare. While sensor technology is already used, for example, 155 

in dairy cattle feeding, mastitis, fertility, locomotion and metabolism, the integration and 156 

analysis of the data for decision making still needs further development (Rutten et al., 2013; 157 

Mortari and Lorenzelli, 2014). It is very likely that more widespread utilisation and better 158 

adaptation of these digital technologies will provide an opportunity for more effective 159 

traceability of livestock and their products and animal health surveillance. However, to 160 

effectively use Big Data and that produced by the Internet of Things requires a change in 161 

analytical approach which has led to the development of Data Science. 162 

3. Data Science 163 

While the amount of data available for analysis continues to increase exponentially, the 164 

development of suitable analytical tools for converting this raw data into useful knowledge 165 
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has been much slower (Anonymous, 2013; Kambatla et al., 2014; Gandomi and Haider, 166 

2015). While statistical science has long been the discipline providing the primary skills and 167 

tools needed for data analysis, the inherent characteristics of Big Data mean that data analysts 168 

should now also have advanced computer science skills in order to effectively convert the 169 

variety of data types and sources into knowledge (Wing, 2008; Bell et al., 2009; Porter et al., 170 

2012). An extreme interpretation of this new situation was expressed by the Editor-in-Chief 171 

of Wired Magazine in an article entitled “The end of theory - Will the Data Deluge Makes the 172 

Scientific Method Obsolete?” (Anderson, 2008). He suggested that in the Petabyte Age, 173 

hypothesis-driven research would become irrelevant and be replaced by mining of data for 174 

associations. This extreme view has resulted in some debate (Norvig, 2009; Pigliucci, 2009; 175 

Schutt and O'Neil, 2013; Faghmous and Kumar, 2014; Mayer-Schönberger and Cukier, 176 

2014).  177 

To more effectively deal with Big Data, and the associated analysis challenges, the new 178 

discipline of data science has been established which explicitly requires a multidisciplinary 179 

team approach (Dhar, 2013; Schutt and O'Neil, 2013). The four-bubble Data Science Venn 180 

diagram adapted from the three-bubble original by Drew Conway reflects the 181 

interdependence between required disciplines (Malak, 2014). As such, it emphasizes the 182 

importance of integrating computer science, statistical science, specialist domain expertise 183 

and social science. Conway had not explicitly separated social science from specialist domain 184 

expertise, but it seems justified to separate it out given that human behaviour has a major 185 

influence on the characteristics of most data sources (Conway, 2010). Arguably, this 186 

perspective is very similar to the interdisciplinary approach that underpins One Health and 187 

Ecohealth.  188 

Gartner Inc, an international information technology research and advisory company, 189 

annually evaluates the maturity of emerging technologies and presents their conclusions 190 
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using the ‘Gartner Hype Cycle’. By representing time on the x-axis and expectations on the 191 

y-axis, they define five phases through which a technology will typically pass before it 192 

potentially achieves widespread adoption; starting with the Innovation Trigger phase and 193 

rapidly climbing the Peak of Inflated Expectations, the cycle then descends into the Trough 194 

of Disillusionment (with respect to expectations). From there it may ascend the Slope of 195 

Enlightenment before finally reaching the Plateau of Productivity. As of 2014, the Gartner 196 

Hype Cycle considered data science (entering the Peak of Inflated Expectations) to be lagging 197 

behind both the Internet of Things (midway through the Peak) and Big Data (entering the 198 

Trough of Disillusionment) (Anonymous, 2014a) - a trend that mirrors the development 199 

spatial analytical methods suitable for taking advantage of the opportunities offered by 200 

georeferenced Big Data. 201 

4. Spatial and Spatio-temporal Analysis 202 

The analysis framework based on Pfeiffer et al (2008), presented in a slightly updated format 203 

in Fig. 1, is still relevant for structuring the different spatial and spatio-temporal 204 

epidemiological analytical methods. These are based primarily on classical statistical theory, 205 

with the addition of Bayesian methods to address the issue of spatial and temporal 206 

dependence. However, analysis of Big Data requires analytical algorithms which are 207 

statistically robust (i.e. non-parametric) and capable of efficiently analysing very large 208 

datasets. The developments for epidemiological analyses have, so far, been primarily through 209 

the inclusion of machine learning regression methods as part of the modelling methods, 210 

whereas in visualization and exploration it has been primarily through more effective use of 211 

interfaces and flexible software environments. Below, we discuss developments for each of 212 

the three analysis categories of the framework. 213 
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4.1 Visualization 214 

Visualization, whether as part of the analysis process or communication purposes, has always 215 

been a particular strength of spatial analysis and so it is not surprising that the biggest 216 

advances in the field of spatial analysis, with respect to Big Data, have occurred in this area. 217 

