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Aerodynamic performance and agility during flapping flight are determined by
the combination of wing shape and kinematics. The degree of morphological
and kinematic optimization is unknown and depends upon a large parameter
space. Aimed at providing an accurate and computationally inexpensive modelling
tool for flapping-wing aerodynamics, we propose a novel CFD (computational
fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the
aerodynamic forces on a flapping wing can be decomposed into quasi-steady forces
and parameterized based on CFD results. Using least-squares fitting, we determine a
set of proportional coefficients for the quasi-steady model relating wing kinematics
to instantaneous aerodynamic force and torque; we calculate power as the product
of quasi-steady torques and angular velocity. With the quasi-steady model fully and
independently parameterized on the basis of high-fidelity CFD modelling, it is capable
of predicting flapping-wing aerodynamic forces and power more accurately than the
conventional blade element model (BEM) does. The improvement can be attributed to,
for instance, taking into account the effects of the induced downwash and the wing
tip vortex on the force generation and power consumption. Our model is validated
by comparing the aerodynamics of a CFD model and the present quasi-steady model
using the example case of a hovering hawkmoth. This demonstrates that the CIQSM
outperforms the conventional BEM while remaining computationally cheap, and hence
can be an effective tool for revealing the mechanisms of optimization and control of
kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned
aerial systems.
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1. Introduction
Insects take to the air and manoeuvre in three-dimensional space by generating

finely tuned aerodynamic force with their flapping wings. While direct flow
visualization has played an important role in the field (e.g. Grodnitsky & Morozov
1993; Ellington et al. 1996; Srygley & Thomas 2002; Bomphrey et al. 2005;
Bomphrey 2012), the evaluation of aerodynamic performance through modelling
is necessary for comprehensive parameter sweeps and a deeper understanding of
flapping-wing aerodynamics.

A blade element model (BEM) with a quasi-steady assumption (that the forces
on a flapping wing are equal to those in steady motion at the same instantaneous
velocity and attitude of wing blades) has been used as a simple but robust tool for
several decades (Weis-Fogh 1973; Ellington 1984) though it was largely based on
steady fixed-wing theory. The BEM has been refined recently by using the lift and
drag coefficients of revolving wings (Dickinson, Lehmann & Sane 1999; Usherwood
& Ellington 2002) and by taking into account rotational circulation and added mass
(Dickinson et al. 1999; Sane & Dickinson 2002). More recently, Berman & Wang
(2007) generalized the BEM for more complicated wing kinematics and utilized the
model for optimizing flapping-wing kinematics. Whitney & Wood (2010) studied the
dynamics of passive wing rotation with a BEM across a range of kinematic parameters
and torsional flexibilities, pointing out the importance of torque due to the rotational
motion of the wing cross-section. Cheng & Deng (2011) expanded the applicability of
the BEM to free flight by taking into account the effect of the velocity due to rigid
body motion on the local wing attitude and velocity. Nabawy & Crowther (2014a,b)
combined actuator disc and lifting line theories to calculate the induced power factor,
and suggested an analytical method for modelling the aerodynamic performance of
insect-like flapping wings without the need for experimental data. The quasi-steady
model was validated by comparison with CFD predictions by Sun & Du (2003). Kang
& Shyy (2014) utilized a BEM for constructing a fluid–structure interaction model by
combining it with a structural model. These attempts improved the reliability of the
BEM and enabled application to various aerodynamic studies such as the dynamics
and control of flapping fliers (Hedrick & Daniel 2006; Bergou, Xu & Wang 2007;
Hedrick, Cheng & Deng 2009; Kim & Han 2014) and the optimization of wing
kinematics (Berman & Wang 2007; Zheng, Hedrick & Mittal 2013).

However, while its simplicity gives the BEM widespread utility and robustness,
its accuracy is still in question. For example, the BEM cannot take into account the
three-dimensional effects of the wing tip vortex, which can shift the spanwise position
of the centre of pressure. Alternatively, high-fidelity computational simulations based
on solving the Navier–Stokes equations (e.g. Sun & Du 2003; Liu 2009; Liu &
Aono 2009; Young et al. 2009) and dynamically scaled robots (e.g. Dickinson et al.
1999) have been used because of their ability to reveal detailed flow structures,
time-dependent aerodynamic forces and power requirements with high accuracy and
precision. Unfortunately, both high-fidelity modelling and robotics experiments require
considerable processing time so it is not practical to directly replace a BEM with
either of these approaches.

Here, we propose a novel aerodynamic model, called the CFD-informed quasi-
steady model (CIQSM), based on a hybrid of high- and low-fidelity models. To
construct the new quasi-steady model, we calculate a set of proportional coefficients
that relate wing kinematics to instantaneous aerodynamic force, torque and power
by least-squares fitting to high-fidelity CFD results. We use the case of a flapping
hawkmoth as an example with which to illustrate the utility of the model.
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FIGURE 1. (a) Definition of global coordinate system, stroke plane angle, body angle and
flapping angles: positional, feathering and elevation angles. (b,c) Definition of the wing-
fixed coordinate system viewed with (b) wing planform and (c) cross-section.

