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Simple Summary: Dairy cows fed high levels of protein to increase milk yield tend to
have reduced fertility but the reasons behind this are unclear. Differing dietary protein
levels are reflected in altered urea concentrations in both blood and other tissues including
the uterus. We showed that the circulating urea concentration was highly correlated to
changed expression levels of many genes in the endometrium shortly after calving. These
were predominantly associated with tissue repair, innate immunity and lipid metabolism.
A subsequent study found no effect of altered urea concentration on endometrial gene
expression in vitro implying that the dietary influence is indirect.

Abstract: Both high and low circulating urea concentrations, a product of protein
metabolism, are associated with decreased fertility in dairy cows through poorly defined
mechanisms. The rate of involution and the endometrial ability to mount an adequate
innate immune response after calving are both critical for subsequent fertility. Study 1 used
microarray analysis to identify genes whose endometrial expression 2 weeks postpartum
correlated significantly with the mean plasma urea per cow, ranging from 3.2 to 6.6 mmol/L.
The biological functions of 781 mapped genes were analysed using Ingenuity Pathway
Analysis. These were predominantly associated with tissue turnover (e.g., BRINP1, FOXG1),
immune function (e.g., IL17RB, CRISPLD2), inflammation (e.g., C3, SERPINF1,
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SERPINF2) and lipid metabolism (e.g., SCAP, ACBD5, SLC10A). Study 2 investigated
the relationship between urea concentration and expression of 6 candidate genes (S100A8,
HSP5A, IGF1R, IL17RB, BRINP1, CRISPLD2) in bovine endometrial cell culture. These
were treated with 0, 2.5, 5.0 or 7.5 mmol/L urea, equivalent to low, medium and high
circulating values with or without challenge by bacterial lipopolysaccharide (LPS). LPS
increased S100A8 expression as expected but urea treatment had no effect on expression
of any tested gene. Examination of the genes/pathways involved suggests that plasma urea
levels may reflect variations in lipid metabolism. Our results suggest that it is the effects
of lipid metabolism rather than the urea concentration which probably alter the rate of
involution and innate immune response, in turn influencing subsequent fertility.

Keywords: protein metabolism; innate immunity; endometrium; involution; cholesterol

1. Introduction

Nutrition plays a crucial role in the reproductive physiology and endocrinology of the dairy cow.
Following parturition, the lactating cow undergoes an increased demand for nutrients such as glucose,
amino acids and fatty acids required for milk production [1,2]. This demand typically exceeds the dietary
intake of the high-yielding dairy cow hence body energy reserves are mobilised, resulting in a state
of negative energy balance (NEB) which may last for several weeks postpartum [3,4]. A conflict in
metabolic needs arise in which modern dairy cows may prioritize milk production to the detriment of
reproductive functions and fertility [2,5,6]. During NEB, circulating concentrations of many metabolites
and metabolic hormones (non esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), insulin,
glucose, insulin-like growth factor 1 (IGF-1)) are altered and these influence fertility directly by altering
ovarian, follicular or uterine functions, or indirectly by modulating the somatotrophic/gonadotrophic
axis [2,6]. The extent to which cows enter NEB in the immediate postpartum period is strongly predictive
of their fertility later in that lactation [5,6].

Many dairy cows are fed high protein diets in order to maximise milk production [7]. Urea is a
product of protein breakdown and the peripheral urea nitrogen concentration reflects protein metabolism
in dairy cattle [8]. Urea diffuses into body fluids such as blood and milk and equilibrates in other
parts of the body, including the reproductive tissues [9]. Blood urea concentrations often fluctuate
around calving [10] and are influenced by a wide variety of interrelated parameters including dietary
protein intake and body requirement and metabolism [11]. The main cause of high circulating urea is an
excess intake of total N including rumen degradable protein [12,13]. Energy deficit may also stimulate
catabolism of amino acids from tissue proteins leading to increased urea production [1]. In addition,
impaired liver function during NEB reduces the metabolic clearance of urea [14].

Both high and low circulating urea concentrations have been associated with reduced fertility in
dairy cows, in particular an increased calving to conception interval [7,10,15,16]. These results are
however inconsistent between trials and the link(s) between fertility and protein metabolism have yet to
be established conclusively. Urea itself is potentially toxic but Laven et al. [12] concluded that much of
the deleterious effect of increased intakes of degradable protein was probably mediated by post prandial
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increases in ammonia which can have harmful effects on both oocytes and early embryos [17,18].
Another proposed mechanism has been that excess dietary protein decreases uterine pH or alters other
aspects of the uterine environment during the early luteal phase thus making it less favourable for embryo
survival [19–22].

The bovine uterus must undergo extensive remodelling after calving in order to restore normal tissue
architecture after expulsion of the calf and placenta. This involves a major reduction in size, necrosis of
the surface endometrium and extensive restructuring of the extracellular matrix [23,24]. Tissue debris
accumulates in the uterine lumen contributing to a lochial discharge. Following an initial period of
degradation, tissue repair is initiated and the caruncles remodel and regenerate epithelium. This process
is superficially complete by 3–4 weeks postpartum, but the deeper layers are not fully restored until
6–8 weeks [25]. We have previously provided evidence that many components of the IGF system
are expressed in the involuting uterus and that IGF1 is likely to be a key growth factor contributing
to the rate of repair [26,27]. In most dairy cows the uterus also acquires bacterial contamination at
calving. Although the infection is normally cleared within 2–3 weeks, about 15% of animals develop
a persistent endometritis associated with inflammation [28,29]. This condition causes reduced fertility
and is associated with longer intervals to conception [30].

This paper describes two experiments designed to test the hypothesis that factors influencing
circulating urea concentrations during the immediate postpartum period modify endometrial function
and that this in turn may contribute to the observed associations between urea and fertility. In Study 1,
we utilized results of an experiment in which two groups of dairy cows were managed by differential
feeding and milking to produce mild or severe NEB in the early postpartum period [31]. Correlation
analysis was performed between the mean plasma urea concentration postpartum and the normalized
mRNA expression intensity of individual genes within the endometrium, harvested 2 weeks after calving
during the period of involution when a robust innate immune response is crucial to overcome infection.
In order to validate these findings, Study 2 investigated the effect of urea concentration on endometrial
gene expression in vitro including the response to bacterial lipopolysaccharide (LPS). This was to mimic
the situation in the postpartum bovine uterus in which most cows develop an initial bacterial infection
following calving [28,29]. Six candidate genes were selected for various reasons. Three (BRINP1,
IL17RB and CRISPLD2) were taken from the top 10 list of genes whose endometrial expression
correlated most highly with circulating urea. BRINP1 has antiproliferative effects on cultured cells and
can modulate the activities of the key receptors ERA, RARA and AR [32,33]. IL17RB encodes a cytokine
receptor which binds IL-25 (IL17E) to mediate Th2 immune responses [34,35]. CRISPLD2 encodes a
lipopolysaccharide-binding serum protein thought to have an anti-inflammatory function [36,37]. IGF1R
was selected because we previously found a negative correlation between endometrial IGF1R expression
measured by qPCR and the circulating urea concentration [27]. HSP5A (also known as GRP78) encodes
a heat shock protein found within the endoplasmic reticulum which is important for protein folding
and assembly and is also an indicator of cellular stress which is rapidly up-regulated in response to
chemical injury [38–40]. Finally S100A8 belongs to the S100 family of calcium-binding proteins
which have a variety of actions in innate immunity including anti-microbial activity [41]. We have
previously demonstrated strong expression of S100A8 in endometrial epithelial and stromal cells and
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have also shown that LPS caused a rapid up-regulation of S100A8 mRNA and protein in cultured bovine
endometrium [42,43].

