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Interpretive Summary: Behavioral and physiological changes around estrus events identified 1 

using multiple automated monitoring technologies.  Dolecheck.  The objectives of this study were 2 

to describe estrus-related changes in multiple parameters collected by automated technologies and 3 

to explore the application of machine learning techniques to automatically collected data.  Activity 4 

level, lying bouts, lying time, rumination time, feeding time, and reticulorumen temperature 5 

showed differences between periods of estrus and non-estrus, but ear surface temperature did not.  6 

Additionally, applying machine learning techniques to automatically collected technology data 7 

shows potential for estrus detection.   8 
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ABSTRACT 22 

This study included two objectives.  The first objective was to describe estrus-related 23 

changes in parameters automatically recorded by the CowManager SensOor (Agis 24 

Automatisering, Harmelen, Netherlands), DVM bolus (DVM Systems, LLC, Greeley, CO), HR 25 

Tag (SCR Engineers Ltd., Netanya, Israel), IceQube (IceRobotics Ltd., Edinburgh, Scotland), and 26 

Track a Cow (Animart Inc., Beaver Dam, WI).  This objective was accomplished using 35 cows 27 

in 3 groups between January and June 2013 at the University of Kentucky Coldstream Dairy.  A 28 

modified Ovsynch with G7G protocol was used to partially synchronize ovulation, ending after 29 

the last PGF2α injection (day 0) to allow estrus expression.  Visual observation for standing estrus 30 

was conducted for 4, 30-min periods at 0330, 1000, 1430, and 2200 on days 2, 3, 4, and 5.   31 

Eighteen of the 35 cows stood to be mounted at least once during the observation period.  32 

These cows were used to compare differences between the 6 h before and after the first standing 33 

event (estrus) and the two weeks preceding that period (non-estrus) for all technology parameters.  34 

Differences between estrus and non-estrus were observed for CowManager SensOor minutes 35 

feeding per h, minutes of high ear activity per h, and minutes ruminating per h; twice daily DVM 36 

bolus reticulorumen temperature; HR Tag neck activity per 2 h and minutes ruminating per 2 h; 37 

IceQube lying bouts per h, minutes lying per h, and number of steps per h; and Track a Cow leg 38 

activity per h and minutes lying per h.  No difference between estrus and non-estrus was observed 39 

for CowManager SensOor ear surface temperature per h. 40 

The second objective of this study was to explore the estrus detection potential of machine learning 41 

techniques using automatically collected data.  Three machine learning techniques (random forest, 42 

linear discriminant analysis, and neural network) were applied to automatically collected 43 

parameter data from the 18 cows observed in standing estrus.  Machine learning accuracy for all 44 
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technologies ranged from 91.0% to 100.0%.  When visual observation was compared to 45 

progesterone profiles of all 32 cows, a 65.6% accuracy was found.  Based on these results, machine 46 

learning techniques have potential to be applied to automatically collected technology data for 47 

estrus detection.    48 

Key Words: precision dairy farming technology, estrus detection, automated estrus detection, 49 

technology, machine learning 50 

INTRODUCTION 51 

 Detecting a high percentage of cows in estrus is essential to maintain reproductive 52 

performance in dairy herds using artificial insemination.  The most common form of estrus 53 

detection is visual observation, used by 93% of US dairy operations (USDA, 2007).  The Dairy 54 

Records Management Systems  reported mean yearly estrus detection rate on US Holstein herds 55 

(including all reproductive management strategies) as 44.9% in 2015 (DRMS, 2015).  This low 56 

estrus detection rate may be a result of the extreme decline in Holstein cattle estrus duration (from 57 

18 h to less than 8 h) over the last 50 years (Reames et al., 2011).  Increasing age, milk production, 58 

and environmental factors (greater ambient temperature, uncomfortable housing, etc.) can also 59 

negatively affect length and intensity of estrus expression (Vailes and Britt, 1990; López-Gatius 60 

et al., 2005; Palmer et al., 2010).   61 

Automated estrus detection (AED) technologies are an available alternative to supplement 62 

or replace visual estrus detection.  Parameters with potential for AED include mounting events, 63 

activity level, lying time, rumination events, blood or milk progesterone (P4) levels, feeding time, 64 

body temperature, and more (Senger, 1994; Saint-Dizier and Chastant-Maillard, 2012; Fricke et 65 

al., 2014).  Estrus-related changes in some of these parameters (mounting events, activity level, 66 

lying time, rumination events, and P4) have been quantified repeatedly.  However, a lack of 67 
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consistent data exists surrounding estrus-related changes in feeding time and body temperature.  68 

Additionally, not all of these parameters have been measured on the same cows during the same 69 

estrus periods. 70 

To determine the accuracy of a specific AED technology, estrus events identified by the 71 

technology algorithm (a set of criteria used to determine “estrus”) are compared to a gold standard 72 

such as visual observation, ultrasonography, blood or milk P4 levels, or a combination of these.  73 