2. Methods
In this study, a flapping wing is assumed to be rigid, flat and rotating around a pivot

with respect to stroke plane as shown in figure 1, so that the wing position, and hence
wing velocity and acceleration, can be determined by the given flapping angles. The
flapping angles comprise feathering, elevation and positional angles (figure 1). The
positional angle is the position of the wing tip in the stroke plane. The elevation
angle is the deviation of the spanwise axis from the stroke plane; the wing tip traces a
figure-of-eight motion if the elevation angle is appropriately introduced. The feathering
angle is the angle of the wing rotation around the spanwise axis on the wing pivot,
for directly adjusting the geometric angle of attack. Note that the formulations of the
BEM with quasi-steady assumptions are mainly based on Sane & Dickinson (2002)
and Berman & Wang (2007) except for the rotational drag (as detailed below).

2.1. Blade element model of a flapping wing with quasi-steady assumption
The coordinate transformation matrix Tw−g that converts from the wing-fixed frame
(x, y, z) to the global frame (X, Y, Z) can be expressed as follows:

Tw−g =
1 0 0

0 cos θSP −sin θSP

0 sin θSP cos θSP


×
−sin φ cos α + cos φ sin θ sin α sin φ sin α + cos φ sin θ cos α cos φ cos θ

cos φ cos α + sin φ sin θ sin α −cos φ sin α + sin φ sin θ cos α sin φ cos θ
cos θ sin α cos θ cos α −sin θ

,
(2.1)

where θSP, φ, θ and α are the stroke plane angle, the positional angle, the elevation
angle and the feathering angle, respectively. The coordinate of a point on the axis
of feathering (0, 0, r) with respect to the global frame, and the angular velocity(
vx, vy, vz

)
and the acceleration

(
ax, ay, az

)
with respect to the wing-fixed frame can

be derived asX
Y
Z

= Tw−g

0
0
r

,
rvx

rvy
rvz

= T−1
w−g

Ẋ
Ẏ
Ż

,
rax

ray
raz

= T−1
w−g

Ẍ
Ÿ
Z̈

. (2.2a−c)
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Note that vz and az are zero in this study due to the rigid wing assumption. In this
study, the instantaneous aerodynamic forces Faero generated by the flapping wing
are represented as the sum of five quasi-steady forces: translational circulation Ftc,
translational drag Ftd, rotational circulation Frc, force due to added mass Fam and
rotational drag Frd:

Faero = Ftc + Ftd + Frc + Fam + Frd. (2.3)

The rotational drag is the drag force due to wing rotation around the spanwise
axis, and has been neglected in most previous studies. However, it must be taken
into account in order to calculate three-dimensional forces and power accurately as
discussed in the study by Whitney & Wood (2010), in which they pointed out that
rotational drag is crucial to accurately predicting the dynamic passive rotation of
flapping wings. The quasi-steady forces based on the BEM can be given as follows
(Sane & Dickinson 2002; Berman & Wang 2007; Whitney & Wood 2010):

Ftc = 1
2
ρ

∫ R

0
r2cl dr CL(AoA)|v|2, (2.4a)

Ftd = 1
2
ρ

∫ R

0
r2cl dr CD(AoA)|v|2, (2.4b)

Frc = ρ
∫ R

0
rc2

l dr CRLα̇|v|, (2.4c)

Fam = ρπ

4

∫ R

0
rc2

l dr (ay + α̇vx)+ ρ π

16

∫ R

0
c3

l dr α̈, (2.4d)

Frd = 1
2
ρ

∫ cle

cte

rlc2 dc CRDα̇|α̇|, (2.4e)

where ρ is the density of air, R is the wing length, cl and rl are the local chordwise
and spanwise lengths respectively, |v| is the absolute angular velocity given by√
v2

x + v2
y , AoA is the geometric angle of attack, and CL, CD, CRL and CRD are the

lift, drag, rotational lift and rotational drag coefficients, respectively. CL and CD are
functions of AoA, and can be, for instance, expressed as follows:

CL =CL1

(
AoA3 − π

2
AoA2

)
+CL2

(
AoA2 − π

2
AoA

)
, (2.5a)

CD =CDmin cos2 AoA+CDmax sin2 AoA. (2.5b)

Note that CL has been expressed as a sinusoidal function (e.g. CL = sin (2AoA)), but
here we employ more complicated forms of the CL–AoA curve as depicted in figure 2.

2.2. CFD-informed quasi-steady model
The quasi-steady forces in (2.4) can then be rewritten by breaking up each quasi-
steady force into the kinematics-related terms and the terms relating to the density
of fluid, the force coefficients and wing shape for translational circulation (Itc1, Itc2),
translational drag (Itd1, Itd2), rotational circulation (Irc), force due to added mass (Iam1,
Iam2, Iam3) and rotational drag (Ird) as follows:

Ftc = Itc1

(
AoA3 − π

2
AoA2

)
|v|2 + Itc2

(
AoA2 − π

2
AoA

)
|v|2, (2.6a)
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FIGURE 2. Parameterized lift-force coefficients as a function of geometric angle of attack.