2. Experimental Section

2.1. Animals and Management

For Study 1, the in vivo experiment, procedures were carried out under license in accordance with
the European Community Directive, 86-609-EC. Full details of the treatments have been reported
previously [31]. In brief, multiparous Holstein-Friesian cows with a mean parity of 4.7, an average
previous lactation yield of 6477 ˘ 354 kg and a normal calving were used. All animals received the
same pre-calving diet comprising ad libitum access to grass silage with 2 kg/day citrus pulp introduced
2 weeks before the expected calving date. Cows were blocked 2 weeks prior to expected calving
according to parity, body condition score and previous yield and were randomly allocated to 2 treatments
(each n = 6 cows) designed to produce mild or severe NEB (MNEB or SNEB). From day 2 after calving,
MNEB cows were fed grass silage containing 13.6% crude protein ad libitum with 8 kg/day of a 20.2%
crude protein dairy concentrate and milked once daily. SNEB cows were fed a limited diet of 25 kg/day
silage with 4 kg/day concentrate and milked three times daily. The chemical composition of silage and
concentrate offered was the same across treatment groups and full details of the diets have been published
previously [44]. Daily measurements of milk yield, milk composition, dry matter intake (DMI), body
weight, and dietary energy intake were used to calculate EB, based on the French net energy for lactation
(NEL) system. Net EB was calculated as UFL/day in which 1 unité fourragère lait (UFL) is the NEL

equivalent of 1 kg of standard air-dry barley as described previously [45].
Samples of endometrium were collected from all cows following slaughter at 14 ˘ 0.4 days

postpartum as described below. Array data from one MNEB cow failed the inter-array quality control
analysis (see below) so this animal was excluded from all analyses, leaving 5 cows in the MNEB group.

2.2. Blood Sampling and Metabolite Assays

Blood samples were collected after morning milking (08:00 h) by jugular venepuncture twice weekly
throughout the 2 week treatment period up to and including the day of slaughter. Samples were collected
into lithium-heparin primed vials and were immediately placed on ice before centrifugation at 2000ˆ g
for 10 min. Plasma was decanted and stored at ´20 ˝C for subsequent analysis for urea, glucose, NEFAs
and BHB using the appropriate kit and an ABX Mira auto-analyzer (ABX Mira, Cedex 4, France).
IGF1 was analysed using an OCTEIA IGF-I Kit (IDS, Tyne and Wear UK) and insulin using a solid
phase radioimmunoassay (Coat-a-Count, Diagnostic Products, Los Angeles, CA, USA) as described
previously [46]. Concentrations of the PGF2α metabolite PGFM were quantified using a charcoal-dextran
RIA method as described previously [47]. Blood haematology parameters were also determined in
unclotted (EDTA treated) whole blood samples using an electronic particle Nihon Kohden haematology
analyser (Celltac MEK-610K, Nikon-Kohdon, Tokyo, Japan).
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2.3. Uterine Tissue Collection and RNA Isolation

The uterus was opened and samples of intercaruncular endometrial tissue weighing approximately
1 g were dissected from the mid portion of the previously gravid horn approximately 1 cm anterior to
the bifurcation of the uterus. These were rinsed in RNase free phosphate buffer, snap-frozen in liquid
nitrogen and stored at ´80 ˝C. Total RNA was prepared from 200 to 300 mg of fragmented frozen
endometrial tissue and homogenized in TRI reagent (Molecular Research Centre Inc, Cincinnati, OH,
USA). RNA concentration and purity were determined using the NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA). RNA integrity was confirmed for all samples
using automated capillary gel electrophoresis on a Bioanalyzer 2100 with RNA 6000 Nano Labchips
according to manufacturers’ instructions (Agilent, Waldbronn, Germany). Additional samples of uterine
tissue (both caruncular and inter-caruncular) from the body, mid-region and tip from both horns
were fixed in 4% paraformaldehyde and embedded in paraffin for subsequent histological analysis as
described below.

2.4. Microarray, Correlation and Pathway Analysis

Microarray hybridization and data acquisition were carried out in ARK-Genomics (Roslin Institute,
Edinburgh, UK) using 24 K Affymetrix GeneChip Bovine Genome Arrays based on the established
ARK-Genomics protocols (http://www.ark-genomics.org/protocols). The acquired data were analyzed
using S+ ArrayAnalyzer 2.1 built in S-Plus Enterprise Developer 7.0 software package (Insightful Corp,
Seattle, Washington, USA). The probe level expression data generated by the scanner (CEL files) were
imported into the ArrayAnalyzer. They were filtered out if the detection was absent or if the pairs used
were less than 7 (11 pairs in total). The probe pairs were summarized into a single value per gene
using Robust Multichip Analysis (RMA) with a primary Quantiles normalization. After this filtration
and summarization, about 20,000 probes/genes were available. The inter-array quality control analysis
using MvA and box plots showed that the sample from one cow did not meet the requirements so this
animal’s data were excluded from all the analyses. The summarized data were further normalized with
Median Inter-quartile Range (IQR). The correlation between the mean plasma urea concentration for
each cow and normalized uterine gene expression values was established using a Pearson correlation
via the function built in MS Excel 2013 and statistical significance of the correlation was examined
using a two tailed t-test. The significantly correlated genes at p < 0.05 were loaded into the Affymetrix
website for annotation (http://www.affymetrix.com). The GEO-deposited data can be accessed at:
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15544. The annotated genes were organized
using Entrez Gene combined with gene symbols as identifiers and correlation coefficients and their
P-values as observations. They were loaded into Ingenuity Pathway Analysis (IPA) V7.5 software
server (Ingenuity Corp, Redwood City, CA, USA) for mapping into relevant functional groups and
pathway analysis.

2.5. Histological Analysis

Paraffin embedded samples were sectioned at 10 µm and mounted on glass slides. Endometrial
sections of each animal were stained with haematoxylin and eosin (H&E) as described previously [43].
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The H&E stained specimens were used to assess the degree of uterine inflammation as described by
Bonnett et al. [48]. Inflammatory cells were subdivided into segmented (neutrophils) or mononuclear
cells (macrophages and lymphocytes). The number of segmented and mononuclear cells were the mean
of 3 sections per horn (gravid and non-gravid), taken in each case from the uterine tip and a caruncular
region and an intercaruncular region from the mid region under a Nikon 187,907 light microscope (ˆ400
magnification). Those in epithelium were expressed as number per graticule length and those in stroma
as the average number of cells per 10 µm2. The number of lymphocytic foci was counted in stroma
under a light microscope (ˆ100 magnification) and was expressed as the number per section.

2.6. Primary Bovine Endometrial Cell Culture

For Study 2, apparently healthy bovine uteri in the early luteal phase of the oestrous cycle as
determined by the physical appearance of the corpus luteum were obtained from the local abattoir
immediately after slaughter and returned to the laboratory on ice for processing within 2 h. On each
occasion endometrial epithelial and stromal cells were isolated from the endometrium and then cultured
using methods as described previously [42]. Briefly, strips of endometrial tissue were chopped with
a tissue chopper and then digested for 90 min at 37 ˝C in a medium containing 100 mg of bovine
serum albumin (BSA; Sigma), 50 mg of trypsin III (Worthington) and 50 mg of collagenase A (Roche)
per 100 mL of Hanks’ balanced salt solution (HBSS; Sigma). Digested tissue was filtered through
100 µm sterile cell strainers (BD Falcon) and then washed twice, first by re-suspending in HBSS
containing 10% fetal bovine serum (FBS; Sigma) and 3 µg/mL of trypsin inhibitor (Sigma) followed by
centrifugation at 100ˆ g and 10 ˝C for 10 min. Cell sediments were pooled together for each cow sample
and the cell count and cell viability evaluated by staining with trypan blue (Sigma). The isolated mixed
endometrial epithelial and stromal cells were re-suspended in growth medium (GM) which comprised
Dulbecco’s Modified Eagle Medium: Nutrient Mixture F-12 (DMEM/F12; Sigma) containing 10%
FBS and 1% antibiotic solution (100 IU/mL penicillin + 100 µg/mL streptomycin; Sigma). Cells were
allocated at 5 ˆ 105 cells/well to 24-well plates (Nunc) and cultured at 37 ˝C and 5% CO2 for 8 days to
reach confluence.