Correctly identified estrus events are considered true positives (TP), non-alerted estrus events are 74 

false negatives (FN), non-alerted non-estrus events are true negatives (TN), and alerted non-estrus 75 

events are false positives (FP; Firk et al., 2002).  Detecting estrus events is a balance of sensitivity 76 

and specificity.  Sensitivity, the probability that an event is alerted, is equal to TP/(TP+FN)*100 77 

(Hogeveen et al., 2010).  Specificity, the probability that when an event does not occur no alert is 78 

generated, is equal to TN/(TN+FP)*100.  Because neither sensitivity nor specificity account for 79 

the prevalence of the event, other comparative measurements are also useful, including accuracy 80 

[(TP+TN)/(TP+TN+FP+FN)*100].   81 

The estrus detection accuracy of a technology depends on 3 factors: 1) how strongly and 82 

discretely the measured parameters are associated with estrus, 2) how accurately the technology is 83 

measuring those parameters, and 3) if the technology manufacturer algorithm is accurately 84 

processing the data to create useful “estrus alerts.”  Most technology manufacturer algorithms are 85 

proprietary, making it difficult to identify how well each of the 3 factors described above are 86 

performing.  Machine learning techniques can replace the manufacturer alert algorithms and 87 

evaluate technologies based solely on parameter data collected.  Mitchell et al. (1996) and Krieter 88 

(2005) have previously described the use of machine learning techniques for estrus detection.  89 

However, both studies focused on identifying the day of estrus rather than a more specific time 90 
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period.  Additionally, no commercially available AED technologies were evaluated in those 91 

analyses. 92 

This study included two objectives.  The first objective was to describe estrus-related 93 

changes in neck activity, ear activity, leg activity, step count, lying bouts, lying time, rumination, 94 

feeding time, reticulorumen temperature, and ear surface temperature as measured using 5 AED 95 

technologies on the same cows.  The second objective of this study was to explore the estrus 96 

detection potential of machine learning techniques using parameters collected by AED 97 

technologies. 98 

MATERIALS AND METHODS 99 

 This study was conducted at the University of Kentucky Coldstream Dairy under 100 

Institutional Animal Care and Use Committee protocol number 2013-1069.  All lactating cows (n 101 

= 82) were housed in two groups, separated by a shared, raised feedbunk.  Both groups maintained 102 

open access to freestalls, one group with sawdust-covered rubber-filled mattresses (PastureMat; 103 

Promat, Ontario, Canada) and the other group with sawdust-covered Dual Chamber Cow 104 

Waterbeds (Advanced Comfort Technology, Inc., Reedburg, WI).  Cows received access to a grass 105 

seeded exercise lot for 1 h per d at 1000, weather permitting.  All other surfaces accessible to cows 106 

(freestall area, feed bunk, holding pen, and alleys) contained grooved concrete.  Delivery of a TMR 107 

ration containing corn silage, alfalfa silage, whole cottonseed, and grain mix occurred 2X at 0530 108 

and 1330.  Milking occurred 2X at 0430 and 1530.   109 

This study enrolled 32 Holstein cows that had not been bred in their current lactation.  110 

Parity, DIM at the beginning of the study protocol, and summit milk production from the current 111 

lactation of these cows was (mean ± SD) 2.0 ± 1.2, 77.8 ± 20.5 d, and 39.8 ± 8.8 kg, respectively.  112 

Cow ovulations were synchronized in three groups of 14, 10, and 8 cows, starting on January 24, 113 
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March 19, and May 14, respectively.  The synchronization protocol (Figure 1) was a modification 114 

of the standard Ovsynch (Pursley et al., 1995), preceded  by G7G  (Bello et al., 2006).  In contrast 115 

to the standard Ovsynch, the last injection of GnRH (gonadorelin diacetate tetrahydrate, 116 

Cystorelin; Merial Limited, Duluth, GA; 100 µg intramuscular) was not administered to stimulate 117 

estrus expression.  Additionally, to stimulate corpus luteum regression, two PGF2α injections 118 

(dinoprost tromethamine, Lutalyse; Zoetis, Florham Park, NJ; 25 mg intramuscular) were given 119 

on the last day of the protocol (7 d after the first GnRH injection), 6 h apart (0800 and 1400).  Day 120 

0 was designated as the last day of the synchronization protocol in each group (Figure 1).   121 

Estrus Confirmation   122 

Visual observation of cows for 4, 30-min periods at 0330, 1000, 1430, and 2200 occurred 123 

on d 2, 3, 4, and 5 (Figure 1).  Two observers were present at each shift, with one assigned to each 124 

side of the separated housing area.  Study cows were clearly identified using spray paint.  125 