Ftd = Itd1 cos2 (AoA) |v|2 + Itd2 sin2 (AoA) |v|2, (2.6b)
Frc = Ircα̇|v|, (2.6c)

Fam = Iam1ay + Iam2α̇vx + Iam3α̈, (2.6d)
Frd = Irdα̇|α̇|. (2.6e)

Accordingly, aerodynamic forces with respect to the global coordinate system can be
written in matrix form as follows:FX

FY
FZ

= Tw−g

Fx
Fy
0

= kf (φ, θ, α) · If , (2.7)

where kf represents wing kinematics parameters in (2.6) with respect to the global
coordinate system, and

If = [Itc1 Itc2 Itd1 Itd2 Irc Iam1 Iam2 Iam3 Ird]T . (2.8)

This relationship suggests that, under a quasi-steady assumption, the aerodynamic
force is proportional to nine variables defined by the instantaneous angular velocity
and acceleration of the wing and the wing’s attitude. The proportional coefficients If
are related to fluid density, force coefficients and wing shape, and are conventionally
derived by a BEM that assumes a wing to be a series of blades so that one can
calculate the shape coefficients analytically or numerically as in (2.4). However, we
are also able to obtain these coefficients by fitting the instantaneous aerodynamic
forces from a computational, or robotic, high-fidelity model. If we assume that FCFD
represents the instantaneous aerodynamic forces by some high-fidelity model, the sum
of the squared residuals,

εr =
(

FCFD − kf · If
)T (FCFD − kf · If

)=∑
i

(
FCFD,i − kf ,i · If

)2
, (2.9)

is minimized when
If =

(
kf kT

f

)−1 kf FT
CFD. (2.10)

Obviously, this model is capable of dealing with arbitrary wing kinematics once it is
established. The kf ,i and FCFD,i are both instantaneous values, and therefore even a
single simulation can give a lot of data points if the wing velocity and acceleration
are changed dynamically. In order to keep the amount of information from each CFD
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FIGURE 3. Definition of translational and rotational torque.

result constant, the forces and torques are interpolated so as to give 1000 points for
each wing beat cycle rather than the variable number of time steps that arise as a
consequence of varying the mean wing tip velocity. When multiple CFD results are
used for fitting, the kf and FCFD for each CFD result are simply concatenated. In
order to avoid overestimating the least-squares errors from a single case, the forces
or torques in each case are normalized by ρU2

ref c
2
m and ρU2

ref c
3
m, respectively, where

Uref is the mean wing tip velocity and cm is the mean chord length.
Aerodynamic power can be calculated as the dot product of aerodynamic torque and

angular velocity. The aerodynamic torque in BEM is normally calculated by summing
the products of the blade force based on the force coefficients and their distance from
wing base. However, the quasi-steady assumption results in a quadratic distribution
of the force per unit area, and therefore underestimates the three-dimensional effects
of the wing tip vortex. In order to take into account such effects, we chose to fit
the shape-dependent coefficients for aerodynamic torque separately, in a similar way
to that for estimating aerodynamic force, rather than directly using If for forces. As
the forces on the wing should induce both translational and rotational torques, the
number of coefficients is simply doubled. The locations where the quasi-steady forces
act are uncertain at the outset but defined in figure 3. The torque with respect to the
wing-fixed frame

(
Tx, Ty, Tz

)
can be expressed as follows:Tx

Ty
Tz

=
−rpFy

rpFx

cpFy

, (2.11)

where rp and cp are the spanwise and chordwise locations where the aerodynamic
force acts, respectively. Accordingly, aerodynamic torques with respect to the global
frame (TX, TY, TZ) can be written in matrix form as follows:TX

TY
TZ

= Tw−g

0 −1 0
1 0 0
0 0 0

 kfl · If rp + Tw−g

0 0 0
0 0 0
0 1 0

 kfl · If cp, (2.12)

where kfl stands for the kf with respect to wing-fixed frame so that kf = Tw−gkfl.
By defining the kinematics parameter for torque kt and shape-dependent parameter It,
(2.12) can be rewritten as follows:TX

TY
TZ

= ktt · Itt + krt · Irt = kt · It, (2.13)
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FIGURE 4. Computational model of a hovering hawkmoth. (a) Wing–body morphological
model for CFD and wing models for BEM with chordwise and spanwise blades, and (b)
kinematic models of a hovering hawkmoth. (c) Wing tip trajectories and wing attitude of a
realistic (black) and a modified (purple) wing kinematics. (d–h) Modified flapping angles.

where the subscripts tt and rt represent translational torque and rotational torque,
respectively. Once the instantaneous aerodynamic torques are known, we can fit It in
the same way as for aerodynamic force, as shown in (2.10). By using the aerodynamic
torque, the aerodynamic power is calculated as the product of the torques and angular
velocities as follows:

P = Tx
(
φ̇ cos θ sin α + θ̇ cos α

)+ Ty
(
φ̇ cos θ cos α − θ̇ sin α

)
+Tz

(
α̇ − φ̇ sin θ

)
. (2.14)

2.3. CFD model of a hovering hawkmoth
A high-fidelity simulation is essential for informing the quasi-steady model. This
study employs a versatile CFD-based dynamic flight simulator (Liu 2009) that easily
integrates the modelling of realistic wing–body morphology, realistic wing–body
kinematics and unsteady aerodynamics in insect flight. Details can be found in
previous publications (Liu 2009; Nakata & Liu 2012).