2.7. Endometrial Cell Culture Validation

Cell cultures were validated using immunocytochemical staining to identify specific cell types
as described previously [42]. Endometrial epithelial cells stained positive for cytokeratin; stromal
cells were positive for vimentin whereas immune cells (e.g., macrophages and granulocytes) stained
positive for CD172. The respective primary monoclonal mouse antibodies used were: anti-human
cytokeratin- clone AE1/AE3 (Dako), anti-vimentin-clone V9 (Dako) or anti-CD172a (DH59B;
Monoclonal Antibody Center VM&P, Washington State University, Pullman, WA, USA). The relative
proportions of each cell type after 8 days of culture were evaluated using image analysis software
(ImageJ version 1.44; Research Services Branch, NIMH/NIH, Bethesda, MD, USA). Only cultures with
an epithelial to stromal cell ratio of approximately 9:1 at day 8 of culture when the urea experiments
were performed in addition to a negligible presence of contaminant immune cells (<0.001%) were used
for further studies.
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2.8. Cell Culture Treatment with Urea and LPS

The in vitro experiment (Study 2) was performed in a 4 ˆ 2 factorial design in 24-well culture plates.
There were four urea treatment groups each of six wells, half of which also received an LPS treatment.
The entire procedure was repeated on four separate occasions each utilizing endometrial cell cultures
established from a different cow, with each cow representing one batch. Once the cultures had reached
confluence (day 8), they were treated with four concentrations (0, 2.5, 5.0 and 7.5 mmol/L) of urea
in serum-free medium (SFM) which comprised of 1.125 g BSA and 1 mL Insulin-Transferrin-Sodium
Selenite (ITS; Sigma) per L of DMEM/F12. After an initial 2 h equilibration period with the urea
present, half of the wells in each urea treatment group were also treated with 100 ng/mL LPS (E.coli
serotype 026:B6; Sigma) for a further 24 h while the remainder were not. This provided three wells
for each treatment and challenge combination and these were pooled for RNA extraction after removal
of the culture medium. Total RNA was isolated from the treated cultures using the RNeasy Mini spin
column method (Qiagen) following the supplied protocol. The concentration and purity of RNA samples
were determined using a ND-1000 NanoDrop spectrophotometer (NanoDrop Technologies) while RNA
integrity was confirmed by agarose gel electrophoresis.

2.9. Endometrial Cell Viability Assay

Bovine endometrial cell viability following treatment with urea and LPS was determined using the CellTiter
96 AQueous One Solution Cell Proliferation Assay (Promega) in accordance with the supplied protocol based
on the 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS)
compound. About 50,000 mixed bovine endometrial epithelial and stromal cells were allocated per
well in 32 wells of a 96-well plate and cultured for 8 days. Growth medium was removed from the
cultured cells and the urea treatments (0, 2.5, 5.0 and 7.5 mmol/L) allocated to 8 wells per treatment
group followed by incubation for 2 h. Each urea treatment group was then divided into two: four wells
were treated with 100 ng/mL LPS (E. coli serotype 026:B6; Sigma) for 24 h while four were not. A
cell viability assay was performed and the measured absorbance at 490 nm was evaluated as a direct
proportion of the viable cells in culture.

2.10. Quantitative Reverse Transcription PCR (qRT-PCR) Analysis and Data Normalization

Six candidate genes with known functions whose expression in the endometrium correlated with
plasma urea concentration in dairy cows (BRINP1, CRISPLD2, HSPA5, IGF1R, IL17RB, S100A8) in
addition to RN18S1, used as an endogenous reference gene, were selected. Gene expression in the treated
endometrial cell cultures was measured by qRT-PCR using methods validated in our laboratory [42].
Oligonucleotide primers were designed for the genes (Table 1) using Primer3 version 4.0 [49] and
reference sequence templates derived from the GenBank database (NCBI). Primer specificity to
the target gene was evaluated using Primer-BLAST (NCBI). The quality of primers was assessed
using OligoAnalyzer version 3.1 (Integrated DNA Technologies) before they were synthesized by the
manufacturer (Eurofins MWG Operon). Primer specificity was validated by PCR-gel electrophoresis.
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Table 1. Details of the genes assessed by quantitative RT-PCR.

Gene Symbol Primer Sequence 51Ñ31
Product

Size (bp) *
GenBank

Accession No.

RN18S1
F: CGGCGACGACCCATTCGAAC

99 NR_036642.1
R: AATCGAACCCTGATTCCCCGTC

S100A8
F: TGCCATTAACTCCCTGATTGAC

179 NM_001113725.1
R: TAATTCCACCATCCTGATTGAT

HSPA5
F: GGTATTGAAACTGTGGGAGGTG

119 NM_001075148.1
R: AAGGTGATTGTCTTTCGTCAGG

IGF1R
F: GATCCCGTGTTCTTCTACGTTC

101 NM_001244612.1
R: AAGCCTCCCACTATCAACAGAA

IL17RB
F: AAAGCCACTTCCAGTCCTACAG

179 NM_001083467.1
R: ACCGTCCTCATTCATATTTGC

BRINP1
F: ACTGGAGCAATCAAGGTCACA

173 NM_001015669.1
R: GCCGACTGGACGAACTTCT

CRISPLD2
F: ACTGAAACGGACGACATGAAC

175 NM_001100299.1
R: TGGACCCTTTACACTTGTCCTT

F (forward); R (reverse); * base pairs.

For each gene, qRT-PCR assay was initially optimized and then performed using the CFX96
Real-Time Thermal Cycler (Bio-Rad) and the KAPA SYBR FAST qPCR Kit (Kapa Biosystems). Each 1 µg
total RNA sample was first treated with an RNase-free DNase (Promega) and then reverse-transcribed to
complementary DNA (cDNA) using the GoScript Reverse Transcription (RT) System (Promega). Assay
standards were prepared from PCR gene products which were purified using the the QIAquick PCR
purification kit (Qiagen). All assays for each gene were run in duplicate in the same reaction using
50 ng of cDNA sample together with the no template control (NTC) and ten known concentrations of
the gene standard ranging from 1 ˆ 101 to 1 ˆ 10´8 ng/mL. The absolute mRNA expression values for
each gene were calculated by comparing the threshold cycle (Cq) values of the unknown samples to that
of the known standard curve using the Bio-Rad CFX Manager software version 3.1.

The reference gene RN18S1 was evaluated for stability under the experimental conditions. Analysis
(linear mixed-effects model) showed that the expression of RN18S1 in bovine endometrial cells was not
altered by either urea or LPS treatments alone or in combination (data not shown). The mRNA expression
values of the measured genes were therefore normalized by dividing the sample value for each gene with
its corresponding value for RN18S1. The values were presented as relative gene expression (in arbitrary
units) with respect to the RN18S1 measured in the same samples.