Observers recorded the time of each standing estrus event. 126 

Blood samples (10 ml) were collected from cow coccygeal veins on d -2, -1, 0, 1, 2, 7, 9, 127 

and 11 (Figure 1).  Plasma was separated from centrifuged samples and stored at -20 ºC until the 128 

concentration of P4 was determined by radioimmunoassay (Coat-a-Count Progesterone, Siemens 129 

Medical Solutions USA, Inc., Malvern, PA).  Response to the synchronization protocol was 130 

confirmed if P4 was greater than 1.0 ng/ml on d -2, -1, and 0, dropped to less than 1.0 ng/ml by d 131 

1, and returned above 1.0 ng/ml by d 9.  The P4 results were used to determine sensitivity, 132 

specificity, and accuracy of visual observation.  Only validated standing estrus events were used 133 

to describe estrus-related changes in AED parameters and to explore estrus detection potential of 134 

machine learning techniques. 135 
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Technologies Evaluated 136 

 Each cow was fitted with 5 automated monitoring technologies before beginning 137 

synchronization.  The CowManager SensOor (Agis Automatisering, Harmelen, Netherlands), 138 

attached to the left ear, used a 3-axis accelerometer to classify each minute into one of six behaviors 139 

(rumination, feeding, resting, low activity, regular activity, or high activity) and reported hourly 140 

percentage of time associated with each behavior.  Additionally, the CowManager SensOor used 141 

a digital surface temperature monitor to evaluate mean hourly ear surface temperature.  The 142 

behavioral portion of the CowManager SensOor, but not the temperature monitor, was previously 143 

validated on dairy cows (Bikker et al., 2014).  The DVM bolus (DVM Systems, LLC, Greeley, 144 

CO), placed into the reticulorumen using a bolus gun, recorded reticulorumen temperature twice 145 

daily using a passive radio-frequency identification transponder.  Data download occurred at the 146 

time of parlor entrance, where panel readers were located.  The HR Tag (SCR Engineers Ltd., 147 

Netanya, Israel), held on the left side of the neck using a nylon collar, measured neck activity and 148 

rumination time in 2 h blocks using a 3-axis accelerometer and a microphone containing a 149 

microprocessor, respectively.  The rumination portion of the HR Tag was previously validated on 150 

dairy cattle (Schirmann et al., 2009; Burfeind et al., 2011).  The IceQube (IceRobotics Ltd., 151 

Edinburgh, Scotland), attached to the left rear leg using a plastic strap, reported number of steps, 152 

lying bouts, and lying time every 15 minutes using a 3-axis accelerometer.  The Track a Cow 153 

(Animart Inc., Beaver Dam, WI), attached to the front right leg using a nylon strap, used a 3-axis 154 

accelerometer to measure hourly activity and lying time.   155 

Statistical Analysis 156 

 All technology parameter data was averaged by 12 hour blocks of time.  The 12 hour block 157 

of time used to define estrus depended on the analysis. 158 
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Estrus vs. non-estrus.  For this analysis, if a cow was observed in standing estrus during 159 

visual observation periods (0330, 1000, 1430, or 2200), a cow’s estrus was classified as starting 6 160 

h before the first observed standing estrus event and ending 6 h after the first observed standing 161 

estrus event.  For example, a cow first observed in standing estrus during the 1430 observation 162 

period would have estrus defined as 0830 to 2030 of that day.  The 28, 12 h periods (14 d) before 163 

the estrus period were classified as periods of non-estrus.  The MIXED procedure of SAS 9.3 (SAS 164 

Institute, Inc., Cary, NC) was used to analyze the main effects of estrus status (estrus or non-165 

estrus), parity, DIM at the start of the synchronization protocol, summit milk production, and the 166 

interaction of estrus status and selected covariates (parity, DIM at the start of the synchronization 167 

protocol, and summit milk production) on all technology parameter data, considering cow as a 168 

random effect and time as a repeated measure.  All main effects were kept in each model regardless 169 

of significance level.  Stepwise backward elimination was used to remove non-significant 170 

interactions (P ≥ 0.05).   171 

Machine learning.  For this analysis, if a cow was observed in standing estrus during visual 172 

observation periods (0330, 1000, 1430, or 2200), a cow’s estrus was classified as the 12 h period 173 

of time leading up to the first observed standing estrus event.  For example, a cow first observed 174 

in standing estrus during the 1430 observation period would have estrus defined as 0230 to 1430 175 

of that day.  This was different from the estrus vs. non-estrus analysis because it would not be 176 

valuable for machine learning to detect estrus after the observation of standing estrus.  The 28, 12 177 

h periods (14 d) before the estrus period were classified as periods of non-estrus.   178 

Unmodified data, as recorded by 4 of the technologies (CowManager SensOor, HR Tag, 179 

IceQube, and Track a Cow), were used for machine learning analysis.  The DVM bolus was left 180 

out of this analysis because machine learning techniques work by finding patterns between 181 
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parameters and are not meant to be applied to single parameter data sets.  The caret package from 182 

