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Abstract: Splice modulation therapy has shown great clinical promise in Duchenne muscular 

dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship 

between restoring dystrophin to actively dystrophic muscle and its ability to induce clinically 

relevant changes in muscle function is poorly understood. In order to robustly evaluate 

functional improvement, we used in situ protocols in the mdx mouse to measure muscle 

strength and resistance to eccentric contraction-induced damage. Here, we modelled the 

treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides 

conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin 

expression is sufficient to protect against eccentric contraction-induced injury. In addition, we 

demonstrate a greater than 40% increase in specific isometric force following repeated 

administrations. Strikingly, we show that changes in muscle strength are proportional to 

dystrophin expression levels. These data define the dystrophin restoration levels required to 

prevent disease progression and improve overall muscle function once a dystrophic 

environment has been established in the mdx mouse model. 

Introduction: 

The application of antisense oligonucleotide (AO)-based methods to modulate pre-mRNA 

splicing in Duchenne muscular dystrophy (DMD, OMIM #310200) has placed this monogenic 

disorder at the forefront of advances in gene therapy. The majority of mutations underlying 

DMD are genomic deletions encompassing multiple exons which lead to a disruption of the 

open reading frame and result in an absence of the essential protein dystrophin. Dystrophin 

deficiency causes progressive muscle degeneration and wasting followed by the emergence of 

respiratory and cardiac complications and ultimately premature death (1). Antisense 

oligonucleotides can be used for targeted exon exclusion resulting in the correction of aberrant 

reading frames and the production of an internally deleted, yet largely functional, dystrophin 

protein (2). 

Although the production of dystrophin using AO therapy has been demonstrated in clinical 

trials (3–6), the level of internally truncated protein required to provide meaningful clinical 

improvement in DMD patients is unclear (7). Studies of patient cohorts with the allelic yet 

comparatively milder disorders of Becker muscular dystrophy [OMIM 300376] and X-linked 

cardiomyopathy [OMIM 302045] indicate that sarcolemmal levels of dystrophin as low as 30% 

are sufficient to avert the onset of symptomatic skeletal muscle degeneration (8,9). 

 



Dystrophin restoration levels reported following systemic clinical trials with repeated 

administrations of both phosphorodiamidate morpholino oligomer (PMO) and 2′-O-methyl 

chemistries were highly variable (3,4). Although dystrophin levels of up to 23% of normal 

levels were observed (quantified on western blot), the lack of pre-treatment biopsies in one trial 

(4), the uneven distribution of dystrophin between muscle fibers, along with the limited number 

of patients, has largely hampered the assessment of the relationship between the levels of 

dystrophin achieved and functional muscle improvements. 

Varying degrees of disease amelioration have been demonstrated using transgenic mouse 

models constitutively expressing a range of dystrophin protein levels; with levels approaching 

20% preventing the development of dystrophic symptoms, whereas some improvements in 

muscle function and survival have been reported from as low as 4% (10–14). While correlating 

dystrophin levels from mouse models and patient cohorts has provided vital information on the 

levels of dystrophin needed to prevent the onset of severe pathology, further work is needed to 

establish the minimal levels of dystrophin required to reduce pathology and improve muscle 

function once a dystrophic environment has been established. 

The mdx mouse is widely used as a pre-clinical model for DMD. The mouse strain does not 

exhibit any pathology until ∼3 weeks of age when the muscle starts to undergo cycles of severe 

skeletal muscle degeneration and regeneration. Muscle pathology is marked until 8–10 weeks 

of age, before stabilizing to a relatively low but constant level of muscle necrosis and 

regeneration throughout the life-span of the mouse (15–18). Typically pre-clinical AO 

therapies developed in the mdx mouse have commenced during this initial period (<10 weeks 

of age) providing a useful model for assessing any delay in the onset of necrosis and they allow 

appreciable differences in pathology to be readily identified. However, in most, if not all, 

patients there will be an established dystrophic environment prior to the initiation of therapy. 

We set out to evaluate the minimum levels of dystrophin needed to reduce myopathic 

pathophysiology in an established dystrophic environment. In order to investigate this in detail, 

we assessed changes in muscle following treatment of the mdx mouse model using a PMO-

based AO to skip Dmd exon 23. We enhanced the delivery of the PMO using a highly 

efficacious peptide, Pip6a, conjugated to the PMO (Pip6a-PMO) (19). Treatment in all cases 

was commenced in 12-week-old mdx mice in order to model the restoration of an internally 

deleted dystrophin protein in muscle with established pathology. Using highly sensitive and 

robust in situ functional assays (20–23), we have defined the relationship between levels of 



dystrophin restoration and improvements in muscle strength and resistance to eccentric 

contraction-induced muscle damage. 

Results 

Acute delivery of Pip6a-PMO protects muscle from eccentric contraction-induced damage 

To facilitate the effective delivery of PMO, we undertook a study to directly compare 

the efficacy of a range of cell-penetrating peptide conjugates, B-PMO (24,25), B-MSP-PMO 

(26,27), Pip6e-PMO (19) and PMO alone following a dose of 12.5 mg/kg via either an 

intravenous (IV) or subcutaneous (SC) administration route (Supplementary Material, Figs. S1 

and S2). The B-peptide is arginine rich ([RXRRBR]2), the muscle potency and bio-distribution 

of which was originally assessed in the EGFP-654 transgenic reporter mouse (28). The 

chimeric peptide B-MSP-PMO incorporates a muscle-specific heptapeptide (ASSLNIAXB) 

between the arginine rich B-peptide and the PMO. Its enhanced delivery to skeletal muscle was 

originally identified through the screening of a random phage display library (29). The PNA-

PMO internalization peptide (Pip) series was originally derived from the parent peptide 

Penetratin (30). Sequential modifications have created highly efficacious PPMOs consisting of 

a central hydrophobic core flanked on either side by arginine rich sequences (19). Previous 

assessment of these peptide-PMO conjugates in the mdx mouse model has recently been 

reviewed (31). No detectable levels of either exon 23 skipping or dystrophin protein were 

observed in skeletal or cardiac muscle following SC delivery of any of the compounds. High 

levels of exon skipping and dystrophin restoration were observed in skeletal muscle following 

a single IV dose of the P-PMOs but cardiac activity was only detected following the use of the 

Pip-peptide conjugate. The formulation of the Pip-peptide in either physiological saline or 5% 

D-glucose prior to injection did not alter its activity following either administration route 

although formulation in a lipid emulsion (50% Intralipid®) abolished all activity 

(Supplementary Material, Figs. S1 and S2). Following preparation in saline and an IV 

administration, the efficacy in both skeletal and cardiac muscle was enhanced with the use of 

an alternative Pip-peptide derivative; Pip6a-PMO (Supplementary Material, Fig. S3) (19). 