2.11. Additional Data Analysis

In Study 1, Pearson correlation analysis was performed between the final EB value, the various blood
hormone and metabolite concentrations and the white blood cell count measured at the time closest to
slaughter and the measurements made of the different immune cell populations in the endometrium of



Animals 2015, 5 756

each cow. A Benjamini Hochberg false discovery rate correction was employed to correct the P values.
In Study 2, four batches of cell culture were established with each batch using endometrial cells derived
from the uterus of one cow. The cells in each batch were treated with either control (0) or one of three
concentrations of urea (2.5, 5.0 or 7.5 mmol/L) in the absence or presence of an LPS challenge. On each
occasion there were three wells for each treatment and challenge combination and these were pooled for
RNA extraction. Data were analysed using ANOVA with randomised block design via a linear mixed
effect model built in IBM SPSS Statistics for Windows, Version 20.0 (Armonk, NY: IBM Corp.). The
effects of urea and LPS on gene expression were taken as fixed effects and cow (batch) as a random
effect. Results were considered significant when p < 0.05.

3. Results

3.1. Study 1: in Vivo Microarray Experiment

The overall mean plasma urea concentrations in the first 2 weeks postpartum were 5.4 ˘ 0.35 mmol/L
in the SNEB cows (n = 6) and 4.35 ˘ 0.55 mmol/L in the MNEB group (n = 5), with an overall range
from 3.2 to 6.6 mmol/L between animals. These values overlapped and did not differ between treatment
groups. As reported previously, the cows on the SNEB treatment had a worse EB status associated
with increased circulating concentrations of NEFA and BHB but reduced concentrations of IGF1 and
glucose [31,46]. The EB calculations for individual cows were correlated with circulating concentrations
of glucose, NEFA, BHB and urea. Whereas the concentrations of NEFA, BHB and glucose were strongly
related both to each other and to circulating IGF1, those of urea were not. Urea was, however, the only
metabolite to show a positive correlation with the circulating PGFM value (Table 2).

With respect to the immune cell status of the cows in both blood and endometrium, the plasma
concentrations of IGF1, insulin, glucose, NEFA and BHB were all significantly correlated with the
white blood cell count. In accord with this, glucose and BHB were negatively and positively correlated
respectively with the numbers of segmented cells present in the luminal epithelium, and IGF1, insulin,
glucose, NEFA and BHB all showed significant relationships with the numbers of lymphocytic foci
and/or the monocyte population of the endometrial stroma (Table 2). In contrast, plasma urea was not
related to any measurement made of the immune cell population in either blood or endometrium.

There were, however, 1310 probes from the microarray data whose expression in endometrium
correlated with the mean plasma urea concentration of each cow at p < 0.05. From this total
781 genes were mapped (listed in Table S1) and their biological functions were analysed using Ingenuity
Pathway Analysis (IPA) (Table 3). The main disease processes identified were endocrine system
disorder and haematological disease whereas the top two biological functions were cellular function
and maintenance and cellular growth and proliferation (all p < 0.001). The top four canonical pathways
were corticotrophin releasing hormone signaling, coagulation system, retinoic acid mediated apoptosis
signaling and LXR/RXR activation. Although haematological disease was identified as significant, there
were no significant correlations of the plasma urea concentration with the populations of immune cells
(neutrophils, macrophages and lymphocytic foci) measured in the epithelium or stroma of the individual
cows (Table 2).
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Table 2. Matrix of Pearson correlations between energy balance and circulating metabolite
and hormone concentrations at 14 ˘ 0.4 days postpartum with the circulating white blood
cell count and the uterine inflammatory cell population (n = 11 cows) #.
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Table 2. Matrix of Pearson correlations between energy balance and circulating metabolite 

and hormone concentrations at 14 ± 0.4 days postpartum with the circulating white blood 

cell count and the uterine inflammatory cell population (n = 11 cows) #. 

 EB IGF1 INS GLUC NEFA BHB UREA PGFM 

IGF1 
0.547  

NS 
       

INS 
+0.116  

NS 

+0.829 **  

0.002 
      

GLUC 
0.678 *  

0.022 

+0.866 **  

0.001 

+0.575 

NS 
     

NEFA 
−0.672 *  

0.024 

−0.744 *  

0.009 

−0.501 

NS 

−0.724 *  

0.012 
    

BHB 
−0.710 *  

0.014 

−0.840 ***  

0.001 

−0.543 

NS 

−0.933 *** 

0.000 

+0.880 *** 

0.000 
   

UREA 
−0.672 *  

0.023 

−0.401  

NS 

−0.078 

NS 

−0.398  

NS 

+0.480  

NS 

+0.498  

NS 
  

PGFM 
−0.483  

NS 

−0.147  

NS 

+0.016 

NS 

−0.334  

NS 

+0.250  

NS 

+0.317  

NS 

+0.667 * 

0.025 
 

WBC 
+0.165  

NS 

+0.648  

0.031 

+0.655 

0.029 

+0.616  

0.044 

−0.793 ** 

0.004 

−0.712 *  

0.014 

−0.007  

NS 

−0.054 

NS 

SEGepi 
−0.510  

NS 

−0.565  

NS 

−0.423 

NS 

−0.690 *  

0.019 

+0.554  

NS 

+0.699 *  

0.017 

+0.290  

NS 

−0.010 

NS 

MCepi 
+0.468  

NS 

−0.083  

NS 

+0.038 

NS 

+0.110  

NS 

−0.582  

NS 

−0.437  

NS 

+0.543  

NS 

−0.493 

NS 

SEGst 
−0.272  

NS 

−0.055  

NS 

+0.198 

NS 

−0.340  

NS 

+0.490  

NS 

+0.417  

NS 

+0.075  

NS 

−0.055 

NS 

MCst 
+0.155  

NS 

+0.707 *  

0.015 

+0.675 * 

0.023 

+0.014  

NS 

−0.666 * 

0.023 

−0.747 *  

0.008 

−0.047  

NS 

−0.019 

NS 

LYFOCst 
−0.399  

NS 

−0.650  

0.030 

−0.447 

NS 

−0.672 *  

0.023 

+0.648  

0.031 

+0.797 **  

0.003 

+0.065  

NS 

−0.434 

NS 

# Results have been combined for the 5 cows on the MNEB and 6 on the SNEB treatment groups. The blood 
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# Results have been combined for the 5 cows on the MNEB and 6 on the SNEB treatment groups. The
blood values used were those taken pre-slaughter. EB, energy balance; INS, insulin; GLUC, glucose; WBC,
circulating white blood cells; SEGepi and SEGst, segmented cells in uterine epithelium and stroma; MCepi,
and MCst mononuclear cells (macrophages and lymphocytes) in uterine epithelium and stroma; LYFOCst,
No. lymphocytic foci in stroma. The Pearson correlation is shown above. The actual p value is given below.
Using a Benjamini Hochberg false discovery rate correction for 13ˆ 13 comparisons, adjusted 5% significance
is at p = 0.025 and adjusted 1% significance is at p = 0.005, shown in bold. NS, not significant.
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Table 3. Ingenuity Pathway Network Analysis of the genes significantly correlated with
mean plasma urea concentrations showing the top 4: (1) disease processes and biological
functions; (2) canonical pathways and (3) network functions.

P Value No. Genes Disease Processes and Biological Functions

<0.001 32 Endocrine system disorders
<0.001 28 Haematological disease
<0.001 49 Cellular function and maintenance
<0.001 Cellular growth and proliferation

Ratio a Canonical Pathways
0.01 10/136 Corticotrophin releasing hormone signalling
0.016 5/38 Coagulation system
0.022 5/68 Retinoic acid mediated apoptosis signalling
0.026 10/131 LXR/RXR Activation
Score Focus Molecules Network b

43 29 Endocrine system development, lipid metabolism, molecular transport
40 27 Cell-to-cell signaling and interaction, tissue development
38 26 Lipid metabolism, molecular transport, small molecule biochemistry

38 26
Cell-to-cell signaling and interaction, haematological system
development and function, haematopoiesis

a The number of genes in the list of DEGs that participate in the canonical pathway divided by the total number
of genes that are known to be associated with the pathway in the Ingenuity knowledge base; b A higher network
score corresponds to a lower probability of finding the observed number of the DEGs in a given network by chance.