R version 3.1.1 (R Foundation for Statistical Computing, Vienna, Austria) was used to create a 4-183 

fold cross-validation, including 10 analysis per series, using 70% of all technology parameter data.  184 

Three machine learning techniques were tested: random forest, linear discriminant analysis, and 185 

neural network.  The goal of the algorithm development was to predict which time block (of the 186 

29, 12 h periods defined earlier) each data line referenced.  After algorithm development, the 187 

remaining 30% of all technology parameter data was used to test prediction ability.  Sensitivity, 188 

specificity, and accuracy of each technology and machine learning technique combination were 189 

calculated relative to observed standing estrus.  The “exact” method was used to calculate 95% 190 

confidence intervals for each measurement (Clopper and Pearson, 1934). 191 

RESULTS AND DISCUSSION 192 

Progesterone analysis indicated that 29 of the 32 cows (90.6%) ovulated after completing 193 

the synchronization protocol.  Eighteen cows (62.1%) were observed standing to be mounted 194 

during the visual observation periods.  Failure to detect the remaining 11 cows may have resulted 195 

from unexpressed estrus or short estrus lengths that were unobserved because of non-continuous 196 

observation.    197 

A researcher error resulted in some data not being properly saved from the computer.  198 

Consequently, 4 cows observed in estrus were missing lying time data as measured by Track a 199 

Cow and were removed from affected statistical analysis.  Additionally, a technology malfunction 200 

resulted in no data measured by the IceQube for 1 other cow, which was also removed from 201 

affected statistical analysis.  Remaining technology parameter statistical analysis included all 18 202 

cows observed in standing estrus. 203 
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Estrus vs. Non-estrus 204 

Activity.  All activity measures increased during estrus compared to non-estrus (Table 1).  205 

The percent activity change between non-estrus and estrus for high ear activity as measured by 206 

CowManager SensOor, neck activity as measured by HR Tag, number of steps as measured by 207 

IceQube, and leg activity as measured by Track a Cow was 309.4%, 118.5%, 280.4%, and 237.4%, 208 

respectively (Table 1).  The range of increase in activity may have resulted from differing 209 

accelerometer attachment locations.  Overall, similar estrus associated increases in numbers of 210 

steps (2 to 4 times) have been reported previously (Kiddy, 1977; Redden et al., 1993; Roelofs et 211 

al., 2005a). 212 

The interaction of DIM at the start of synchronization and estrus status significantly 213 

influenced all measures of activity (Table 2).  Cows that started the synchronization protocol at a 214 

later DIM displayed greater estrus-related activity levels than cows starting the synchronization 215 

protocol at earlier DIM.  Additionally, the interaction of parity and estrus status significantly 216 

influenced activity as measured by the IceQube and Track a Cow (Table 2).  In both cases, as 217 

parity increased, estrus-related activity decreased.  In agreement, López-Gatius et al. (2005) found 218 

that with each additional parity, walking activity decreased 21.4%.  Other studies have identified 219 

a similar relationship (Roelofs et al., 2005a; Yaniz et al., 2006).  In this study, parity only 220 

influenced estrus-related activity levels when monitored using leg mounted technologies, 221 

indicating that later parity cows increase head and neck movements during estrus, but do not walk 222 

around as much as younger cows.  Activity as measured by Track a Cow was also significantly 223 

influenced by the interaction of summit milk production and estrus status (Table 2).  As summit 224 

milk production increased, estrus-related activity increases were suppressed.  The relationship 225 

between greater milk production and decreased estrus-related activity has previously been 226 
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established (López-Gatius et al., 2005; Yaniz et al., 2006; Reith et al., 2014).  Why this effect was 227 

not observed by all activity measurement devices is unclear.   228 

 Lying time and lying bouts.  All lying measures decreased during estrus compared to non-229 

estrus (Table 1).  The percent change between non-estrus and estrus for lying bouts as measured 230 

by IceQube, lying time as measured by IceQube, and lying time as measured by Track a Cow were 231 

similar at -51.4%, -58.9%, and -63.9%, respectively.  Time spent lying decreases around estrus 232 

because of increased activity and restlessness (Esslemont and Bryant, 1976; Livshin et al., 2005; 233 

Jonsson et al., 2011).   234 

 The interaction of DIM at the start of synchronization and estrus status significantly 235 

influenced lying bouts as measured by IceQube and lying time as measured by Track a Cow (Table 236 

2).  Cows that started the synchronization protocol at a later DIM expressed shorter lying time as 237 

measured by Track a Cow and fewer lying bouts as measured by IceQube during estrus than cows 238 

starting the synchronization protocol at earlier DIM.  Why lying time as measured by IceQube was 239 

not effected in the same way is unclear.  No measures of lying activity were significantly 240 

influenced by the interactions of parity or summit milk production with estrus status. 241 