To validate the CIQSM, we have used a model of a hovering hawkmoth. The
morphology and kinematic patterns are constructed based on measurements from
previous studies (figure 4a,b; Willmott & Ellington 1997; Aono & Liu 2006). Each
wing is modelled separately as a single computational grid, and subsequently merged
with a global body grid. The parameters regarding wing shape, wing kinematics,
Reynolds number, reduced frequency (based on mean wing tip velocity) and
computational conditions are summarized in table 1.

The simulations are carried out with a range of wing kinematics that have been
modified from published data for a hovering hawkmoth (figure 4b; Willmott &
Ellington 1997; Aono & Liu 2006) in order to construct the quasi-steady model
and estimate its accuracy. As shown in figure 4, the range of wing kinematics is
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Parameter Value

Wing length (mm) 48.3
Mean chord length (mm) 18.3
Flapping frequency (Hz) 26.1
Wing beat amplitude (rad) 2
Reynolds number 6300
Reduced frequency 0.3

Grid 45× 65× 25 (wing)
45× 43× 65 (body)

Non-dimensional time step 0.01

TABLE 1. Computational parameters.

created by varying: (i) duration of the stroke reversal (or duration of constant angle
of attack; figure 4d), (ii) phase of feathering angle with respect to positional angle
(10 % delayed to 10 % advanced; figure 4e), (iii) amplitude of feathering angle (or
geometric angle of attack; 80 % to 120 % of realistic; figure 4f ), (iv) wing beat
amplitude (80–120 %; figure 4g), (v) wing beat frequency (80–120 %), (vi) amplitude
and waveform of elevation angle (0–200 %; figure 4h), so that the wing tips trace a
‘parabola’ trajectory or ‘figure-of-eight’ trajectory (figure 4c).

2.4. Validation
The error of the CIQSM is evaluated by subsampling the available CFD results so that
a probability distribution of the error can be estimated. First, the quasi-steady model is
constructed using a random subsample of the available CFD data. For validation, the
quasi-steady model only evaluates the aerodynamic performance of kinematic patterns
that are not used for its construction. Quasi-steady predictions are then compared with
the CFD results for same wing kinematics so that we can estimate the accuracy of
the model with various CFD-based input data for quasi-steady model construction.
The performance of the model, or error, is then evaluated by using two indices: the
absolute mean error ε and Pearson correlation coefficient (PCC) σ ,

ε = 1
k

k∑
i=1

∣∣∣∣∣ fi − f CFD
i

f CFD
i

∣∣∣∣∣ , σ = cov(f , f CFD)

std(f ) std(f CFD)
, (2.15a,b)

where k is the number of cases for prediction, fi and f CFD
i represent the quasi-steady

and CFD-based predictions, and cov and std represent the covariance and standard
deviation, respectively. For the PCC, f can be either the time series of the prediction
from one case or the mean values from multiple cases.

For the sake of comparison, we have also calculated the aerodynamic forces and
power with BEM. The aerodynamic forces are given by (2.4), in which CL and CD are
taken from Usherwood & Ellington (2002). The formulation of rotational circulation
and the force due to added mass are based on those by Sane & Dickinson (2002).
The coefficient of rotational circulation is given as CRL = 0.55 (Zheng et al. 2013).
The rotational drag is the drag due to rotation around the spanwise axis, and hence
calculated by assuming spanwise blades rather than chordwise blades for the BEM
(see figure 4a). As the rotational drag is the drag at 90◦ angle of attack, the maximum
value of CD measured by Usherwood & Ellington (2002) is employed for the CRD.
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FIGURE 5. Aerodynamic forces and power predicted by CFD with realistic wing
kinematics. (a–c) Time courses of aerodynamic force with respect to (a) the global
coordinate system and (b) the wing-fixed coordinate system, and (c) aerodynamic power.
The shaded area corresponds to the downstroke.

The translational torque due to the translational lift and drag, the rotational lift and
the force due to added mass are calculated by summing the products of the forces
on each chordwise blade and the distance between the chordwise blade and the pivot.
The chordwise location of the centre of pressure that depends upon angle of attack is
taken from Dickson, Straw & Dickinson (2008). The contribution of translational lift
and drag to the rotational torque is calculated by using the distance between the centre
of pressure (Dickson et al. 2008) and the feathering axis. The force due to added mass
is assumed to be acting on the centre of the chordwise blade. The rotational drag is
assumed to be acting on the middle of each spanwise blade, assuming AoA= 90◦, in
order to calculate the translational and rotational torques.