The top 10 genes whose expression in the endometrium was most highly correlated with plasma urea
concentrations are summarized in Table 4 and for eight of these genes the relationship is illustrated in
Figure 1. In most cases the relationship was negative, with gene expression decreasing as plasma urea
increased but SCAP, XIST and ACBD5 showed a positive relationship. The putative functions of these
genes varied considerably including potentially important regulatory roles in cellular physiology and
immune function. The protein encoded by BRINP1 is thought to be a critical regulator of tumorigenesis:
in cultured breast cancer cells it can modulate the activities of the key receptors ERA, RARA and AR [33]
whereas in a bladder tumour cell line it clustered with several proteins in the urokinase-plasminogen
pathway involved in inflammation [50]. FOXG1 encodes a protein from a distinct subfamily of the
forkhead box O (FOXO) family of transcription factors. These regulate the expression of genes in cellular
physiological events including apoptosis, cell-cycle control, glucose metabolism and oxidative stress
resistance. FOXG1 itself has been associated with the PI3K and TGFB/Smad signalling pathways [51].
IL17RB encodes a cytokine receptor which binds IL-25 (IL17E) to mediate Th2 immune responses [35].
ACBD5 functions in the transport and distribution of long chain acyl-Coenzyme A in cells. SLC10A1
encodes a protein belonging to the sodium/bile acid co-transporter family [52]: as bile acids are the
catabolic product of cholesterol metabolism, it is important for cholesterol homeostasis. SRRM2 plays a
role in RNA splicing and RBK5 is involved in ribose metabolism. XIST functions in early developmental
processes in mammalian females to transcriptionally silence one of the pair of X chromosomes.
CRISPLD2 encodes an LPS-binding serum protein thought to have an anti-inflammatory function [37].
SCAP plays a crucial role in regulating the LDL receptor and is involved in inducing macrophages to
form foam cells [53].
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Figure 1. Scatter plots showing the relationships between the mean plasma urea
concentration from each of 13 cows and the gene expression level measured in their
endometrium at 2 weeks postpartum using microarray analysis, normalized by overall
expression within the chip.
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Table 4. Summary information on the top 10 genes expressed in bovine endometrium which
were most highly correlated with the plasma urea concentration plus an additional 3 genes
selected for the follow-up study.

Gene Symbol Unigene ID Gene Title Entrez Gene r P

Top 10 Genes

BRINP1 # Bt.35142
Bone morphogenetic protein/retinoic acid

inducible neural-specific 1
538990 ´0.896 0.0002

FOXG1 Bt.66213 Forkhead box G1 516947 ´0.894 0.0002
IL17RB Bt.24532 Interleukin 17 receptor B 533605 ´0.892 0.0002

ACBD5 Bt. 87957
Acyl-coenzyme A binding domain

containing 5
353160 +0.883 0.0003

SLC10A1 Bt.51814
Solute carrier family 10 (sodium/bile acid

co-transporter family), member 1
532890 ´0.875 0.0004

SRRM2 Bt.22353 Serine/arginine repetitive matrix 2 539515 ´0.869 0.0005
XIST — X (inactive)-specific transcript 338325 +0.864 0.0006
RBKS — Ribokinase 513276 ´0.862 0.0006

CRISPLD2 Bt.55503
Cysteine-rich secretory protein LCCL

domain containing 2
505329 ´0.859 0.0007

SCAP Bt.18085 SREBF chaperone 507878 +0.858 0.0007
Additional Follow-up Genes Used in Study 2

S100A8 Bt. 9360 S100 calcium binding protein A8 616818 +0.624 0.04

HSPA5+ Bt.65104
Heat shock 70 kDa protein 5

(glucose-regulated protein, 78 kDa)
415113 +0.580 0.06

IGF1R Bt.12759 Insulin-like growth factor 1 receptor 281848 +0.609 0.05

# Previously named DBC1, Deleted in bladder cancer 1; + Also known as GRP78.

The four top networks identified were involved in cell signalling, lipid metabolism and
haematopoiesis. The components of each network are given in Table 5. Network 1 was “Endocrine
system development, lipid metabolism and molecular transport”. Some genes within this network
encoded proteins involved in the regulation of mitosis (ARPP19, SMC3) whereas XIST, as mentioned
above, is important for inactivation of one X chromosome in females. The network included several
genes encoding proteins which are components of the mediator complex which is involved in the
regulation of gene transcription (MED17, MED22, MED25, MED26). A number of other genes play
a role in altering mRNA stability (HADHB, MATR3) and in RNA degradation (RNASE1). HADHB is
also involved in the beta-oxidation of long chain fatty acids. Network 1 also contained some genes
involved in the innate immune system: CEPBP encodes a transcription factor involved in the regulation
of genes involved in immune and inflammatory responses; CXCL5 encodes a chemokine which recruits
neutrophils to promote angiogenesis and remodel connective tissues whereas DEFB1 encodes an
antimicrobial peptide implicated in the resistance of epithelial surfaces to microbial colonization. Two
other interesting genes identified were NR3C1 and POMC. NR3C1 encodes the glucocorticoid receptor,
which can function both as a transcription factor that binds to glucocorticoid response elements to
activate gene transcription and as a regulator of other transcription factors. It is involved in inflammatory
responses, cellular proliferation, and differentiation in target tissues. POMC encodes a polypeptide
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hormone precursor that is synthesised mainly in corticotroph cells of the anterior pituitary but also in
peripheral tissues [54]. The precursor protein undergoes extensive tissue-specific, post-translational
processing yielding up to ten biologically active peptides which are involved in diverse cellular functions
with roles in steroidogenesis, pain, energy homeostasis, melanocyte stimulation and immune modulation.
Amongst these αMSH has immunmodulatory and antimicrobial activity [55].

Table 5. Molecules in each of the top 4 networks and canonical pathways in endometrium of
11 postpartum cows identified by IPA analysis as being correlated with their mean plasma urea value.

Network Molecules in Network

Endocrine system
development, lipid
metabolism, molecular
transport

Alpha tubulin, ARPP19, ASCC2, CEBPB (includes EG:1051), CRTC1, CXCL5,
DEFB1, FASTKD1, FASTKD5, HADHB, Ige, Interferon alpha, Lh, MATR3, MED17,
MED22 (includes EG:20933), MED25 (includes EG:292889), MED26 (includes
EG:306328), Mediator, MEIS1, MFSD2A, MLL2, NR3C1, PALB2, PCTP, POMC,
RAD51AP1, RNA polymerase II, RNASE1, RPL12, SMC3, TMEM176A, TNS4,
UBE2O, XIST

Cell-to-cell signaling and
interaction, tissue
development

Aconitase, ADAM9, APEH, CBR1, CDH16, CHMP3, CNKSR3, DOCK1, ELMO3,
EPHA7, ERK1/2, FEZF1, FXN, HADH, HERC2, JAM, Laminin, Lfa-1, LGI1, LLGL2,
Mac1, MLLT4, MVP, NAA15, PCBP2, RABAC1, Rap1, Rap, RAP1A, RAPGEF2,
RASIP1, SNX15, TMEM176B, UBA5, VTA1 (includes EG:292640)