 Rumination and feeding time.  Both measures of rumination time decreased during estrus 242 

compared to non-estrus (Table 1).  The percent change in rumination time between non-estrus and 243 

estrus for the CowManager SensOor and the HR Tag were -43.8% and -37.9%, respectively.  Reith 244 

and Hoy (2012) evaluated 265 estrus events, finding that rumination on the day of estrus decreased 245 

17% (74 min), but with large variation between herds (14 to 24%).  In a follow-up study that 246 

looked at 453 estrous cycles, rumination time decreased 19.6% (83 min) on the day of estrus (Reith 247 

et al., 2014).   Pahl et al. (2015) also found a decrease in rumination on the day of (19.3%) and the 248 

day before (19.8%) inseminations leading to pregnancy.  The comparatively large decreases in 249 
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rumination around estrus found in the current study could be the result of a narrower “estrus” 250 

window (12 h) as compared to the previous studies (1 d).   251 

Differences between technology measured rumination times (2.66 min/h during estrus and 252 

6.48 min/h during non-estrus) could be the result of differing recording methods.  The 253 

CowManager SensOor used an accelerometer to identify ear movement associated with 254 

rumination.  The HR Tag used a microphone system that rested on the cow’s neck to identify the 255 

regurgitation and re-chewing of cud.  Both systems have been validated with high correlations to 256 

visual observation (CowManager SensOor: r = 0.93 and HR Tag: r = 0.93; Bikker et al., 2014 and 257 

Schirmann et al., 2009).  However, the CowManager SensOor validation was conducted on a per 258 

minute basis whereas the HR Tag validation was conducted on a 2-hour basis, meaning results are 259 

not directly comparable. 260 

 One explanation for decreased rumination around estrus is decreased feed intake (Maltz et 261 

al., 1997; Diskin and Sreenan, 2000).  Conversely, feeding time as measured by the CowManager 262 

SensOor in this study increased by 8.00 min/h during estrus compared to non-estrus (Table 1).  263 

Other researchers agree that feeding behavior may not always decrease around estrus.  De Silva et 264 

al. (1981) found no change in feed intake during the 3 d period surrounding estrus and Lukas et al. 265 

(2008) found DMI increased 0.61 kg/d during estrus.  The method by which the CowManager 266 

SensOor measured feeding time in the current study depended on the ability of an accelerometer 267 

to distinguish ear movements related to feeding and is not a true measure of intake.  Therefore, the 268 

reported increase in feeding time may not represent an actual increase in DMI, but rather an 269 

increase in head movements similar to those occurring when a cow is eating. 270 

 Feeding time was not significantly influenced by the interaction of DIM at the start of 271 

synchronization, parity, or summit milk production with estrus status.  The interaction of DIM at 272 
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the start of synchronization and estrus status significantly influenced both measures of rumination 273 

(Table 2).  Cows that started the synchronization protocol at a later DIM expressed a larger 274 

decrease in rumination during estrus than cows starting the synchronization protocol at earlier 275 

DIM.  This result is consistent with the other observations of estrus expression in this study 276 

(activity and lying time) as DIM at the start of synchronization increased.  Neither measure of 277 

rumination was significantly influenced by the interactions of parity or summit milk production 278 

with estrus status.   279 

 Temperature.  Reticulorumen temperature as measured by the DVM bolus increased 0.43 280 

°C during estrus (P < 0.01; Table 1).  Ear surface temperature as measured by the CowManager 281 

SensOor increased 1.20 °C during estrus (P = 0.20; Table 1).  Although the numeric increase in 282 

ear surface temperature during estrus was greater than that of the reticulorumen temperature, it 283 

also displayed a larger variation as evident in the greater standard error (Table 1).  Ear surface 284 

temperature is influenced by both core body temperature and ambient temperatures (Mader and 285 

Kreikemeier, 2006).  Therefore, ear surface temperature was expected to be less than and fluctuate 286 

more than reticulorumen temperature (a measure of core body temperature alone).  CowManager 287 

SensOor temperature measurements are not marketed for estrus detection use, likely because of 288 

this variation.   289 

The temperature increases observed in this study (0.51 to 1.27 °C) are similar to previously 290 

reported estrus-related temperature changes.  Both Maatje and Rossing (1976) and McArthur et al. 291 