 

To evaluate the efficacy of Pip6a-PMO a systemic dose-escalation study was carried out. Mdx 

mice were administered with a single dose of Pip6a-PMO (3, 6, 9 or 12.5 mg/kg) at 12 weeks 

of age, untreated age-matched male mdx mice were used as controls, muscle function was 

evaluated 2 weeks later. Using an in situ muscle eccentric contraction protocol, we measured 



resistance to eccentric contraction-induced muscle damage between the treatment groups. The 

acute systemic dose-escalation study revealed mice receiving higher doses of Pip6a-PMO (9 

and 12.5 mg/kg) had significant protection against eccentric contraction-induced muscle 

damage (from eccentric contraction number three) in the tibialis anterior (TA) muscle, with a 

final tetanic force loss of only 23.4 ± 10.6% (9 mg/kg) and 22.3 ± 10.5% (12.5 mg/kg) 

compared with baseline. In contrast, mice from the untreated and lower dose treatment groups 

showed a greater force loss by the end of the eccentric contraction protocol: untreated, 60.40 ± 

5.41%, 3 mg/kg, 54 ± 3.6% and 6 mg/kg, 51 ± 2.1% (Fig. 1A). Force–frequency curves showed 

a slight, but significant improvement on specific isometric force production at 150 and 180 Hz 

in only the 12.5 mg/kg treated mice compared with untreated controls (Fig. 1B). 

Homogeneous sarcolemmal dystrophin protein expression was seen throughout the TA muscle 

in 12.5 mg/kg treated mice, with the dystrophin positive myofibres becoming patchier as the 

dose was decreased (Fig. 2A). We next quantified dystrophin protein in the exercised TA 

muscles. Western blot analysis of internally deleted dystrophin revealed 5–15% of wild-type 

dystrophin levels in 9 and 12.5 mg/kg treated mice (Fig. 2B). Internally deleted dystrophin 

protein was not detectable in mice given 3 or 6 mg/kg (data not shown). In addition, quantitative 

analysis of the exon 23 skipped dystrophin transcripts demonstrated a Pip6a-PMO mediated 

dose-dependent increase of skipped transcripts (Fig. 2C). A significant reduction in the 

circulating serum biomarker tissue inhibitor metalloproteinase 1 (TIMP-1) (untreated mice; 11 

957.6 ± 3167.6 pg/mL − 12.5 mg/kg mice; 3496.3 ± 387.1 pg/mL) was also noted as the dose 

of Pip6a-PMO increased (Fig. 2D). A linear regression analysis revealed a significant positive 

correlation between the percentage of restored dystrophin protein relative to wild-type and 

protection against eccentric contraction-induced muscle damage (R2 = 0.8687, P < 0.001) (Fig. 

2E). 

These data reveal that 15% of wild-type levels of internally deleted dystrophin induced by a 

single dose of P-PMO is sufficient to protect against eccentric contraction-induced muscle 

damage, yet not enough to substantially improve muscle strength. We next designed a chronic 

dosing regimen to assess if repetitive delivery could further improve physiological muscle 

function. 

Pre-clinical optimization of repeated P-PMO delivery 

To establish the optimal treatment interval during a P-PMO repeated dosing strategy, we 

profiled the activity of a single dose of 12.5 mg/kg Pip6a-PMO in 12-week-old mdx males over 



time (Supplementary Material, Fig. S5A). Levels of Dmd exon 23 exclusion were broadly 

similar between tissues with peak activity observed at 1 or 2 weeks post systemic injection 

(TA; 49 ± 7.3%, heart; 45 ± 7.9% and diaphragm 43 ± 4.4%) while activity was barely detected 

4 weeks post injection (Fig. 3A–C). Highest levels of total dystrophin protein restoration (TA; 

37 ± 6.7%, heart; 58 ± 14.9% and diaphragm; 50 ± 8% relative to wild-type mice) (Fig. 3D–F 

and Supplementary Material, Fig. S6A) and sarcolemmal-associated dystrophin (TA; 54 ± 

10%, heart; 40 ± 1% and diaphragm; 51 ± 8%) (Fig. 3G–L and Supplementary Material, Fig. 

S6B) were detected 1 week post injection in the TA and 2 weeks post injection in the heart and 

diaphragm. In contrast to the rapid decline of cardiac dystrophin levels 4 weeks post injection, 

a more stable restoration profile was seen in the TA with high levels of dystrophin protein 

detected 12 weeks post injection. 

Repeated delivery of Pip6a-PMO protects and strengthens muscle 

To evaluate the effects of long-term dosing of P-PMO on muscle function we treated 12-week-

old male mdx (n = 7) with 12.5 mg/kg of Pip6a-PMO administered fortnightly for 20 weeks 

(Supplementary Material, Fig. S5B). Two weeks post treatment, we assessed resistance to 

eccentric contraction-induced muscle damage in treated and non-treated littermate control 

mice. Tibialis anterior muscles from Pip6a-PMO treated mice maintained maximal force 

production throughout the 10 eccentric contractions, similar to wild-type C57Bl/10 mice (Fig. 

4A and Supplementary Material, Fig. S7A). In contrast, non-treated littermate controls 

exhibited a final 60 ± 3.9% drop in tetanic force production compared with the initial baseline 

force, with significantly lower tetanic forces compared with treated mice starting from 

eccentric contraction number two. Repeated delivery of Pip6a-PMO improved specific 

isometric force by 43% (19.32 ± 0.49 N/cm2) compared with non-treated controls (13.55 ± 

0.79 N/cm2) (Fig. 4B and Supplementary Material, Fig. S7B). Homogeneous sarcolemmal 

dystrophin expression was observed throughout the whole of the TA muscle, with western blot 

analysis showing an average 50% restoration of internally deleted dystrophin protein relative 

to wild-type (Fig. 4C and D and Supplementary Material, Fig. S8A). Importantly, linear 

regression analysis revealed a positive correlation between maximal specific isometric force 

and the percentage of internally deleted dystrophin protein relative to wild-type (R2 = 0.8134), 

a finding not previously reported in treated mdx mice (Fig. 4E). 