3. Results and discussion
3.1. Comparison between conventional BEM and CFD

Time courses of simulated aerodynamic forces and power generated by a single
flapping wing with realistic wing kinematics are illustrated in figure 5. These CFD
results showed that considerable three-dimensional forces are produced during the
translational phase of both downstroke and upstroke due to the attached leading edge
vortex (LEV; Maxworthy 1979; Ellington et al. 1996; Bomphrey et al. 2005; Aono &
Liu 2006). A large aerodynamic power is required to generate such high aerodynamic
forces (figure 5c). More details on the force generation, the power requirement
and the corresponding flow structure are discussed in Aono & Liu (2006) and Lua
et al. (2010). When considering the wing-fixed frame of reference, the chordwise
and spanwise aerodynamic forces (Fx and Fz) are negligibly small in comparison
with the normal force, Fy (figure 5b). In fact, the absolute means of the chordwise
and spanwise forces are 1.3 % and 0.3 % of the normal force, respectively. This is
favourable for the BEM because it cannot predict spanwise forces.

The mean vertical aerodynamic force and aerodynamic power results from the CFD
and BEM methods are summarized in figure 6 for the realistic as well as modified
wing kinematic patterns. By tuning the wing kinematics, both force and power range
over an order of magnitude from 3.4 to 18.6 mN and 9.3 to 120 mW, respectively.
The BEM predictions are in reasonable agreement with those from CFD. The PCC
of the mean force and power are 0.962 and 0.955, respectively, which means good
correlation between the predictions by the BEM and the CFD. The mean errors
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FIGURE 6. Comparisons of (a) mean vertical forces and (b) mean aerodynamic powers
predicted by CFD (horizontal axis) and the BEM (vertical axis).

are about 10.1 % and 9.04 %, respectively. As mentioned above, the error in the
conventional BEM is thought to be because the BEM inherently overlooks the effect
of downwash on the angle of attack and the effect of the wing tip vortex, which
affects the spanwise position of the centre of the pressure.

3.2. Construction and general applicability of the CFD-informed quasi-steady model
Once the aerodynamic force and power for varying wing kinematics have been used
to parameterize the quasi-steady model, the CIQSM can be validated by appraising the
error of the mean values and the PCC of instantaneous values compared with the CFD
result that is used for constructing the quasi-steady model. With these comparisons,
the general applicability of the quasi-steady model to flapping-wing aerodynamics can
be discussed because this is the best fit of the quasi-steady model to high-fidelity
simulation. At this point, we can get an upper limit on the performance of the quasi-
steady model. The time series of high-fidelity CFD and CIQSM aerodynamic forces
and power are shown in figure 7. Unsurprisingly, the quasi-steady force and power
are in close agreement with the CFD model in this case, which suggests that the
aerodynamic force generation and power consumption by the standard wing shape
and the realistic kinematics can be explained in a quasi-steady manner. The PCCs
of instantaneous vertical force and power are 0.97 and 0.98, and the errors of mean
force and power are 0.38 % and 1.98 %, respectively.

Once the quasi-steady model is constructed, the vertical force and power can be
decomposed into the contributions of the translational circulation, the translational
drag, the rotational circulation, the rotational drag and the force due to added mass as
shown in figure 7. Downstroke and upstroke asymmetry in vertical force is principally
due to the increase in translational drag during downstroke because of the inclined
stroke plane. The contribution of translational drag to the vertical force is reduced
during the upstroke because of the lower angle of attack. High acceleration and rapid
rotation during stroke reversal lead to a sharp rise in rotational drag and also the
force due to added mass. Hence, there is a second peak in vertical forces during
both upstroke and downstroke. The power due to translational drag accounts for the
majority of the power consumption but other components, such as rotational drag,
also have a notable effect. Note that the remaining discrepancy between the results
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simulated by CFD (dashed black) and CIQSM (solid black). Coloured components sum
to solid black lines.

can be attributed to wing–wake interaction such as wake capture (Dickinson et al.
1999). Wake capture changes the angle of attack and can shift the phase of the force
or skew it.

The CIQSMs from the modified wing kinematics also compare satisfactorily with
the CFD results. The mean errors of vertical force and power are 0.78 % and 1.56 %
while the mean PCCs of instantaneous vertical forces and powers are 0.97 and 0.99.
The kinematic conditions under which the model performs least well occur when
there is a 10 % delay in wing rotation when the error and the PCC of the vertical
force were 2.84 % and 0.93, respectively. The time series of vertical forces by CFD
and quasi-steady fitting with the realistic wing kinematics (upper) and 10 % delayed
rotation (lower) are given in figure 8(a,d). As can be seen, while the CIQSM force
closely matches the CFD simulation under realistic wing kinematics, the two methods
deviate from one another when wing rotation is delayed; the deviation is particularly
prominent during the downstroke. In order to understand the flow physics that causes
this error, the vortex structure is visualized at several intervals during the downstroke
(A–E in figure 8a,d). For clarity, we have used the Q-criterion for vortex identification
in figure 8(b,c) (Q= 0.5; Jeong & Hussain 1995). With the realistic wing kinematics,
at early downstroke and as the wing completes pronation, the LEV (red line) and the
trailing edge vortex (TEV, blue line) grow in size from wing base towards the wing
tip (A). The TEV subsequently detaches from the wing, forming a starting vortex
that connects to the LEV through the wing tip vortex (B–C). Even though the LEV
becomes unstable near the wing tip at late downstroke, the LEV remains attached
through the downstroke. In contrast, when rotation is delayed, the high angle of attack
at early downstroke causes the LEV to detach much earlier, which in turn causes a
reduction in the peak forces of 60 % (B). The TEV is subsequently detached and a
second LEV grows rapidly, which increases the vertical force as the wing approaches
time step D in the CFD results, but the force decreases again after time step E due
to the wing’s deceleration. This complex vortex shedding with delayed rotation is
also observed in the previous study by Zheng et al. (2013), in which they suggested
that phenomena associated with the timing of rotation limit the BEM accuracy. In
this study, it is found that, even if the coefficients are fully calculated by the fitting
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10 % delayed rotation. Vortex wake is identified by iso-surfaces at Q= 0.5, coloured by
spanwise vorticity.