Lipid metabolism,
molecular transport, small
molecule biochemistry

ABCG4, AKR1C4, Angiotensin II receptor type 1, APOA5, C/ebp, CHST14, CLEC4G,
CPN1, GALNT2, GC, HDL, HDL-cholesterol, HIVEP2, HNF1B, HSD11B1, IL17RB,
IP6K2, IRAK1BP1, KPNA4, MAP4K2, N-cor, NCOR-LXR-Oxysterol-RXR-9 cis RA,
NFkB (complex), NR1H2, OTUB2, PEPCK, PPP1R13L, RTKN, Rxr, SERPINF1,
SERPINF2, SLC10A1, STMN2, TFG, ZFAND6

Cell-to-cell signaling and
interaction, haematological
system development and
function, haematopoiesis

ABI1, Akt, ASXL2, BATF, BBS5, BCOR, C1q, Complement component 1, Creatine
Kinase, CREM, CYP19, Cytoplasmic Dynein, DYNLRB2, Fibrinogen, FKHR, FOXG1,
GDF9, GRB10, HOXD10, MLLT1, MLLT10, MPDZ, NDEL1, NFIL3, PCGF1, PCM1,
PHF1, PTX3, RAB40B, SERPING1, SPINK1, TDGF1, TFPI, Trypsin, TTC3

Canonical Pathways Molecules in Canonical Pathway
Corticotropin Releasing
Hormone Signalling

ATF4, GNAS, GUCY2C, MAPK12, MEF2C, POMC, PRKCD, RAP1A, RAF1, VEGFA

Coagulation System A2M, F3, PLAUR, SERPINF2, TFPI
Retinoic acid Mediated
Apoptosis Signaling

CFLAR, IFNAR1, FADD, PARP10, TIPARP

LXR/RXR Activation ABCG4, APOA5, C3, GC, HADH, IRF3, NR1H2, S100A8, SERPINF1, SERPINF2

Network 2 was entitled “Cell-to-cell signalling and interaction, tissue development”. A number
of genes (CDH16, ADAM9, CHMP3, DOCK1, ELMO3, EPHA7, FEZF1, LLGL2, RAP1A) encode
proteins which have roles in tissue development, cell-cell and cell-matrix interactions, cell migration and
membrane turnover. For example, ADAM9 is involved in shedding membrane-anchored heparin binding
EGF-like growth factor, CHMP3 sorts transmembrane proteins into lysosomes, DOCK1 and ELMO3 are
both involved in phagocytosis and cell migration. Both SNX15 and VTA15 encode proteins involved in
intracellular trafficking. CBR1 encodes a NADPH-dependent oxidoreductase which has wide specificity
for carbonyl compounds including prostaglandins. FXN encodes a mitochondrial protein regulating iron
transport whereas HADH functions in the mitochondrial matrix in the beta-oxidation pathway. PCBP2
encodes a multifunctional protein involved in RNA binding.
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Network 3 was called “Lipid metabolism, molecular transport, small molecule biochemistry”.
Proteins encoded by several genes within this network are involved in various aspects of lipid
metabolism. ABCG4 is thought to play a role in cholesterol transport, APOA5 is an apolipoprotein which
helps to regulate plasma triglyceride levels, as does GALNT2. NR1H2 encodes the liver X receptor,
LXRB, which is important for macrophage function and lipid homeostasis, regulating the metabolism
of various lipids including cholesterol and bile acids. SLC10A1 is involved in the breakdown of bile
acids and thus is also important for cholesterol homeostasis. AKR1C4 is a member of the aldo/keto
reductase superfamily with roles in the inter-conversion of steroids and prostaglandins between active
and inactive forms. Similarly HSD11B1 encodes an enzyme which catalyzes the conversion of cortisol
to the inactive form cortisone. GC encodes a member of the albumin family which binds and transports
vitamin D and its metabolites. Some other genes in this network are involved in immune function
including CLEC4G (T cell responses), IL17RB (cytokine receptor) and IRAK1BP1, a gene associated
with the interleukin 1 receptor. SERPINF1 and SERPINF2 encode serpin peptidase inhibitor, clade F
(alpha-2 antiplasmin, pigment epithelium derived factor), members 1 and 2 respectively. SERPINF1
strongly inhibits angiogenesis whereas SERPINF2 is a major inhibitor of plasmin, which degrades fibrin
and various other proteins thus having an important role in regulating the blood clotting pathway.

Network 4 was entitled “Cell-to-cell signalling and interaction, haematological system development,
haematopoiesis”. It includes a number of transcriptional regulators including ASXL2, BATF, BCOR,
CREM, FKHR (also known as FOXO1A), FOXG1, HOXD10, MLLT10, NFIL3, PCGF1 and PHF1.
Within this list ASXL2, PCGF1 and PHF1 encode proteins belonging to the polycomb group which
are involved in the epigenetic regulation of gene expression during development and differentiation.
C1q is part of the complement system while SERPING1 encodes a protein involved in regulation of
the complement cascade. PTX3 is also involved in innate immunity. CYP19 encodes a cytochrome
P450 which catalyses oestradiol synthesis. NDEL1 and PCM1 are both involved in cytoskeleton
reorganization. GRB10 encodes a growth factor receptor binding protein which interacts with both
insulin and IGF receptors to influence their downstream signalling. TDGF1 encodes a TGFB ligand
and the TGBF signalling pathway plays numerous roles in cell proliferation, differentiation, apoptosis
and migration.

Not surprisingly there was overlap between some of the genes classified into networks and canonical
pathways. The most significant canonical pathway was “Corticotropin Releasing Hormone Signalling”
which contained both POMC and also VEGFA, highlighting the activities of melanocortin peptides
as important regulatory functions in vascular inflammation [56]. The second pathway related to the
“Coagulation System”. C3 encodes coagulation factor III which enables cells to initiate the blood
coagulation cascades. PLAUR has a role in plasminogen activation and localized degradation of the
extracellular matrix while both A2M and SERPINF2 encode protease inhibitors. SERPINF2 has a
major role in regulation of blood clotting. Pathway 3 was entitled “Retinoic Acid Mediated Apoptosis
Signalling”: two of the genes identified within it, CFLAR and FADD, are mainly implicated in regulation
of apoptosis while IFNAR1 encodes an interferon receptor. Canonical pathway 4 “LXR/RXR Activation”
contained several genes discussed above which also appeared in Network 3 (ABCG4, APOA5, NR1H2,
SERPINF1, SERPINF2). GC is a vitamin D binding protein while S100A8 is a calcium-binding protein
with a role in innate immunity.
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3.2. Study 2: in Vitro Effects of Urea on Endometrial Gene Expression

Initial tests in the absence of any added cells measured the osmolality and pH of the medium for
the four tested concentrations of urea (0, 2.5, 5.0 and 7.5 mmol/L). These were equivalent to 0, 150,
300 and 450 µg/mL. Osmolality increased very slightly from 0.29 ˘ 0.001 osmol/kg at 0 µg/mL
urea to 0.30 ˘ 0.002 osmol/kg at 450 µg/mL. The pH also increased slightly from 7.5 ˘ 0.02 to 7.6 ˘ 0.01
over the same urea range. These values all remained within ranges considered acceptable for cell
culture. The effects of the treatments were next tested with respect to cell viability using the CellTiter 96
AQueous One Solution Cell Proliferation Assay (Promega). The absorbance values at 490 nm showed
that treatment in vitro of mixed bovine endometrial epithelial and stromal cell cultures with four different
concentrations of urea with or without exposure to 100 ng/mL LPS for 24 h did not alter the number of
viable cells in culture compared to untreated cells (data not shown).