Repeated delivery of Pip6a-PMO reduces muscle pathology 



In light of the significant improvement in muscle function, we assessed whether chronic Pip6a-

PMO treatment reduced muscle pathology. Localization of the dystrophin-associated protein 

complex (DAPC) proteins, beta-dystroglycan and recruitment of neuronal nitric oxide synthase 

(nNOS) was confirmed in TA muscles of Pip6a-PMO-treated mice (Supplementary Material, 

Fig. S8B). In addition, partial and/or complete normalization of circulating miR-206, miR-133a 

and miR-1 as well as TIMP-1 biomarkers was observed following repeated delivery 

(Supplementary Material, Fig. S9A–D). Interestingly, no significant difference in serum matrix 

metalloproteinase (MMP9) levels was noted between treated and untreated mice 

(Supplementary Material, Fig. S9E). Next, we assessed whether repeated treatment reduced 

muscle pathology by analysing myofibre size variation. A reduction in myofibre size variation, 

in particular the number of myofibres ≤40 µm and ≥70 µm was observed in TA muscles of 

Pip6a-PMO treated mice, indicating a drop in small regenerating myofibres and/or fibre 

splitting as well as decreased compensatory myofibre hypertrophy (Fig. 5A and B). Assessment 

of the diaphragm confirmed uniform dystrophin expression in all treated mice, as well as a 

reduction in fibrosis and inflammatory cell infiltration (Fig. 5C–H). 

Discussion  

Antisense oligonucleotide mediated splice modification is currently the most promising 

therapeutic intervention for DMD, as demonstrated in recent clinical trials (3,4). A major 

challenge facing the successful transition of this therapy to the clinic is to define the 

relationship between levels of genetic manipulation required for clinically relevant functional 

improvements. Despite a wealth of preclinical and clinical research, it is not yet known what 

levels of dystrophin restoration are needed within an established dystrophic environment to 

successfully modify disease progression (10,11,13,14,32). 

 

In order to model the restoration of dystrophin in muscle with pre-existing pathology, 

we treated 12-week-old male mdx mice with P-PMO targeting the splicing of exon 23. To 

identify the optimal conditions for systemic dystrophin restoration, we initially compared 

delivery routes and formulations of a variety of P-PMO compounds. Prosensa initiated clinical 

trials utilizing a subcutaneous administration regimen with 2′-O-methyl AOs following pre-

clinical studies demonstrating lower levels of AO detected in plasma, kidney and liver 

compared with an IV administration route potentially reducing any organ toxicity (4,33). We 

therefore investigated the potential of this delivery route for three leading classes of peptide-



PMO conjugates (B-PMO, B-MSP-PMO and Pip6e-PMO) alongside PMO alone by directly 

comparing their efficacy following either SC or IV administration. High levels of exon 

skipping and dystrophin restoration were observed in skeletal muscle following IV 

administration of the P-PMOs however, as expected, cardiac activity was restricted to the use 

of the Pip-peptide conjugate (19). Further improvements in efficacy were not detected 

following the preparation of P-PMO complexes in a variety of formulations. Following further 

refinement of the Pip-peptide-PMO sequence, Pip6a-PMO was selected for further use (19). 

 

We then went on to assess the effects of restoring dystrophin levels on muscle 

pathology, as well as evaluating improvements in muscle functional using robust and 

reproducible in situ protocols to measure two independent parameters; muscle strength and 

resistance to contraction-induced muscle damage (34–37). 

 

We performed an acute dose-escalation study to investigate whether a single 

administration of Pip6a-PMO was able to induce any detectable improvement in muscle 

physiology. Dystrophin restoration was only detectable by western blot following the 9 and 

12.5 mg/kg doses. While positive sarcolemmal dystrophin staining was also detected in all 

treatment groups; a homogenous pattern of sarcolemmal dystrophin restoration was only 

observed following an acute injection of 12.5 mg/kg. Consistent with a previous study, 

biomarker analysis of circulating TIMP-1 showed a dose-dependent reduction, suggesting the 

protein to be a suitable marker for assessing treatment efficacy in the mdx mouse model (32). 

 

The highest administered doses (12.5 and 9 mg/kg) were able to provide protection 

against eccentric contraction-induced muscle damage. In situ muscle physiology data also 

revealed a positive correlation between dystrophin restoration levels and protection against 

eccentric contraction-induced muscle damage. While we have previously reported a positive 

correlation following intramuscular injection of PMO (37), these data are the first to show 

almost complete protection against muscle damage following low level dystrophin restoration 

(∼15%) with a single P-PMO intravenous injection. Sharp et al. (37) observed similar levels 

of muscle protection against eccentric contraction-induced muscle damage, with internally 

deleted dystrophin levels reaching 73% that of wild-type dystrophin levels. However, protein 

expression was only noted in ∼65% of the total myofibres in the TA. In comparison, our data 



suggest that restoration of a low level, yet homogeneous sarcolemmal pattern of dystrophin 

expression in an established environment, provides greater muscle protection against eccentric 

contraction-induced damage than higher levels of dystrophin unevenly distributed throughout 

the muscle (patchy expression). 

 

Although previous studies have highlighted the pathological and functional benefits of 

low dystrophin levels in transgenic mice models and patient cohorts, these approaches 

addressed dystrophin levels required to prevent disease development. As pre-natal therapy is 

not applicable for DMD and muscle pathology is present prior to diagnosis, we used a treatment 

based study design. Our data show low levels of homogenously distributed sarcolemmal 

dystrophin expression are sufficient to protect against eccentric contraction muscle damage in 

the mdx mouse model even when a dystrophic environment has already been established. This 

work emphasizes the critical importance of selecting a delivery method for AOs that achieves 

uniform expression. Our interpretation of the dose dependency is that there is a critical level of 

dystrophin induction required to get a substantial level of dystrophin protein and this may be 

caused by the inhibition of dystrophin transcript translation by Mir31, proposed by (38). At the 

3 and 6 mg/kg dose, the dystrophin transcript is effectively inhibited by high levels of Mir31. 

However, at 9 and 12.5 mg/kg, dystrophin expression is sufficient to escape Mir31 suppression 

of translation, and that the maturation of the muscle then leads to a reduced level of Mir31 thus 

leading to greater levels of dystrophin than anticipated based on a simple dose–response 

relationship. However, we also note that this could be an artefact associated with a low number 

of mice in each group. 

 

While it is important to establish the levels of dystrophin needed to prevent the muscle 

from undergoing further cycles of degeneration/regeneration and hence to slow down or 

prevent disease progression, only a slight significant improvement in specific force was noted 

in 12.5 mg/kg treated mice compared with untreated controls (at 150 and 180 Hz). However, 

due to the transient effect of AOs on splice modulation and the chronic nature of DMD, patients 

will require long-term repeated treatment. We therefore sought to investigate the same 

physiological parameters following repeated administration of Pip6a-PMO. 

 



When designing a chronic dosing regimen, it is prudent to assess the persistence of de 

novo dystrophin expression following a single administration in order to establish the optimal 

treatment interval. Following a profiling study defining the activity of P-PMO over time, a 2-

week treatment interval was selected in order to minimize the frequency of injection, yet ensure 

high levels of dystrophin restoration over time. 