(1992) found that milk temperature increased 0.3 ºC around estrus.  Other researchers have found 292 

that vaginal temperature increased 0.10 to 1.02 ºC around estrus (Lewis and Newman, 1984; Kyle 293 

et al., 1998).  Piccione et al. (2003) found that rectal temperatures, though non-automated, 294 

displayed an even greater increases during estrus (1.3 ºC).  These estrus-related temperature 295 
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increases have reportedly lasted for 6.8 ± 4.6 h in dairy cows and 6.5 ± 2.7 h in beef cows (Redden 296 

et al., 1993; Kyle et al., 1998).  297 

 Differences in temperature measurements may have resulted from the difference in 298 

frequency of measurement between the two technologies.  The CowManager SensOor sampled 299 

temperature each minute and reported a mean hourly ear surface temperature whereas the DVM 300 

bolus recorded reticulorumen temperature only twice daily at the time the cow entered the parlor 301 

for milking.  Reticulorumen temperature readings at those times likely did not accurately 302 

represented the entire 12 hour period between milkings and, therefore, would not be comparable 303 

to ear surface temperature as measured by the CowManager SensOor.  Newer versions of the DVM 304 

bolus can continuously monitor temperature, which could reduce variation between the two 305 

technologies. 306 

 Ear surface temperature as measured by CowManager SensOor was not significantly 307 

influenced by the interactions of DIM at the start of synchronization, parity, or summit milk 308 

production with estrus status.  Reticulorumen temperature as measured by DVM bolus was 309 

significantly influenced by the interactions of both DIM at the start of synchronization and parity 310 

with estrus status (Table 2).  Cows that started the synchronization protocol at a later DIM 311 

expressed a larger increase in reticulorumen temperature during estrus than cows starting the 312 

synchronization protocol at earlier DIM.  Additionally, as parity increased, a smaller estrus-related 313 

increase in reticulorumen temperature was observed.  Both of these results contribute to the overall 314 

conclusion that as DIM at the beginning of the synchronization protocol decreased and parity 315 

increased, weaker estrus expression was observed.  316 
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Machine Learning 317 

 Because of the low number of observed estrus events in this study (n = 18), when 70% of 318 

the data was used for the machine learning training sets, data from only 5 cows was left for the 319 

machine learning testing sets.  Consequently, results should be interpreted carefully, keeping in 320 

mind the small sample size.  Table 3 shows the sensitivity, specificity, and accuracy accomplished 321 

using different combinations of each of the five technologies and three machine learning 322 

techniques (random forest, linear discriminant analysis, or neural network).  Confidence intervals 323 

are reported for each measure of performance to emphasize the difficulty in drawing conclusions 324 

from the small data set. 325 

Using the random forest machine learning technique, the CowManager SensOor and 326 

IceQube produced the greatest accuracy (98.6%; Table 3).  The CowManager SensOor also 327 

produced the greatest accuracy (100%) when using linear discriminant analysis whereas the 328 

IceQube produced the greatest accuracy (100%) when using neural networks (Table 3).  The 329 

number and variety of parameters measured by both the CowManager SensOor (4 parameters 330 

measured) and IceQube (3 parameters measured) likely gave them an advantage in these analysis 331 

over the other technologies which measured only 2 parameters each (HR Tag and Track a Cow).  332 

Similarly, Peralta et al. (2005) showed that although visual observation, activity monitoring, and 333 

mounting detection alone produced low estrus detection sensitivities (49.3%, 37.2% and 48.0%, 334 

respectively), combining all three produced an acceptable sensitivity of 80.2%.  Redden et al. 335 

(1993) also found that by combining two parameters (activity and vaginal temperature) that alone 336 

each produced an 80% estrus detection rate, a 90% estrus detection rate was possible. 337 

Of the remaining technologies, all machine learning results were similar.  Accuracy of the 338 

HR Tag and Track a Cow ranged from 96.6% to 97.9% and from 91.0% to 97.2%, respectively.  339 
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Compared to other studies that have tested similar machine learning techniques for estrus 340 

detection, these results are high.  Krieter (2005) applied the neural network technique, combining 341 

activity and time since last estrus, to a testing set of 74 estrus events.  That method accomplished 342 

a sensitivity, specificity, and error rate of 77.5%, 99.6%, and 9.1%, respectively.  Mitchell et al. 343 

(1996) applied machine learning techniques to milk yield, milking order, and times since last estrus 344 

data to identify 69% of estrus events in a 44 cow testing set, but experienced a large number of FP 345 

(74%).  Both of those analyses predicted the day of estrus, whereas the current study focused on 346 

predicting a 12 h period before estrus.  Narrowing the estrus period may be more accurate given 347 

that multiple researchers have found mean estrus duration to be less than 24 h (Kerbrat and 348 

Disenhaus, 2004; Roelofs et al., 2005c; Sveberg et al., 2011).  Another explanation for the 349 

improved results in this study is the low number of observations in the testing set.  Only 5 cows 350 

were included in the testing set, resulting in a small number of potential TP (n = 5), a large number 351 

of potential TN (n = 140), and wide confidence intervals.   352 

Estrus detection ability of machine learning techniques was superior to visual observation.  353 