Big Data analytics emphasizes the use of interactive visualisation methods using charts and 218 

maps, so that analysts and decision makers can quickly obtain insights from the most up-to-219 

date data (e.g. GAPMINDER; http://www.gapminder.org).  220 

While geographical information system (GIS) software remains at the forefront for 221 

manipulating and producing complex visualisations of spatio-temporal data, the advent of 222 

interactive digital maps and virtual globes such as Google Maps and Google Earth has 223 

encouraged simple visualisation of disease data in real time, as illustrated by the integration 224 

of such digital platforms into an ever-expanding number of animal and public-health projects 225 

and platforms. For example, HealthMap (http://www.healthmap.org), together with its mobile 226 

app Outbreaks Near Me, provides real-time surveillance of emerging public health threats 227 

(Brownstein et al., 2008; Freifeld et al., 2008) while Nature’s use of the platform to track the 228 

global spatio-temporal spread of highly pathogenic avian influenza H5N1 (Paul and White, 229 

1973; Butler, 2006) won the Association of Online Publishers (AOP) Use of a New Digital 230 

Platform Award in 2006.  231 

Google Earth has also proved valuable for visualising disease data from informal settlements 232 

or rural areas in developing countries where the lack of geolocation infrastructure such as 233 

road names or house numbers precludes the use of conventional mapping software for 234 

visualising disease data; in a modern day reprise of John Snow’s 1856 cholera investigation, 235 

use of the digital platform allowed Baker et al. (2011) to map the spread of a typhoid 236 

outbreak in Kathmandu – where street names are not used - and trace the cause of the 237 

epidemic to low-lying public water resources. 238 

http://www.gapminder.org/
http://www.healthmap.org/
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In addition to web-based mapping of disease, a related field is that of volunteered geographic 239 

information (VGI) (Goodchild, 2007; Goodchild and Li, 2012) or crowdsourced cartography 240 

(Dodge and Kitchin, 2013) which uses volunteers to create maps. A well-known example of 241 

VGI is OpenStreetMap (OSM), an open, online, editable map of the world being created by 242 

volunteers using a combination of local knowledge, GPS tracks and aerial imagery. During 243 

the 2014 West Africa Ebola crisis when, faced with only a few rudimentary topographical 244 

maps of Guinea, but no useful maps upon which to base control and surveillance efforts, 245 

personnel of Médecins Sans Frontières (MSF) enlisted the help of the Humanitarian OSM 246 

Team (HOT) - an extension of OSM - to map Guéckédou - the main city in Guinea affected 247 

by the outbreak (Hodson, 2014). Within 20 hours of receiving the request, online volunteers 248 

had mapped three cities in Guinea based on satellite imagery of the area, populating them 249 

with over 100 000 buildings - information that proved crucial for door-to-door canvassing of 250 

inhabitants and mapping the spread of disease. Other examples of crowdsourced cartography 251 

include Geo-Wiki a global network of volunteers working to improve the quality of global 252 

land-cover maps. 253 

In a systematic review of visualization and analytics for infectious disease research, Carroll et 254 

al (2014) identified limitations of visualization tools in terms of their utility and usability for 255 

end users, including risk of misinterpretation of choropleth maps by not adequately showing 256 

missing data and uncertainty. They report a need for interdisciplinary tool development to 257 

allow valid integrated analysis of data sourced from different areas such as molecular, 258 

network and population data. Similarly, not all crowdsourced information is of equal quality; 259 

some data are of higher quality than others just as some contributors are consistently better 260 

than others (Haklay, 2010). The inclusion of robust measures of quality for VGI would be 261 

useful to indicate the level of confidence associated with each piece of information, and 262 

although traditional statistical concepts of uncertainty and bias are hard to apply to VGI, 263 
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other options are available. For example, See et al. (2013) found that when classifying land-264 

cover, volunteer accuracy appeared to be higher when responses for a given location were 265 

more consistent and when the volunteers indicated higher confidence in their responses, 266 

suggesting that these additional pieces of information could be used to develop associated 267 

robust measures of quality. Additional possibilities include the application of Bayesian 268 

probability or Dempster-Shafer theory (Eastman, 2009) to provide a measure of confidence. 269 

Another area that has received significant attention is the analysis of molecular, movement 270 

and network data (Brunker et al., 2012; Okabe and Sugihara, 2012; Andrienko and 271 