 

A repeated dosing strategy with Pip6a-PMO yielded ∼50% dystrophin expression in 

TA muscle relative to wild-type and as expected, conferred complete protection against 

eccentric contraction-induced muscle damage. Interestingly, specific isometric force was 

improved by 43% compared with non-treated controls. In previous exon-skipping studies, 

increases in specific force have been ∼20% (39,40). Here we demonstrate that a 20% increase 

is not in fact the upper limit to restoration of specific force (41). Upon extrapolation of these 

data, we noted that 100% dystrophin restoration would yield a specific force of 24.1 N/cm2, a 

value strikingly similar to that obtained from wild-type mice, suggesting that the level of 

dystrophin restoration is a rate-limiting step for restoring muscle strength in the mdx mouse. 

 

A recent study by Wu et al. (42) investigated the efficiency of exon skipping on disease 

progression in utrophin-dystrophin deficient mice. Their results demonstrated that the efficacy 

of AOs to moderate disease progression is highly dependent on level of muscle pathology at 

the time of intervention. Although our treatment regimens were commenced at a time when the 

mdx muscle had established pathology, 12-week-old mdx mice still retain a large amount of 

muscle mass, therefore while increases in specific force would translate clinically as improved 

muscle function in DMD patients, improvements would be highly moderated by the degree of 

muscle mass retention at the time of treatment. 

 

In conjunction with the improved muscle function, a reduction in muscle pathology, in 

particular in the diaphragm, was noted in Pip6a-PMO-treated mice. The diaphragm was chosen 

for further investigation as it is severely affected in the mdx mouse (43). H&E analysis of the 

diaphragm highlighted a noticeable reduction in muscle fibrosis and cell infiltrate suggesting 

that chronic delivery of Pip6a-PMO may have halted/slowed down disease progression in this 

substantially affected muscle. Concomitant with improved muscle function and reduction in 

pathology, we observed partial and/or complete normalization of circulating miR-206, miR-



133a and miR-1 suggesting that these may prove to be useful biomarkers of therapeutic effect 

in DMD (44,45). While published data (46) has shown MMP-9 to be a reliable marker for 

assessing disease progression in DMD patients (and not TIMP-1), our findings show TIMP-1, 

but not MMP9, is a sensitive marker of treatment effects in mice. Similar findings have also 

been shown in (32). 

 

In conclusion, this is the first study to gain in depth understanding of the minimum levels of 

dystrophin needed to ameliorate muscle pathology in the mdx model once a dystrophic 

environment has been established. Our data have shown for the first time that homogeneous 

sarcolemmal expression of internally deleted dystrophin protein in dystrophic muscle 

amounting to ∼15% of wild-type levels is sufficient to protect muscle against exercise-induced 

damage. Eccentric exercise is the most damaging form of muscle activity and maintenance of 

force in treated dystrophic muscle implies a prevention of further activity induced damage; 

thus suggesting a minimum of 15% restoration of dystrophin relative to wild-type is sufficient 

to halt the progressive muscle function decline. Discovery of a minimum dystrophin threshold 

will be of great value to the design of further clinical studies; however, here we also 

demonstrate that this level is insufficient to fully normalize muscle function, since 

improvements in muscle strength are proportional to the amount of dystrophin restored. 

Therefore, it is critically important to continue development of improved delivery systems for 

AOs in order to maximize dystrophin expression and hence the clinical efficacy of this 

therapeutic approach. 

Materials and Methods 

Study design 

We sought to optimize splice modulation induced dystrophin restoration in the mdx mouse 

model using peptide conjugated-PMO. We used this approach to assess the levels of dystrophin 

needed to confer functional changes in a dystrophic muscle environment. Treatment of the mdx 

mouse model was commenced in 12-week-old males. P-PMO administration optimization 

experiments (route, peptide selection, P-PMO formulation) were assessed at 14 weeks of age 

following a single administration of 12.5 mg/kg (n = 4). The duration of exon skipping and 

dystrophin restoration was assessed at various time points following treatment (n = 4). 

Functional studies were performed on two cohorts of mice following either an acute (n = 3–4 

per dose) or chronic treatment (n = 6–7) regimen with a randomized block design where mice 



from the same litter were randomly assigned to the different treatment groups. Researchers 

investigating muscle physiology, TIMP-1 levels, fibre sizes and microRNA levels were blinded 

as to whether the mouse had received P-PMO. 

P-PMO synthesis and preparation 

Pip6a peptide (Ac-RXRRBRRXRYQFLIRXRBRXRB-OH, with X = aminohexanoic 

acid and B = β-alanine) was synthesized by standard 9-fluorenylmethoxy carbonyl (Fmoc) 

chemistry, using a Liberty Peptide Synthesizer (CEM) on 100 μmol scale (19). Other peptides 

were synthesized similarly and the sequences are as previously described (19,26). The N-

terminus of the peptide was acetylated with acetic anhydride before cleavage from the solid 

support using trifluoroacetic acid (TFA), 3,6-dioxa-1,8-octanedithiol (DODt), H2O, 

triisopropylsilane (TIPS) in a ratio of (94%:2.5%:2.5%1%) (10 ml) for 3 h at room temperature. 

Excess TFA was removed and the crude peptide was isolated following precipitation with ice-

cold diethyl ether. The peptide purified to >90% purity by standard reverse phase HPLC. 

 

PMO (5′-GGCCAAACCTCGGCTTACCTGAAAT-3′) was purchased from Gene Tools, LLC 

(Philomath, OR, USA). Pip6a (2.5 molar excess over the PMO) was conjugated to the 

secondary amine at the 3′ end of the PMO through the C-terminal carboxyl group of the peptide 

following activation of this group with 2-(1H-benzotriazole-1yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) and 1-hydroxybenzotriazole (HOBt) in 1-methyl-2-

pyrrolidinone (NMP) and diisopropylethylamine (DIEA) using a HBTU:HOBt:DIEA 

(2.3:2.0:2.3) molar excess over the peptide. This mixture was added to a solution of PMO (10 

mM) in DMSO (Dimethyl sulfoxide) and heated at 37°C for 2 h, after which time it was diluted 

with a 4-fold excess of water and purified on a cation exchange chromatography column 

(Resource S 6 ml column, GE Healthcare) using 25 mM sodium phosphate buffer (pH 7.2) 

containing 25% acetonitrile. 1 M sodium chloride was used to elute the conjugate from the 

column at a flow rate of 6 ml min−1. The removal of excess salts from the Pip6a-PMO 

conjugate was afforded through the filtration of the fractions collected after ion exchange using 

an Amicon® ultra-15 3 K centrifugal filter device. The conjugate was lyophilized and analysed 

by MALDI-TOF. The conjugates were dissolved in sterile water and filtered through a 0.22 

μm cellulose acetate membrane before use. The concentration of Pip6a-PMO was determined 

by the molar absorption of the conjugates at 265 nm in 0.1 N HCl (Hydrogen Chloride). Overall 

yields were 35–40% based on PMO. 