to the CFD results, the change in aerodynamic force and power caused by vortex
breakdown and detachment cannot be modelled accurately because the quasi-steady
model implicitly assumes that the variation in aerodynamic force is caused by the
instantaneous wing velocity and acceleration. However, it should be emphasized
that the effect of such vortex detachment can be incorporated into the quasi-steady
model by fitting high-fidelity simulations or robotic model data. This implies that the
accuracy of the quasi-steady model can be higher if the number of input cases, or,
in other words, the amount of information regarding the relationship between wing
velocity and aerodynamic force, is increased.
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FIGURE 9. Error estimation of the quasi-steady predictions illustrated by the probability
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compared with high-fidelity CFD simulations. (b,d) PCC of mean aerodynamic vertical
forces or power between CFD and quasi-steady predictions. Vertical black lines show the
prediction of a BEM, which is significantly less accurate in all cases.

3.3. Accuracy of force and power predictions by the CFD-informed quasi-steady
model

To validate the CIQSM, we used between 5 and 23 of the high-fidelity CFD test cases
(out of a total of 29 cases; figure 4) as the number of input cases for informing the
quasi-steady model. For each number of input cases, 105 combinations of input cases
are randomly sampled for the test. The histograms in figure 9 show the probability
distribution of the mean errors and PCCs between CFD and CIQSM predictions
of the mean vertical force and power. The errors and PCCs of predictions from a
conventional BEM are also shown for comparison (vertical lines). As the number of
input cases becomes larger, there is a clear trend showing a decreasing median of
errors and an increasing median of PCCs. As mentioned above, this is due to the
increase in information for the construction of the quasi-steady model. The mean
vertical forces and power predicted by the CIQSM with 23 input cases and CFD
are summarized in figure 10. The predictions are quite consistent and the standard
deviations are smaller than the size of the plotted data points in figure 10. Most of the
predictions of CIQSM are very close to the values obtained using CFD. The highest
errors in vertical force and power predictions occur when there is 10 % delay and
an advance in rotation (triangle and square plots in figure 10). The slight increase in
the probability of high error and low PCC when using a large number of input cases
occurs when the test cases include such extreme kinematic cases, i.e. 10 % delayed
rotation for force, and 5 and 10 % delayed and 10 % advanced rotation for power.
The quasi-steady prediction of 10 % delayed rotation is less accurate because of
the vortex detachment in early downstroke as shown above. The quasi-steady model
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also fails to predict well the performance of kinematic patterns exhibiting advanced
rotation because of a strong wake capture effect (Dickinson et al. 1999). However,
the mean errors of lift and power are likely to be less than that of a BEM even if
such risky cases are included.

While the model is broadly applicable, the coefficients we have derived by fitting
are specialized for the current hawkmoth model, and reflect the flow physics of
the input kinematics. The mean translational lift and drag coefficients for forces
and torques calculated by using 23 CFD results are presented in figure 11(a,b).
Experimental results from a revolving wing model (Usherwood & Ellington 2002) are
also presented for comparison. The lift-force coefficients for force and translational
torque in figure 11(a) are in good agreement with the coefficients from physical
modelling. The curve is skewed right in the graph compared with the experiment,
which may be due to the effect of the downwash by the previous half-stroke. Even
though there are morphological and kinematic differences between the current model
and the model of Usherwood & Ellington (2002), the CD for the translational torque
matches with experimental results much better than the CD for force. This is because
the CD measured by Usherwood & Ellington (2002) was obtained by normalizing
the torque around a spinning axis. The coefficients for torques Itt and Irt take into
account the effect of the position where the quasi-steady forces apply. For example,
the maximum lift and drag coefficients for translational torque are smaller than the
force coefficients because the centre of the pressure is shifted inboard by the wing
tip vortex.

The coefficients of the normal force Cy by translational circulation and drag, which
is used for calculating the rotational torque, are shown in figure 11(c). The Cy for
force and translational torque are also shown for comparison. As the chordwise
location of the centre of the pressure shifts from leading to trailing edge with
increasing angle of attack (Dickson et al. 2008), the Cy for rotational torque is
significantly lower than the Cy for force and translational torque. The Cy can be
negative when the angle of attack is lower than approximately 40◦, because, with this
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wing shape, the centre of pressure moves towards the leading edge beyond the wing
pivot axis. The standard deviation in Cy is slightly higher than that in CL, CD or Cy

for force and translational torque, which may suggest that the chordwise location of
the LEV, and hence the rotational torque, is quite sensitive to the wing kinematics,
and the effect of factors other than the angle of attack which may be missing from
the model.