Andrienko, 2013; Carrel and Emch, 2013). In this context, the utility of mobile phone call 272 

location records for infectious disease research and policy development has been of recent 273 

interest (Tatem, 2014; Wesolowski et al., 2014b). For example, mobile call location records 274 

were used during the 2014 Ebola outbreak to visualize and quantify the movements of a 275 

sample of the human population in West Africa (Wesolowski et al., 2014a), effectively 276 

visualising the spatial catchment areas of urban centres which reached even the more distant 277 

locations of the region.  278 

4.2 Exploration 279 

Exploratory analysis uses statistical methods to test the likelihood that an observed spatial or 280 

spatio-temporal pattern is a result of chance variation. Amongst these, the spatial and space-281 

time scan statistic are probably the most often used cluster detection methods. In recent years, 282 

the scan statistic has been further developed to incorporate diverse spatial structures and a 283 

range of outcome variables with different measurement scales (Correa et al., 2014; Costa and 284 

Kulldorff, 2014; Murray et al., 2014; Prates et al., 2014).  285 

Similarly, interpolation methods for spatial data, such as kriging, have also been expanded to 286 

accommodate different types of outcome variables such as ordinal or Poisson measurement 287 
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scales (Li and Heap, 2014; Oliver and Webster, 2014). However, kernel smoothing - used to 288 

convert point data into smooth raster maps and an effective tool for visualizing continuous 289 

spatial variation in risk and rates - still requires continuing methodological development, 290 

particularly in the selection of appropriate bandwidths for kernel functions (Sarojinie 291 

Fernando and Hazelton, 2014).  292 

4.3 Modelling 293 

Modelling approaches can be broadly categorised into data- and knowledge-driven methods 294 

(Pfeiffer et al., 2008; Stevens and Pfeiffer, 2011). The former use a dataset comprising 295 

several risk factors together with an outcome variable, and risk-factor effect estimates are 296 

usually obtained using regression methods. Knowledge-driven methods, on the other hand, 297 

require prior definition of the risk-factor variables and to define the relationship between 298 

individual risk factors and the outcome variable.  Data-driven approaches can be further sub-299 

divided depending on whether they require both disease presence and absence data to 300 

calibrate the model, or presence-only data.  301 

Amongst presence-absence data-driven methods, Bayesian approaches used to be a major 302 

focus of development but these have recently been complemented by machine learning 303 

methods which are better able to deal with the large datasets of the Big Data era (Vatsavai et 304 

al., 2012; Lawson, 2014; Peters et al., 2014; van Zyl, 2014a, b; Ziegler and König, 2014). 305 

Machine learning regression modelling used to consist primarily of classification tree 306 

analysis (Breiman et al (1984)) but in recent years this approach has been more or less 307 

replaced by random forest and boosted regression tree methods. These approaches are 308 

considered to be less affected by missing values, non-linearity, autocorrelation, lack of 309 

independence and distributional assumptions than parametric methods. In addition, several 310 

comparative reviews of the performance of the different species distribution modelling 311 

methods (Hirzel et al (2006), Elith and Graham (2009), Franca and Cabral (2015) suggest 312 
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that, in general, tree-based regression methods tend to perform slightly better than other 313 

spatial regression approaches. Requiring large datasets to be able to produce generalizable 314 

inferences, these methods are ideally suited for analysing Big Data.  315 

Boosted regression trees are being used with increasing frequency to predict species 316 

distributions and disease risk (Hay et al., 2006; Martin et al., 2011; Gilbert et al., 2014; Pigott 317 

et al., 2014), while Tatem et al (2014) used random forest regression tree analysis to generate 318 

risk maps for malaria occurrence and human movement flows based on mobile phone call 319 

location records to describe the spatial variation in malaria exportation/importation potential 320 

for Namibia. 321 

However, a common problem with disease regression modelling is that, while the outcome 322 

variable may consist of fairly reliable disease presence information, for a usually unknown 323 

number of space-time observations, absence of disease reporting may not reflect true absence 324 

of disease or absence data may not be available (e.g. surveillance data). This is also common 325 

in ecological species distribution modelling and has led to the development of different 326 

sampling approaches to generate pseudo- absence data  that can be used with regression 327 

methods requiring both presence and absence data, as well as the development of specific 328 

modelling techniques requiring presence-only data such as the ecological niche modelling 329 

(ENM) methods  including ecological niche factor analysis (ENFA), Genetic algorithm for 330 

rule-set production (GARP) and maximum entropy (Maxent) (Hirzel et al., 2002; Dormann et 331 

al., 2007; Elith and Leathwick, 2009; Hastie and Fithian, 2013). Requiring only disease 332 

presence data means that ENM methods can make use of the extensive disease occurrence 333 

data available in surveillance databases, and by extension, of web-based Big Data systems 334 

containing information on location of disease occurrence but lacking absence data. 335 
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Increased access to molecular information on hosts and pathogens has resulted in the 336 

emergence of the field of phylogeography which integrates geospatial with genetic data 337 