Systemic administration of Pip6a-PMO 

Experiments were conducted under Home Office Project Licence authorisation 

following institutional ethical review. All C57BL/10 and mdx mice were housed in a minimal 

disease facility, the environment was temperature controlled with a 12-h light-dark cycle. All 

animals received commercial rodent chow and water ad libitum. When anaesthetized, mice 

were induced with 5% isoflurane mixed with pure oxygen gas and maintained on 2% 

isoflurane. For route optimization studies, 12-week-old male mdx mice were anaesthetized 

prior to a single tail vein injection of 12.5 mg/kg with either PMO (Mr: 8413 g/mol), B-PMO 

(Mr:10 257 g/mol), B-MSP-PMO (Mr:11 027 g/mol) or Pip6e-PMO (Mr: 11 220 g/mol) in 160 

µl of saline. These mice were compared with those given a SC injection of 12.5 mg/kg with 

either PMO, B-PMO, B-MSP-PMO or Pip6e-PMO in 300 µl of saline. To assess whether the 

formulation of P-PMO prior to injection affected its efficacy, 12-week-old male mdx mice were 

anaesthetized prior to a single tail vein injection of 12.5 mg/kg Pip6e-PMO formulated in either 

5% D-glucose, physiological saline or intralipid (equivalent of 10% fat emulsion). To select 

the most efficacious P-PMO for further work, 12-week-old male mdx mice were anaesthetized 

prior to a single tail vein injection of 12.5 mg/kg with either Pip6a-PMO (Mr: 11 347 g/mol), 

Pip6b-PMO (Mr: 11 298 g/mol), Pip6e-PMO or Pip6f-PMO (Mr: 11 347 g/mol) in 160 µl of 

saline. Tissues were analysed 2 weeks post injection. For duration profiling of P-PMO over 

time, 12-week-old male mdx mice were restrained prior to a single tail vein injection of 12.5 

mg/kg of Pip6a-PMO. For the acute dose escalation delivery, 12-week-old male mdx mice 

were anaesthetized prior to a single tail vein injection with either 3, 6, 9 or 12.5 mg/kg of Pip6a-

PMO in 160 µl of saline. For chronic treatment, 12-week-old male mdx mice were 

anaesthetized prior to each tail vein injection of Pip6a-PMO (12.5 mg/kg) in 160 µl of saline. 

In total, 10 systemic injections of Pip6a-PMO (12.5 mg/kg) were given at 2-week intervals. 

Littermate mice were used as untreated controls. Two weeks after the last Pip6a-PMO 

injection, muscle function was assessed using the right TA muscle. Mice were surgically 

prepared and analysed as previously described (22,37). 

 

Briefly, once surgically prepared optimal muscle length (Lo) was determined by 

increasing muscle length until the maximal twitch force was achieved. Next, to measure the 

force–frequency relationship, TA muscles were stimulated at different frequencies, delivered 

1min apart (1, 10, 30, 40, 50, 80, 100, 120, 150 and 180 Hz). Maximal isometric force (Po) 

was determined from the plateau of the force–frequency curve. Muscle fibre cross-sectional 



area (CSA in cm2) was determined as previously described (22) and specific isometric force 

(N/cm2) was calculated by dividing the absolute force (N) at each stimulation frequency by 

TA muscle physiological cross-sectional area. 

 

To prevent muscle fatigue, a 5-min rest period was allowed before the initiation of the eccentric 

contraction protocol. The TA muscle was stimulated at 120 Hz for 500 ms before lengthening 

the muscle by 10% of the Lo at a velocity of 0.5 Lo s-1 for a further 200 ms, once the 

stimulation had ended the Lo returned at a rate of −0.5 Lo s-1. Between each contraction a 2-

min rest period was permitted to avoid muscle fatigue. A total of 10 eccentric contractions were 

performed on each mouse. After each eccentric contraction, the maximum isometric force was 

measured and expressed as a percentage of the initial maximum isometric force achieved at the 

start of the protocol, prior to the first eccentric contraction. To measure circulating biomarkers, 

blood was collected via cardiac puncture (using a 23G needle) immediately after the eccentric 

contraction protocol. After cervical dislocation, TA muscles were removed and immediately 

weighed prior to snap-freezing in isopentane pre-chilled in liquid nitrogen. Statistical analysis 

for the force–frequency and eccentric contraction studies was measured by a repeated measure 

two-way ANOVA followed by a Tukey's post-hoc comparison. Statistical significance was 

defined as a value of P < 0.05. 

Immunohistochemistry 

To assess the duration of dystrophin restoration following a single administration, 8 µm 

transverse sections of TA, diaphragm and cardiac tissue were cut and mounted on slides. 

Intervening sections were collected and used for exon skipping and western blot analysis. 

Muscle pathology was assessed with Haemotoxylin and Eosin (H&E); staining protocol was 

carried out as previously described (22). Dystrophin and laminin protein expression was 

assessed simultaneously on unfixed sections with a double staining protocol using the 

polyclonal anti-dystrophin antibody (1:2500, 15 277 Abcam) and the monoclonal anti-laminin 

α2 antibody (1:1000, L0663 Sigma) (40). All primary antibodies were detected using species-

appropriate fluorescently labelled secondary antibodies (1:500, Invitrogen). Once mounted, 

images were captured with a DM IRB Leica upright microscope (Zeiss monochrome camera) 

and AxioVision Rel. 4.8 software. 

 



To evaluate dystrophin expression following acute dose escalation and chronic administration, 

10 µm transverse sections were cut at 300 µm intervals throughout the exercised TA muscles 

with serial sections mounted on glass slides. Thirty intervening sections were collected and 

used for western blot and RT–qPCR analysis. Dystrophin protein expression was assessed on 

unfixed sections using the polyclonal anti-dystrophin antibody (1:800, 15 277, Abcam). 

Restoration of DAPC was evaluated with the monoclonal beta-dystroglycan (1:250, clone 8D5, 

a gift from Louise Anderson) and rabbit polyclonal nNOS antibodies (1:50, clone R20, 

Santacruz). All primary antibodies were detected using species-appropriate fluorescently 

labelled secondary antibodies (Invitrogen, 1:500) and nuclei were counterstained with Hoechst 

33 342 (Invitrogen, 1:2000). Once mounted, all images were captured with the DM4000 Leica 

upright fluorescent microscope (Zeiss monochrome camera) and analysed using the 

AxioVision Rel. 4.8 software. 