All the candidate genes (S100A8, HSP5A, IGF1R, IL17RB, DBC1 and CRISPLD2) and the reference
gene RN18S1 were detectable in the endometrial cultures by qRT-PCR. A comparison of the normalised
data showed that treatment with four different concentrations of urea (0, 2.5, 5.0 and 7.5 mmol/L) did not
alter the expression of any of the examined genes in cultured bovine endometrial cells (p > 0.05, Table 6).
Furthermore, there were no significant interactions between the effect of urea and LPS treatment on the
mRNA expression of the examined genes (p > 0.05, Table 6). As expected, the expression of S100A8
was up-regulated (p < 0.001; t-test) in the endometrial cell cultures treated with LPS for 24 h. In contrast,
LPS did not alter the expression of HSP5A, IGF1R, IL17RB, DBC1 and CRISPLD2 in the treated cultures
(Table 6).

Table 6. Effects of different concentrations of urea on the mRNA expression of selected
genes in bovine endometrial cells with or without 100 ng/mL LPS for 24 h #.

Gene LPS Urea (mmol/L)
COMB+

0 2.5 5.0 7.5

S100A8
- 90 ˘ 34.8 90 ˘ 17.9 112 ˘ 47.8 86 ˘ 25.4 94 ˘ 15.2
+ 545 ˘ 97.3 816 ˘ 242 795 ˘ 263 697 ˘ 225 713 ˘ 101 **

HSPA5
- 449 ˘ 110 547 ˘ 152 533 ˘ 210 517 ˘ 191 511 ˘ 76.7
+ 533 ˘ 171 532 ˘ 192 523 ˘ 179 652 ˘ 285 560 ˘ 95.7

IGF1R
- 40,686 ˘ 7122 51,365 ˘ 6018 40,512 ˘ 8384 47,800 ˘ 11,001 45,091 ˘ 3920
+ 56,308 ˘ 12,006 41,976 ˘ 9441 40,360 ˘ 7702 46,944 ˘ 11,921 46,397 ˘ 4931

IL17RB
- 1019 ˘ 471 1802 ˘ 283 2164 ˘ 923 2111 ˘ 337 1774 ˘ 278
+ 3386 ˘ 898 1613 ˘ 795 1295 ˘ 505 2098 ˘ 486 2099 ˘ 373

BRINP1
- 334 ˘ 136 405 ˘ 142 289 ˘ 114 254 ˘ 119 320 ˘ 59.3
+ 340 ˘ 141 370 ˘ 148 381 ˘ 202 224 ˘ 52.9 329 ˘ 67.3

CRISPLD2
- 3131 ˘ 1551 3403 ˘ 1470 3042 ˘ 1200 2418 ˘ 710 2998 ˘ 578
+ 3261 ˘ 1511 2687 ˘ 1071 3390 ˘ 1105 1666 ˘ 359 2751 ˘ 519

# Values are calculated as mean relative expression (in arbitrary units) ˘ SEM with respect to the reference
gene RN18S1 measured in the same samples. Results are combined from four experimental replicates/batches
per treatment. There was no significant interaction (p > 0.05; ANOVA with randomised block design via a
linear mixed-effects model) between the effect of urea and LPS treatment on the expression of any of the genes
examined; + Shows the combined effect of LPS treatment across all the urea concentrations combined, n = 16.
** Significant difference (p < 0.001; t-test).



Animals 2015, 5 764

4. Discussion

This study has revealed many highly significant associations between plasma urea levels ranging
between 3.2 to 6.6 mmol/L and endometrial gene expression during the early postpartum period when
the uterus is not only undergoing extensive remodelling but also playing a major role in innate immunity
to combat infection. These urea concentrations were all below the range which others have considered
as “high” with suggested thresholds of >6.8 [16] or >7.5 mmol/L [10]. Hammon et al. [57] confirmed
that in cows with blood plasma urea nitrogen level >20 mg/dL (equivalent to 7.1 mmol/L) the uterine
fluids also had significantly higher urea levels. Our second experiment did not, however, find any effects
of added urea providing concentrations in the range 0 to 7.5 mmol/L on endometrial gene expression
in vitro, suggesting that an intermediary mechanism(s) must be involved.

The influence of high protein intake and the effect of urea on dairy cow fertility remain
ambiguous [7,12,58]. There is also no single measurable metabolite which directly reflects protein
status. Rather, multiple parameters are utilised including blood urea nitrogen (BUN), creatinine, total
protein, albumin and creatine kinase [11]. A high mean plasma urea concentration was associated
with a significant reduction in pregnancy rate in dairy cows [59,60]. In contrast, high plasma urea
concentrations due to high levels of dietary nitrogen had no effect on parameters of fertility in
other studies [61–63]. Moreover, high blood urea and the metabolic indicators of NEB often occur
simultaneously in high-yielding cows making it difficult to separate out any individual effects on
subsequent fertility [58]. Another problem of interpretation is that both high (>7.5 mmol/L) and low
(<4.5 mmol/L) circulating urea concentrations have been associated with reduced fertility. We showed
previously that the relationships between plasma urea and fertility altered according to both the age
of the cow and the stage of lactation at which the urea levels were measured [10]. This earlier study
analysed data from 500 cows from 6 different farms which were fed 17 different diets in which the crude
protein content varied from 133 to 228 g/kg dry matter. The differences in plasma urea concentrations
between animals were mainly accounted for by diet but body condition score and milk yield were also
important. In multiparous cows there was a trend for lower pre-calving plasma urea concentrations to be
associated with longer intervals to conception whereas in cows calving for the first time, higher plasma
urea concentrations pre-calving predicted a worse fertility outcome. The plasma urea concentration
measured at 7 weeks postpartum was negatively associated with fertility in both age groups. The
cows in the present experiment were fed a standard diet based on grass silage and concentrate and
the plasma urea concentrations did not exceed 7.5 mmol/L. There was no difference in the plasma
urea concentration between cows on the SNEB and MNEB treatments but other blood metabolite and
hormone concentrations changed as predicted (elevated BHB and NEFA, reduced glucose and IGF1
for the SNEB cows). This indicates that other currently unknown cow factors affected the circulating
urea concentration.

Although the in vivo experiment detected many highly significant correlations between circulating
urea and endometrial gene expression, the in vitro experiment showed that treatment with 0, 2.5, 5.0
and 7.5 mmol/L of urea equivalent to low, medium and high plasma urea concentrations did not alter
the mRNA expression of S100A8, HSP5A, IGF1R, IL17RB, DBC1 and CRISPLD2 in cultured bovine
endometrial cells. LPS treatment caused a significant increase («8 fold) in the expression of S100A8 in
bovine endometrial cells which confirmed our previous report [42] and showed that the cells were viable
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and responsive under all the urea concentrations tested. Urea is an osmotically active agent and changes
in osmolality have long been known to have major effects on mammalian cells, including cytoskeletal
rearrangement, inhibition of DNA replication and apoptosis [64]. For instance, the expression of
heat shock proteins (HSPs) altered during cellular response to osmotic stress induced by urea [65,66].
In contrast, this study observed no differences in expression of HSP5A and the other examined genes
in response to urea. The previously reported effects were, however, generally only apparent with
osmolalities above 500–700 mosmol/kg, dependent on cell type [64]. Whereas such levels are reached
in normal renal medulla, they are much higher than those which we tested which reflected physiological
urea concentrations in plasma of around 300 mosmol/kg. Another study also reported that the expression
of several genes involved in cell growth/differentiation (IGF1) and apoptosis/cellular stress (BCL2, BAX)
were not altered in bovine endometrial explants at concentrations comparable to this study [22]. The
only gene showing a consistent dose-responsive decline in expression as urea increased was FGF2, but
significance was only reached at a urea concentration of 16 mmol/L which is much higher than normal
circulating levels.