When visual observation was compared to P4 results of all 32 cows, a 62.1% sensitivity, 100% 354 

specificity, and 65.6% accuracy of estrus detection were achieved.  Non-continuous monitoring 355 

likely limited the ability of visual observation to detect short periods of estrus.  Additionally, using 356 

secondary signs of estrus to define estrus rather than standing events alone likely would have 357 

increased estrus detection rate (Roelofs et al., 2005c).  The ability to continuously monitor cows 358 

using automated monitoring technologies, allowing detection of short estrus periods and estrus 359 

periods not including mounting, likely contributed to improved performance over visual 360 

observation.  However, results should be interpreted carefully given that only 18 cows, all of which 361 

exhibited standing estrus, were included in the machine learning analysis whereas 32 cows, some 362 
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exhibiting standing estrus and some not, were included in the visual observation results.  Cows not 363 

displaying standing estrus could not be included in the machine learning analysis because the study 364 

design did not allow for identification of exact ovulation time.    365 

CONCLUSIONS 366 

Neck activity, ear activity, leg activity, step count, lying bouts, lying time, rumination, 367 

feeding time, and reticulorumen temperature may be useful as predictors of estrus.  Ear surface 368 

temperature, as monitored in this study, holds less potential for detecting differences between 369 

periods of estrus and non-estrus.  Additionally, applying machine learning techniques to 370 

automatically collected technology data shows potential for estrus detection.   371 
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Table 1. Comparison of automated monitoring technology1 parameters (adjusted means ± SE) 381 

during estrus (6 h before and after first observed standing event2) and non-estrus (the 14 d before 382 

estrus). 383 

Category Parameter n3 Estrus Non-estrus P-value4 

Activity     

 HR Tag neck activity (units/2 h) 18 61.62 ± 2.04 28.20 ± 0.78 < 0.01 

 IceQube number of steps (per h) 17 300.82 ± 10.92 79.07 ± 4.13 < 0.01 

 CowManager SensOor high ear 

activity (min/h) 

18 17.40 ± 0.66 4.25 ± 0.39 < 0.01 

 Track a Cow leg activity 

(units/h) 

18 321.14 ± 11.87 95.17 ± 7.16 < 0.01 

Lying time and lying bouts     

 IceQube lying bouts (per h) 17 0.35 ± 0.09 0.72 ± 0.07 < 0.01 

 IceQube lying time (min/h) 17 10.19 ± 1.91 24.82 ± 0.95 < 0.01 

 Track a Cow lying time (min/h) 14 6.56 ± 2.55 18.18 ± 1.81 < 0.01 

Rumination and Feeding Time     

 HR Tag rumination (min/2 h) 18 20.47 ± 2.68 32.96 ± 0.54 < 0.01 

 CowManager SensOor 

rumination (min/h) 

18 12.90 ± 1.07 22.96 ± 0.57 < 0.01 

 CowManager SensOor feeding 

time (min/h) 

18 16.93 ± 0.99 8.93 ± 0.65 < 0.01 

Temperature     

 DVM bolus reticulorumen 

temperature (°C) 

18 39.29 ± 0.21 38.86 ± 0.18 < 0.01 

 CowManager SensOor ear 

surface temperature (°C) 

18 24.17 ± 1.20 22.97 ± 0.83 0.20 

1CowManager SensOor, Agis Automatisering, Harmelen, Netherlands; DVM bolus, DVM 384 

Systems, LLC, Greeley, CO; HR Tag, SCR Engineers Ltd., Netanya, Israel; IceQube, IceRobotics 385 

Ltd., Edinburgh, Scotland; and Track a Cow, Animart Inc., Beaver Dam, WI 386 
2Observations for standing estrus occurred for 30 min periods at 0330, 1000, 1430, and 2200 daily 387 
3Number of cows included in statistical analysis 388 
4The reported P-value represents the main effect of estrus status (estrus or non-estrus) alone, 389 

independent of covariate effects 390 
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Table 2. Effect of estrus status1 (ESTRUS), parity, days in milk at the start of synchronization (DIM), summit milk production 391 

(SUMMIT), and selected interactions on automated monitoring technology2 parameters. 392 

Category Parameter 

P-value 

ESTRUS PARITY DIM SUMMIT 

ESTRUS × 

PARITY 

ESTRUS × 

DIM 

ESTRUS × 

SUMMIT 

Activity              

  HR Tag neck activity (units/2 h) 0.42 0.80 0.01 0.44   < 0.01  

  IceQube number of steps (per h) 0.12 0.03 < 0.01 0.04 < 0.01 < 0.01  

  CowManager SensOor high ear 

activity (min/h) 

0.32 0.82 0.01 0.50   < 0.01  

  Track a Cow leg activity (units/h) < 0.01 0.01 < 0.01 0.01 < 0.01 < 0.01 < 0.01 

Lying time and lying bouts              

  IceQube lying bouts (per h) 0.64 0.08 0.99 0.25   0.04  

  IceQube lying time (min/h) < 0.01 0.09 0.73 0.04      

  Track a Cow lying time (min/h) 0.29 0.02 0.24 0.03   < 0.01  

Rumination and feeding time              

  HR Tag rumination (min/2 h) 0.45 0.02 0.11 < 0.01   0.04  

  CowManager SensOor rumination 

(min/h) 