Immunohistological intensity measurements 

Quantitative measurements of sarcolemma dystrophin restoration were performed as 

previously described (47). In brief, four random images were taken from four sections of TA, 

diaphragm and heart from each treated animal. Using ImagePro software (MediaCybernetics), 

the intensity of laminin-α2 and dystrophin staining was recorded across 10 regions of 

sarcolemma within each image. These values were used to calculate recovery scores following 

treatment (http://www.treat-nmd.eu/downloads/file/sops/dmd/MDX/DMD_M.1.1_001.pdf). 

Myofibre size analysis 

Unfixed 10 µm TA sections were immunostained for the basement membrane proteoglycan, 

Perlecan (1:5000, Millipore) as previously described (37). Images were captured on a Leica 

DM4000 bright field microscope and a composite image of a whole TA section was created 

using Photoshop CS4. To avoid innate muscle variation all images were taken at the mid-belly 

of the TA muscle. Using a semi-automated programme (Leica QWin, macro developed by Dr 

Andrew Hibbert), minimum Feret's diameter was analysed (48), values were plotted in a 

frequency histogram and the coefficient of variation was calculated to assess fibre size variation 

[(Standard deviation/mean) × 1000]. Statistical significance on the coefficient variation was 

assessed using an unpaired T-test, n = 7. Statistical significance was defined as a value of P < 

0.05. 

Western blot analysis 



To assess the duration of dystrophin restoration following a single administration, 8 µm 

transverse TA cryosections were lysed in buffer [75 mmol/l Tris–HCl (pH 6.5), 10% sodium 

dodecyl sulphate, 5% 2-mercaptoethanol and protease inhibitors] prior to centrifuging at 13 

000 rpm (Heraeus, #3325B) for 10 min. Supernatant was collected and heated at 100°C for 3 

min and fractionated on a 3–8% Tris–Acetate gel as previously described (19). Proteins were 

transferred and probed with monoclonal anti-dystrophin (1:200, NCL-DYS1, Novocastra) and 

anti-vinculin (loading control, 1:100 000, hVIN-1, Sigma) antibodies as previously described 

(37). Secondary antibody IRDye 800CW goat anti-mouse was used at a dilution of 1:20 000 

(LiCOR). Fluorescence was detected and quantified using the Odyssey imaging system. 

Dystrophin expression was quantified using the dystrophin to vinculin ratio versus dystrophin 

expression level standards on each gel. To assess dystrophin expression in the TA muscle 

following acute dose escalation and chronic administration, 30 10 µm transverse TA 

cryosections were solubilized in RIPA buffer (50 mmol/l Tris–HCl (pH 8), 150 mM sodium 

chloride, 1% NP40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate and protease 

inhibitors) for 10 min on ice prior to centrifuging at 13 000 rpm (Heraeus, #3325B) for 10 min 

at 4°C. Supernatant was collected and a small volume solubilized in 10% sodium dodecyl 

sulfate sample buffer, boiled for 3 min and fractionated on a 6% polyacrylamide gel, as 

previously described, with ∼7.5 µg/well (11,49). Proteins were transferred and probed with 

anti-dystrophin and anti-vinculin antibodies (discussed earlier). Secondary antibody goat anti-

mouse IgG conjugated to horseradish peroxidase was used at a dilution of 1:100 000 (Biorad). 

Antibodies were detected by enhanced chemiluminescence (ECL Prime; Amersham 

Biosciences). The blots were exposed to X-ray film and developed using an automatic X-ray 

film processor (Processor X-ograph Imaging Systems). Densitometric quantification of band 

intensity was measured using Image J software. Loading levels and exposure times were 

empirically tested to be in the linear range aided by simultaneously scanning of an optical 

density control strip (Stouffer industries, Inc.). Dystrophin expression was quantitated using 

the dystrophin to vinculin ratio versus dystrophin expression level standards on each gel. 

Standard curves for a variety of dystrophin expression levels with a constant level of vinculin 

expression and total protein were generated by mixing different percentages of mdx and wild-

type muscle homogenates and these were shown to be linear across the range from 2.5 to 80% 

wild-type dystrophin expression levels (Supplementary Material, Fig. S4, R2 = 0.98). Sample 

aliquots were prepared and used for subsequent western blots. Three pre-defined standards 

were loaded onto each gel, values were plotted and used to determine dystrophin levels for the 

TA samples within treated and control animals. As our pre-defined standards were within a 



linear range, the line of best fit was extrapolated to calculate any of the values that were above 

the highest standard curve on any given gel. 

RT–PCR analysis of Dmd Exon 23 skipping 

In order to assess the degree of exon skipping following route and formulation studies in mdx 

mice, 400 ng of total RNA was used as a template in a 50 μl RT–PCR using the GeneAmp 

RNA PCR kit (Applied Biosystems). RT–PCR of the dystrophin transcript was performed 

under the following conditions; 95°C for 20 s, 58°C for 60 s and 72°C for 120 s for 30 cycles 

using the following primers: DysEx20Fo (5′–CAGAATTCTGCCAATTGCTGAG) and 

DysEx26Ro (5′–TTCTTCAGCTTGTGTCATCC). Two microlitres of this reaction was used 

as a template for nested amplification using Amplitaq Gold (Applied Biosystems) under the 

following conditions; 95°C for 20 s, 58°C for 60 s and 72°C for 120 s for 22 cycles using the 

following primers: DysEx20Fi (5′-CCCAGTCTACCACCCTATCAGAGC) and DysEx26Ri 

(5′-CCTGCCTTTAAGGCTTCCTT). PCR products were analysed on 2% agarose gels. 

RT–qPCR analysis of Dmd Exon 23 skipping 

To assess the percentage of exon skipping following the acute dose escalation study of Pip6a-

PMO, RNA was extracted from TA muscles using Trizol (Invitrogen, Paisley, UK) according 

to manufacturer's instructions. One microgram of RNA was reverse transcribed using the 

RTnanoscript kit (PrimerDesign, UK) according to the manufacturer's instructions. qPCR was 

performed with Precision SYBR green mastermix (PrimerDesign) using 25 ng cDNA template. 

Primers were designed to amplify regions spanning Exons 1–3 (total dystrophin), Exons 22–

23 (unskipped dystrophin), or spanning the novel splice junction of Exons 22:24, and Exon 25 

(skipped dystrophin), and used the following sequences: Dys exon 1F (5′-

GTGGGAAGAAGTAGAGGACTGTT-3′), Dys exon 3R (5′-AGGTCTAGGAGGCGT TTT 

CC-3′), Dys exon 22F (5′-GGAGGAGAGACTCGGGAAAT-3′), Dys exon 23R (5′-GTGC 

CCCT CAATCTCTTCAA-3′), Dys exon 22/24F (5′-

CTCGGGAAATTACAGAATCACATA-3′), Dys exon 25R (5′-

TCTGCCCACCTTCATTAACA-3′). Levels of respective transcripts were determined by 

calibration to standard curves prepared using known transcript quantities, and skipping 

percentages derived by [skip]/[skip+unskip]. Comparison of these values to [skip]/[total] gave 

a strong correlation (R2 = 0.99) suggesting that [skip+unskip] was an accurate representative 

of the transcript population (non-canonical skipping which would not be detected by this 

method was very low or absent). 