(Liang et al., 2010; Chan et al., 2011; Faria et al., 2011; Pybus et al., 2012; Carrel and Emch, 338 

2013; Alvarado-Serrano and Knowles, 2014). There are also now a number of examples of 339 

integrated analysis of spatial and social network data (Firestone et al., 2011; Giebultowicz et 340 

al., 2011; Firestone et al., 2012).  341 

Hay et al (2013) discussed the opportunities arising from taking advantage of Big Data 342 

through integrated analyses and emphasizes the need for dynamic, risk-mapping capability 343 

based on integrated analysis ranging from more static environmental to highly dynamic social 344 

media risk factor variables. 345 

While data-driven methods still dominate in spatial modelling, the use of knowledge-driven 346 

approaches has increased during the last ten years. This is particularly the case for dynamic 347 

modelling, but also for static approaches such as multi-criteria decision analysis (MCDA). A 348 

key characteristic of these modelling approaches is their emphasis on inter-disciplinarity in 349 

that system understanding generated by different disciplines needs to be integrated so that the 350 

particular modelling objectives can be meaningfully achieved. Big Data is unlikely to result 351 

in the demise of the need for use of expert opinion and integration of existing knowledge 352 

such as MCDA, particularly in the context of management of new and emerging risks.  353 

Use of knowledge-driven approaches and interpretation of results needs to recognise the 354 

potential impact of bias and underestimation of variability, given that the model structure is 355 

based on the opinion of experts and the parameters tend to also be based on expert opinion or 356 

generated by a variety of research activities. Malczeweski (2006) in his review of spatial 357 

MCDA notes that the methodology has been applied in many areas, particularly for land 358 

suitability analysis, and that it facilitated the development of participatory GIS. However, he 359 
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highlights that the methodologies are frequently used without taking account of the method’s 360 

underlying assumptions. More recently, Malczeweski (2010) and Hongoh et al (2011) 361 

emphasized the benefits of using spatially explicit MCDA to improve transparency and trans-362 

disciplinarity of decision making processes.  363 

In animal health, Clements et al (2006) and Stevens et al (2013) used spatial MCDA to 364 

generate suitability maps for Rift Valley fever for Africa and avian influenza H5N1 for Asia, 365 

respectively. Both applied Dempster-Shafer theory to explicitly express and propagate 366 

uncertainty in relation to knowledge about the underlying processes expressed in the decision 367 

rules. Glanville et al (2014) generated suitability maps for African swine fever for Africa and 368 

used Monte-Carlo sensitivity analysis to express uncertainty in relation to model outputs. 369 

Other animal health applications of spatial MCDA have addressed animal diseases such as 370 

African horse sickness in Spain and Rift Valley fever in Italy (Tran et al., 2013; Sanchez-371 

Matamoros et al., 2014). The increasing use of MCDA in the environmental sciences has 372 

resulted in further development of MCDA methodologies to reduce the influence of 373 

subjectivity of individual criteria weights on the risk score outcome (Yemshanov et al., 2013; 374 

Feizizadeh et al., 2014; Jankowski et al., 2014; Ligmann-Zielinska and Jankowski, 2014).  375 

5. Conclusions 376 

It is almost certain that in the near future humanity will have to deal with major infectious 377 

disease threats, largely as either a direct or indirect consequence of anthropogenic 378 

development. The technological changes associated with this development have, and will, 379 

generate opportunities for more effective management of current, and new and emerging 380 

infectious disease threats. Big Data, together with the Internet of Things, has introduced a 381 

new way of collecting and analysing data that is very different from the hypothesis-driven 382 

approaches previously accepted by the international scientific community as the primary 383 

mechanism for generating new scientific knowledge. Within the area of epidemiological 384 
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analysis of spatial and spatio-temporal data, Big Data associated technologies and data 385 

sources so far have had limited impact, primarily in the area of machine learning modelling 386 

methods, but also the recent use of mobile phone location records, molecular diagnostic and 387 

animal movement data. To more effectively harness the opportunities offered by these new 388 

digital technologies in animal and human health, an interdisciplinary approach will have to be 389 

embraced which, in addition to the various scientific domains associated with human, animal 390 

and environmental health, also includes computer science. This will result in a particularly 391 

interesting situation for epidemiologists whose scientific strength has been the integration of 392 

applied health sciences and the more theoretical and abstract methods underpinning statistical 393 

analysis, to which they could now add the role of acting as an interface with the computer 394 

science aspects of Big Data and the Internet of Things. By doing so they will be able to 395 

continue their substantial contribution to the understanding of cause-effect relationships in 396 

eco-social systems, and thereby expand the knowledge-base underpinning animal health risk 397 

management.  398 
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