The coefficients of rotational circulation CRL and drag CRD for force, translational
torque and rotational torque are presented in figure 11(d,e). The CRL becomes
significantly lower than experimental or fitted values (Sane & Dickinson 2002;
Zheng et al. 2013), while the rotational drag is higher than the maximum value
of the coefficient for translational drag of Usherwood & Ellington (2002). These
differences are likely to be because rotational drag is newly taken into account in
this study and the force associated with the rotational velocity is dominated by the
drag in our morphological and kinematic models.
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Figure 11(f –h) illustrates the ratio of shape-dependent coefficients for the force
due to added mass for the CIQSM and the BEM. While Iam1 for CIQSM is close
to that for BEM, Iam2 and Iam3, which are associated with the velocity and rotational
acceleration, are much lower or higher than those from the BEM. Because the force
due to added mass in the BEM is based on a two-dimensional wing in inviscid
fluid (Sane & Dickinson 2002), our coefficients are tuned for a more realistic,
three-dimensional case.

4. Demonstration of the CIQSM: aerodynamic power minimization
The results in the previous section showed that the CIQSM is an effective tool for

tuning the wing kinematics in terms of its accuracy. In order to clearly demonstrate
the concept and to give an impression of the parameter ranges that this particular
model can cover, an optimization of wing kinematics for a morphological model of a
hawkmoth is performed. The wing kinematics for the optimization are expressed by
positional and feathering angles on a horizontal stroke plane with the form of Fourier
series as follows:

φ = ap cos (2πft), (4.1a)

α = af 0 +
3∑
i

(
afi cos (2πift)+ bfi sin (2πift)

)
. (4.1b)

In order to minimize cycle-averaged aerodynamic power consumption, the nine
parameters (ap, af 0−3, bf 1−3 and frequency, f ) are tuned by using the hybrid of a
genetic algorithm and the simplex algorithm, following the method by Berman &
Wang (2007). In this study, the algorithm is designed to run under three constraints:
(1) weight support (cycle-averaged vertical force divided by mass) must be higher
than 1, while the mass is assumed to be 1579 mg (Willmott & Ellington 1997), (2)
cycle-averaged horizontal force must be lower than 10 % of weight, and (3) the wing
beat amplitude must be less than 120◦ (based on hawkmoth wing kinematics). The
first and second constraints are required for hovering, while the last constraint is
added because wing beat amplitude tends to reach the maximum allowed values for
power minimization (Berman & Wang 2007). The initial parameters for the procedure
are chosen randomly from the possible range of each parameter (ap: 0 to 60◦, af 0:
−45 to 45◦, af 1−3, bf 1−3: −90 to 90◦, f : 1–100 Hz). Note that the range of af 0 is set
to be smaller than the other parameters in order to avoid kinematics with alternating
leading edges (Berman & Wang 2007). The CIQSM is constructed with all of the
kinematics shown in figure 4.

The results of the power minimization are summarized in figure 12 and table 2.
Wing beat amplitude is equal to 120◦ (= 2.0944 rad) as expected. The wing motion
is nearly symmetric because the offset (af 0) and second terms (af 2 and bf 2) of the
Fourier series of feathering angle are close to zero. Unlike hawkmoth kinematics that
generates two peaks in force and power during each half-stroke, one distinct peak at
late downstroke is generated by the optimized kinematics. We have also evaluated
the optimized kinematics with CFD in order to test the accuracy of the prediction
by CIQSM. As shown in figure 12(c,d), the dynamic force and power by CIQSM
closely match with the CFD. The discrepancy between the models is higher early
in the half-stroke, most likely because of wing–wake interactions. Also, the CIQSM
slightly underestimates the peak force and power. As a result, the errors in the mean
vertical force and power are −6.8 % and −12.6 % of CFD predictions. These errors
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FIGURE 12. Optimized wing kinematics and its aerodynamic performances. (a) Angular
motion of the cross-section during downstroke and upstroke. Circles show the leading
edges of the cross-sections. (b) Time courses of the optimized flapping angles. (c,d)
Time courses of the aerodynamic vertical force and aerodynamic power with optimized
wing kinematics calculated by the CIQSM and CFD. The mean values are shown by the
horizontal lines in each panel.

are slightly higher than the estimate in the previous section, probably because the
optimized kinematics sit outside the input parameter space for the CIQSM and are
therefore an extrapolation. However, it should be emphasized that the accuracy of the
optimization is significantly improved compared with the BEM-based optimization.

Zheng et al. (2013) optimized the wing kinematics by using a BEM in order
to maximize the power loading. Interestingly, even though various conditions are
different, the optimization resulted in a horizontal wing stroke, which is similar to
the current study. The optimized force and power by the BEM matched the CFD
result qualitatively, but the BEM substantially overestimated both vertical force and
power consumption. The tuning of the quasi-steady model based on high-fidelity
modelling accounts for the improvement in the accuracy, and therefore can greatly
expand the applicability of quasi-steady models.