To investigate the duration of exon skipping following a single P-PMO administration, RNA 

was extracted from muscle sections using Trizol. One microgram of RNA was reverse 

transcribed using the High Capacity cDNA RT Kit (Applied Biosystems, Warrington, UK) 

according to manufacturer's instructions. qPCR analysis was performed using 25 ng cDNA 

template and amplified with Taqman Gene Expression Master Mix (Applied Biosystems, 

Warrington, UK) on a StepOne Plus Thermocycler (Applied Biosystems, Warrington, UK). 

Levels of Dmd exon 23 skipping were determined by multiplex qPCR of FAM-labelled primers 

spanning Exon 20–21 (Assay Mm.PT.47.9564450, Integrated DNA Technologies, Leuven, 

Belgium) and HEX-labelled primers spanning Exon 23–24 (Mm.PT.47.7668824, Integrated 

DNA Technologies, Leuven, Belgium). The percentage of Dmd transcripts containing exon 23 

was determined by normalizing exon 23–24 amplification levels to exon 20–21 levels. 

Serum protein and microRNA biomarkers 

Blood samples collected via cardiac puncture were left to clot for 10 min at room temperature 

prior to centrifuging at 1800 g for 10 min at 4°C, serum was removed and stored at −80°C. 

Levels of TIMP-1 and MMP9 expression were analysed using the mouse TIMP-1 (MTM100) 

and MMP9 (MMPT90) immunoassays from R&D systems. Serum samples were diluted 1:10 

(TIMP-1) or 1:50 (MMP9) in respective assay calibrator diluents and analysed in duplicates 

according to manufacturer's instructions. Sera from age-matched wild-type C57Bl/10 female 

mice were used as controls. We have previously confirmed there is no significant difference in 

MMP-9 and TIMP-1 levels between male and female mice (data not shown). Statistical 

analysis was measured using either a Kruskal–Wallis test followed by a Dunn's post-hoc test 

or a one-way ANOVA with Tukey's post-hoc test. Statistical significance was defined as a 

value of P < 0.05. For microRNA analysis, RNA was extracted from 50 µl of serum using 

TRIzol LS (Invitrogen, Paisley, UK) as according to manufacturer's instructions. A synthetic 

miRNA, cel-miR-39, was added as a normalization control at the organic extraction phase. 

miRNAs of interest were reverse transcribed using Taqman miRNA Reverse Transcription Kit 

(Applied Biosystems, Warrington, UK) and quantified by small RNA TaqMan RT–qPCR 

(Applied Biosystems, Warrington, UK) with levels normalized to the spike-in cel-miR-39 and 

endogenous miR-223. All primer/probe assays were purchased from Applied Biosystems 

(Warrington, UK). 

Supplementary Materials 

http://hmg.oxfordjournals.org/content/24/15/4225/suppl/DC1  

http://hmg.oxfordjournals.org/content/24/15/4225/suppl/DC1


References: 

1. Manzur, A.Y., Kinali, M. and Muntoni, F. (2008) Update on the management of Duchenne muscular  

dystrophy. Arch. Dis. Child., 93, 986–990. 

2. Muntoni, F. and Wood, M.J. (2011) Targeting RNA to treat neuromuscular disease. Nat. Rev. Drug 

Discov., 10, 621–637. 

3. Cirak, S., Arechavala-Gomeza, V., Guglieri, M., Feng, L., Torelli, S., Anthony, K., Abbs, S., Garralda, 

M.E., Bourke, J., Wells, D.J. et al. (2011) Exon skipping and dystrophin restoration in patients with 

Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an 

open-label, phase 2, dose-escalation study. Lancet, 378, 595–605. 

4. Goemans, N.M., Tulinius, M., van den Akker, J.T., Burm, B.E., Ekhart, P.F., Heuvelmans, N., Holling, 

T., Janson, A.A., Platenburg, G.J., Sipkens, J.A. et al. (2011) Systemic administration of PRO051 in 

Duchenne’s muscular dystrophy. N. Engl. J. Med., 364, 1513–1522. 

5. Kinali, M., Arechavala-Gomeza, V., Feng, L., Cirak, S., Hunt, D., Adkin, C., Guglieri, M., Ashton, E., 

Abbs, S., Nihoyannopoulos, P. et al. (2009) Local restoration of dystrophin expression with the 

morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, 

dose-escalation, proof-of-concept study. Lancet Neurol., 8, 918–928. 

6. van Deutekom, J.C., Janson, A.A., Ginjaar, I.B., Frankhuizen, W.S., Aartsma-Rus, A., Bremmer-Bout, 

M., den Dunnen, J.T., Koop, K., van der Kooi, A.J., Goemans, N.M. et al. (2007) Local dystrophin 

restoration with antisense oligonucleotide PRO051. N. Engl.J. Med., 357, 2677–2686. 

7. Lu, Q.L., Cirak, S. and Partridge, T. (2014) What Can We Learn From Clinical Trials of Exon 

Skipping for DMD? Mol. Ther. Nucleic Acids., 3, e152. 

8. Neri, M., Torelli, S., Brown, S., Ugo, I., Sabatelli, P., Merlini, L., Spitali, P., Rimessi, P., Gualandi, F., 

Sewry, C. et al. (2007) Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in 

the human. Neuromuscul. Disord., 17, 913–918. 

9. Anthony, K., Cirak, S., Torelli, S., Tasca, G., Feng, L., Arechavala-Gomeza, V., Armaroli, A., 

Guglieri, M., Straathof, C.S., Verschuuren, J.J. et al. (2011) Dystrophin quantification and clinical 

correlations in Becker muscular dystrophy: implications for clinical trials. Brain, 134, 3547–3559. 

10. Phelps, S.F., Hauser, M.A., Cole, N.M., Rafael, J.A., Hinkle, R.T., Faulkner, J.A. and Chamberlain, 

J.S. (1995) Expression of full length and truncated dystrophin mini-genes in transgenic mdx mice. 

Hum. Mol. Genet., 4, 1251–1258.  

11. Wells, D.J., Wells, K.E., Asante, E.A., Turner, G., Sunada, Y., Campbell, K.P., Walsh, F.S. and 

Dickson, G. (1995) Expression of human full-length and minidystrophin in transgenic mdx mice: 

implications for gene therapy of Duchenne muscular dystrophy. Hum. Mol. Genet., 4, 1245–1250.  