0.47 0.83 0.09 0.33   < 0.01  

  CowManager SensOor feeding time 

(min/h) 

< 0.01 0.24 0.44 0.84      

Temperature              

  DVM bolus reticulorumen 

temperature (°C) 

0.38 0.85 0.03 0.48 0.03    0.02 

  CowManager SensOor ear surface 

temperature (°C) 

0.20 0.12 0.16 0.13      

1Observations for standing estrus occurred for 30 min periods at 0330, 1000, 1430, and 2200 daily.  Estrus was defined as the 6 h before 393 

and after the first observed standing event and non-estrus was defined as the the 14 d before estrus. 394 
2CowManager SensOor, Agis Automatisering, Harmelen, Netherlands; DVM bolus, DVM Systems, LLC, Greeley, CO; HR Tag, SCR 395 

Engineers Ltd., Netanya, Israel; IceQube, IceRobotics Ltd., Edinburgh, Scotland; and Track a Cow, Animart Inc., Beaver Dam, WI 396 
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Table 3.  Estrus detection capability1 and 95% confidence interval of different automated 397 

monitoring technologies2 and machine learning techniques (random forest, linear discrimant 398 

analysis, and neural network).  Machine learning models attempted to identify the 12 h period 399 

before the first observed standing estrus event3 from the 28, 12 h periods leading up to observed 400 

standing estrus.  The analysis included 18 cows observed in standing estrus4, with 70% used for 401 

training and 30% used for testing.   402 

Technique Technology Sensitivity Specificity Accuracy 

Random 

forest 

CowManager SensOor 100.00 

(47.82 – 100.00) 

98.57 

(84.93 – 99.83) 

98.62 

(95.11 – 99.83) 
HR Tag 60.00 

(14.66 – 94.73) 

99.29 

(96.08 – 99.98) 

97.93 

(94.07 – 99.57) 
IceQube 80.00 

(28.36 – 99.49) 

99.29 

(96.08 – 99.98) 

98.62 

(95.11 – 99.83) 
Track a Cow 100.00 

(47.82 – 100.00) 

97.14 

(92.85 – 99.22) 

97.24 

(93.09 – 99.24) 
Linear 

discriminant 

analysis 

CowManager SensOor 100.00 

(47.82 – 100.00) 

100.00 

(97.40 – 100.00) 

100.00 

(47.82 – 100.00) 
HR Tag 100.00 

(47.82 - 100.00) 

97.86 

(93.87 – 99.56) 

97.93 

(94.07 – 99.57) 
IceQube 100.00 

(47.82 – 100.00) 

97.86 

(93.87 – 99.56) 

97.93 

(94.07 – 99.57) 
Track a Cow 100.00 

(47.82 – 100.00) 

96.43 

(91.86 – 98.83) 

96.55 

(92.14 – 98.87) 
Neural 

network 

CowManager SensOor 100.00 

(47.82 – 100.00) 

98.57 

(94.93 – 99.83) 

98.62 

(95.11 – 99.83) 
HR Tag 100.00 

(47.82 – 100.00) 

96.43 

(91.86 – 98.83) 

96.55 

(92.14 – 98.87) 
IceQube 100.00 

(47.82 – 100.00) 

100.00 

(97.40 – 100.00) 

100.00 

(97.49 – 100.00) 
Track a Cow 100.00 

(47.82 – 100.00) 

90.71 

(84.64 – 94.96) 

91.03 

(85.16 – 95.14) 
1Sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), accuracy = (TP + TN)/(TP + TN + FP 403 

+ FN); TP = true positive, TN = true negative, FP = false positive, and FN = false negative 404 
2CowManager SensOor, Agis Automatisering, Harmelen, Netherlands; HR Tag, SCR Engineers 405 

Ltd., Netanya, Israel; IceQube, IceRobotics Ltd., Edinburgh, Scotland; and Track a Cow, Animart 406 

Inc., Beaver Dam, WI 407 
3Observations for standing estrus occurred for 30 min periods at 0330, 1000, 1430, and 2200 daily 408 
4Data from only 14 cows was used for Track a Cow lying time and data from only 17 cows was 409 

used for all IceQube parameters 410 
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Figure 1.  Timeline of synchronization injections, blood sampling (BS), and visual observation (VO) for cows used in a study testing 5 518 

automated monitoring technologies’ estrus detection capabilities.  The synchronization protocol was a modified G7G Ovsynch with 519 

injections given at 0800.  Two injections of PGF2α (6 h apart; 0800 and 1400) were administered on d 0.  Blood sampling was conducted 520 

at 0800.  Visual observation was conducted 4X for 30 min periods at 0330, 1000, 1430, and 2200. 521 
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