Excess dietary protein or urea infusion decreased uterine pH in cows from about 7.1 to about 6.9,
and this effect was specific to the uterus [19,20,67]. When polarized bovine endometrial cells in culture
were treated with urea this diminished the effect of progesterone in maintaining a pH gradient between
apical and basal compartments [8]. In our study, however, the addition of urea did not alter the pH of
the culture medium. The culture system we used also differed as cells were not polarized or treated
with progesterone. Beltman et al. [68] compared parameters between beef heifers in which either a
viable or degenerate embryo was found on day 7 post insemination and found no differences in either
blood urea or uterine pH. Another possibility is that the effect of an increase in dietary nitrogen may be
mediated by ammonia rather than urea [12]. However, the relationship between plasma concentration
of urea and ammonia is complex. Elevated plasma concentrations of ammonia and (or) urea due to a
high-protein diet, compromised the capacity of oocytes to develop to blastocysts in vitro [17]. Ammonia,
in similar concentrations measured in the follicular fluid also impaired the in vitro growth, metabolism
and functions of bovine ovarian granulosa cells [69].

The lack of a direct effect of added urea on endometrial gene expression suggests that the strong
correlations between urea and gene expression found in Study 1 was not due to a direct causal
relationship. Another possibility is that both were influenced by some other factor. The cows in this
study were being managed to induce either mild or severe NEB and this was confirmed by achieving
raised concentrations of BHB and NEFA but lower levels of IGF1 between the groups [31]. We
also showed previously that the livers in SNEB cows contained significantly more lipid and reduced
glycogen [46]. In contrast, plasma urea levels overlapped between the treatment groups; factors other
than diet must therefore have been influential. The samples were collected two weeks after calving
when the uterus is still undergoing involution and also mounting an innate immune response to bacterial
infection [29,70]. Examination here of the genes, networks and pathways associated with circulating urea
has shown that these were predominantly associated with tissue turnover, immune function, inflammation
and lipid metabolism.

Involution requires a large amount of tissue breakdown and extensive remodelling to restore normal
size and architecture. The presence of large numbers of genes encoding transcription factors (e.g., FKHR,
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FOXG1, mediator complex genes, CEPBP, NR3C1), polycomb group genes involved in epigenetic
regulation of gene expression (e.g., ASXL2, PCGF1, PHF1), genes involved with RNA turnover
and splicing (e.g., SRRM2, RBK5, HADHB, MATR3, RNASE1), cytoskeleton reorganisation (NDEL1,
PCM1), cell proliferation (ARPP19, SMC3) and apoptosis (CFLAR, FADD) whose expression showed
a relationship with urea implies a link between circulating urea and the rate of uterine involution. The
most highly correlated gene was BRINP1 which has been shown to influence the rate of proliferation in
tumour cell lines, in part by modulating the activities of the steroid and retinoic acid receptors ERA, AR
and RARA [33,71]. BRINP1 expression fell as the urea concentration increased. This is a chicken and
egg situation as animals in energy deficit may increase tissue protein catabolism leading to increased
urea production [1], thus further work is required to determine whether the rate of tissue breakdown
affected the circulating urea level or vice versa. In postpartum cows plasma PGFM concentrations
fall steadily from the peak at calving, generally returning to baseline within about 2 weeks [31].
However in some cows with uterine infections PGFM concentrations remain elevated for longer [72].
Bekana et al. [73] found a positive correlation between the occurrence of later additional periods of
elevated PGFM and the length of time required for uterine involution. This would accord with our
finding of a positive correlation between urea and the circulating PGFM concentration for the cows in
the present study.

Another relationship highlighted by the array data was between the plasma urea level and aspects of
innate immunity and inflammation, with endometrial gene expression generally decreasing as urea levels
increased. The postpartum endometrium undergoes an inflammatory response and the innate immune
system plays an important role in the elimination of uterine pathogens during this period which influences
subsequent fertility [5,70,74,75]. IL17RB encodes a cytokine receptor which binds IL-25 (IL17E) to
mediate Th2 immune responses [35]. Another important chemokine gene CXCL5 featured in Network 1.
Both are important in the recruitment of neutrophils to promote angiogenesis. CRISPLD2 encodes a
serum protein which can bind LPS, a major structural component of Gram-negative bacterial cell walls,
and is thought to have an anti-inflammatory function [36,37]. DEFB1 and S100A8 both encode proteins
with antimicrobial activity as does αMSH, which is one of the possible proteins produced from POMC.
Several genes involved in the complement cascade and blood clotting were present in Networks 3 and 4
and Canonical Pathway 2. These included C1q, C3, SERPING1, SERPINF1, SERPINF2 and PLAUR.
These findings support an earlier suggestion that feeding cows high dietary protein levels may in part
reduce fertility through an impaired uterine inflammatory response [9]. One of the initial responses of the
uterus to postpartum infection is a neutrophilic influx into the superficial endometrium with subsequent
mobilisation of macrophages, lymphocytes and eosinophils which is associated with vascular congestion
and stromal oedema [76]. This was not supported by measurable differences in histological analysis of
the endometrium as there were no correlations between the immune cell populations and the blood urea
concentration. Histological assessment is, however, likely to be less sensitive at detecting more subtle
changes than the gene expression data.

Another potentially interesting association was between plasma urea concentration and aspects of
lipid metabolism. We have shown previously that the endometrium from the cows used in the energy
balance study contained many lipid droplets which appeared to be associated with the transformation of
macrophages into foam cells [75]. We show here that SCAP was one of the genes most highly correlated
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with urea whose expression increased with higher plasma urea levels. Sterol regulatory element
binding proteins (SREBPs) are key transcriptional regulators of fatty acid synthesis and cholesterol
metabolism and SCAP is an insulin-inducible SREBP cleavage activating protein which plays a key
role in cholesterol homeostasis [77]. Macrophages can develop into foam cells during inflammatory
stress. If they become overloaded with cholesterol then the SCAP-SREBP2 complex is retained in
the endoplasmic reticulum, SREBP2 cannot be processed, the LDL receptor is down-regulated and
both cholesterol uptake and de novo synthesis are inhibited [53]. Two other top 10 genes associated
with plasma urea were ABCD5, which is involved in the distribution of long chain acyl-coenzyme A,
and SLC10A1 which encodes a sodium/bile co-transporter. Network 3 identified ABCG4, involved in
cholesterol transport, APOA5 and GALNT2, both involved in the regulation of plasma triglyceride levels
and NR1H2 which encodes LXRB, the liver X receptor. LXRs are oxysterol-activated nuclear receptors.
In macrophages exposed to excess cholesterol LXRs facilitate cholesterol transport out of the cells into
HDL particles [78]. Cholesterol is a key component in the synthesis of bile salts by the liver. There
is increasing evidence that bile salts act as nutrient signalling molecules which collaborate with insulin
in the regulation of hepatic nutrient metabolism [79]. A proteomic study in dairy cows found that a
high liver triglyceride content was associated with increased oxidation of saturated fatty acids, oxidative
stress and urea synthesis [80]. While these networks and associations require more work to unravel,
they do suggest that elevated circulating urea concentrations in cattle may be associated with alterations
in cholesterol metabolism and macrophage activity within the postpartum endometrium and it is these
rather than the urea concentration which could potentially influence subsequent fertility.

5. Conclusions

In summary, identification of signalling factors associated with uterine endometrial function helps
to improve our understanding of the underlying mechanisms causing reduced fertility in dairy cows.
The expression of many genes in the involuting endometrium which are involved particularly in tissue
turnover, immune function, inflammation and lipid metabolism was strongly associated with the plasma
urea concentration. The results presented here suggest that the urea effect is not, however, direct on the
endometrium. Instead, the variations in circulating urea may be a consequence of metabolic differences
particularly associated with lipid metabolism in postpartum dairy cows which may influence fertility
through other mechanisms.
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