5. Further remarks and conclusion
The demonstration with power minimization and the probability distributions of the

errors and PCCs in figure 9 indicate that the CIQSM outperforms the conventional
BEM in terms of its accuracy. In fact, previous studies could not achieve such low
errors and high PCCs between BEM and CFD. For example, Berman & Wang (2007)
compared the prediction by BEM and CFD models of fruitflies, bumblebees and
hawkmoths by Sun & Du (2003), and their quasi-steady model agrees with their
CFD predictions to within approximately 15 %, which is higher than the error we
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Parameter Value

ap 1.0472
af 0 0.0074
af 1 −0.243
af 2 0.0009
af 3 −0.0898
bf 1 −1.163
bf 2 0.0061
bf 3 0.0141
f (Hz) 24.24

TABLE 2. Optimized kinematic parameters. Angles are given in radians.

present here. Zheng et al. (2013) performed 22 BEM and CFD analyses with different
wing kinematics, and the PCCs of mean vertical force and power were 0.79 and 0.91,
respectively. However, it should be noted that it is difficult to rigorously compare the
accuracy of the current model with previous quasi-steady models due to the absence
of a standard test case.

The improvement in performance is achieved by taking into account the effect
of wake interaction and three-dimensional effects by fitting coefficients from a
high-fidelity model. The flapping wing in hover travels through the distributed
downwash created by the previous strokes, and hence the angle of attack can be
reduced. The wing tip vortex can reduce the pressure difference between upper
and lower surfaces around the wing tip. Lift and drag coefficients that have been
measured on physical models of continuously spinning wings (e.g. Dickinson et al.
1999; Usherwood & Ellington 2002) include these effects reasonably well, while
the coefficients in our CIQSM are the results of a more realistic, reciprocating
motion. Moreover, it is not accurate to use coefficients from a BEM for estimating
torques and power because of error in the position of the centre of pressure. The
aerodynamic power is separately modelled in this study, rather than being based on
the assumption that the aerodynamic force coefficients are the same at all points
on the wing, so, uniquely, the power predictions from our CIQSM are independent
of the force coefficients. Therefore, both the force and power predictions from our
model inherently include the effects of downwash and the wing tip vortex.

The accuracy of the CIQSM is wholely dependent on the accuracy of the CFD
model that is used for tuning the quasi-steady model. Therefore, it is possible that the
coefficients shown in figure 11 are modified if another simulator is used to construct
the CIQSM. However, because the current simulator is well validated (Liu 2009;
Nakata & Liu 2012) through comparison with experimental results (Dickinson et al.
1999; Heathcote & Gursul 2007; Heathcote, Wang & Gursul 2008; Lua et al. 2010)
and those have been compared with CFD simulations from other groups extensively
(e.g. Ramamuti & Sandberg 2002; Sun & Tang 2002; Chimakurthi et al. 2009; Dai,
Luo & Doyle 2012; Grodnier et al. 2013; Le et al. 2013; Wan, Dong & Gai 2015),
we can be confident that the CIQSM will be effective even if the model is constructed
using data from other high-fidelity models.

The discussion in § 3.2 with figure 8 shows that, while utilizing the simplicity
of the quasi-steady model, the current CIQSM cannot predict large changes in
aerodynamic performance due to the transitions between regimes in the flow structure
because it is based on the quasi-steady assumption. For example, the effect of
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Reynolds number on lift and drag coefficients (Lentink & Dickinson 2009) needs to
be modelled in order to apply the CIQSM across a wide range of Reynolds numbers.
More generally, since the CIQSM is an interpolation of high-fidelity results similar
to surrogate modelling (Queipo et al. 2005), the model will be less accurate in
predicting aerodynamic performance if the wing shape, kinematics, Reynolds number
or flight mode is extrapolated very far from the input models. This does not limit
its utility but serves as a useful guideline when choosing the number and extent
of input cases. In its present form, one of the possible ways to use the CIQSM is
for finely tuning wing kinematics to minimize power consumption or for trimming
hovering flight after performing several high-fidelity simulations. Such issues present
a significant challenge for high-fidelity models, even if searching a parameter space
close to the input baseline cases, because of the complexity of flapping-wing motions.
However, this becomes feasible using the CIQSM.

In summary, we present a new model of flapping-wing aerodynamics, called a
CIQSM, based on combining CFD data with quasi-steady modelling. By comparing
the model’s predictions with those of high-fidelity CFD and a BEM, it was found
that the mean vertical force and aerodynamic power predicted by the CIQSM match
the CFD results more accurately than the BEM over a range of Reynolds numbers
from 80 % to 120 %, varied by wing beat amplitude or frequency. The conclusion
is based on the model of a hovering hawkmoth that is a well known example of
a flapping-wing flyer. Good matches between the predictions by quasi-steady and
high-fidelity models shown by previous reports (Berman & Wang 2007; Nabawy &
Crowther 2014b) promise the widespread applicability of the current methodology. The
CIQSM is particularly useful for studies that require the exploration of a parameter
space – for example, the optimization of wing kinematics, wing shape or flight control
strategies – because it is computationally cheap once it has been parameterized by a
relatively small set of high-fidelity analyses.
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