12. Li, D., Yue, Y. and Duan, D. (2008) Preservation of muscle force in Mdx3cv mice correlates with low-

level expression of a near full-length dystrophin protein. Am. J. Pathol., 172, 1332–1341.  

13. Li, D., Yue, Y. and Duan, D. (2010) Marginal level dystrophin expression improves clinical outcome 

in a strain of dystrophin/utrophin double knockout mice. PLoS One, 5, e15286. 

14. van Putten, M., Hulsker, M., Nadarajah, V.D., van Heiningen, S.H., van Huizen, E., van Iterson, M., 

Admiraal, P., Messemaker, T., den Dunnen, J.T., t Hoen, P.A.C. et al. (2012) The effects of low levels 

of dystrophin on mouse muscle function and pathology. PLoS One, 7, e31937. 

15. Bulfield, G., Siller, W.G., Wight, P.A. and Moore, K.J. (1984) X chromosome-linked muscular 

dystrophy (mdx) in the mouse. Proc. Natl Acad. Sci. U S A., 81, 1189–1192. 

16. Coulton, G.R., Morgan, J.E., Partridge, T.A. and Sloper, J.C. (1988) The mdx mouse skeletal muscle 

myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol. Appl. 

Neurobiol., 14, 53–70. 

17. Dangain, J. and Vrbova, G. (1984) Muscle development in mdx mutant mice. Muscle Nerve, 7, 700–

704.  

18. Tanabe, Y., Esaki, K. and Nomura, T. (1986) Skeletal muscle pathology in X chromosome-linked 

muscular dystrophy (mdx) mouse. Acta. Neuropathol., 69, 91–95.  

19. Betts, C., Saleh, A.F., Arzumanov, A.A., Hammond, S.M., Godfrey, C., Coursindel, T., Gait, M.J. and 

Wood, M.J. (2012) Pip6-PMO, A New Generation of Peptide-oligonucleotide Conjugates With 

Improved Cardiac Exon Skipping Activity for DMD Treatment. Mol. Ther. Nucleic Acids., 1, e38. 

20. Foster, H., Sharp, P.S., Athanasopoulos, T., Trollet, C., Graham, I.R., Foster, K., Wells, D.J. and 

Dickson, G. (2008) Codon and mRNA sequence optimization of microdystrophin transgenes improves 

expression and physiological outcome in dystrophic mdx mice following AAV2/8 gene transfer. Mol. 

Ther., 16, 1825–1832.  

21. Miller, G., Moore, C.J., Terry, R., La Riviere, T., Mitchell, A., Piggott, R., Dear, T.N., Wells, D.J. and 

Winder, S.J. (2012) Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype 

in mdx mouse. Hum. Mol. Genet., 21, 4508–4520.  



22. Terry, R.L., Kaneb, H.M. and Wells, D.J. (2014) Poloxomer 188 has a deleterious effect on dystrophic 

skeletal muscle function. PLoS One, 9, e91221.  

23. Whitmore, C., Fernandez-Fuente, M., Booler, H., Parr, C., Kavishwar, M., Ashraf, A., Lacey, E., Kim, 

J., Terry, R., Ackroyd, M.R. et al. (2014) The transgenic expression of LARGE exacerbates the muscle 

phenotype of dystroglycanopathy mice. Hum. Mol. Genet., 23, 1842–1855.  

24. Crisp, A., Yin, H., Goyenvalle, A., Betts, C., Moulton, H.M., Seow, Y., Babbs, A., Merritt, T., Saleh, 

A.F., Gait, M.J. et al. (2011) Diaphragm rescue alone prevents heart dysfunction in dystrophic mice. 

Hum. Mol. Genet., 20, 413–421.  

25. Yin, H., Moulton, H.M., Seow, Y., Boyd, C., Boutilier, J., Iverson, P. and Wood, M.J. (2008) Cell-

penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac 

dystrophin expression and function. Hum. Mol. Genet., 17, 3909–3918.  

26. Yin, H., Moulton, H.M., Betts, C., Seow, Y., Boutilier, J., Iverson, P.L. and Wood, M.J. (2009) A 

fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in 

dystrophin-deficient mdx mice. Hum. Mol. Genet., 18, 4405–4414.  

27. Yin, H., Moulton, H.M., Betts, C., Merritt, T., Seow, Y., Ashraf, S., Wang, Q., Boutilier, J. and Wood, 

M.J. (2010) Functional rescue of dystrophin-deficient mdx mice by a chimeric peptidePMO. Mol. 

Ther., 18, 1822–1829. 

28. Jearawiriyapaisarn, N., Moulton, H.M., Buckley, B., Roberts, J., Sazani, P., Fucharoen, S., Iversen, 

P.L. and Kole, R. (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino 

oligomers in the muscles of mdx mice. Mol. Ther., 16, 1624–1629.  

29. Samoylova, T.I. and Smith, B.F. (1999) Elucidation of musclebinding peptides by phage display 

screening. Muscle Nerve, 22, 460–466.  

30. Perez, F., Joliot, A., Bloch-Gallego, E., Zahraoui, A., Triller, A. and Prochiantz, A. (1992) 

Antennapedia homeobox as a signal for the cellular internalization and nuclear addressing of a small 

exogenous peptide. J. Cell. Sci., 102, 717–722.  

31. Boisguerin, P., Deshayes, S., Gait, M.J., O’Donovan, L., Godfrey, C., Betts, C.A., Wood, M.J. and 

Lebleu, B. (2015) Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv. Drug. 

Deliv. Rev., 4, 00019–00018.  

32. van Putten, M., Hulsker, M., Young, C., Nadarajah, V.D., Heemskerk, H., van der Weerd, L., t Hoen, 

P.A., van Ommen, G.J. and Aartsma-Rus, A.M. (2013) Low dystrophin levels increase survival and 

improve muscle pathology and function in dystrophin/utrophin double-knockout mice. FASEB J., 27, 

2484–2495.  

33. Heemskerk, H., de Winter, C., van Kuik, P., Heuvelmans, N., Sabatelli, P., Rimessi, P., Braghetta, P., 

van Ommen, G.J., de Kimpe, S., Ferlini, A. et al. (2010) Preclinical PK and PD studies on 2′-O-methyl-

phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol. Ther., 18, 1210–

1217.  

34. Chan, S., Head, S.I. and Morley, J.W. (2007) Branched fibers in dystrophic mdx muscle are associated 

with a loss of force following lengthening contractions. Am. J. Physiol. Cell. Physiol., 293, 985–992.  

35. Dellorusso, C., Crawford, R.W., Chamberlain, J.S. and Brooks, S.V. (2001) Tibialis anterior muscles in 

mdx mice are highly susceptible to contraction-induced injury. J. Muscle. Res. Cell. Motil., 22, 467–

475.  

36. DelloRusso, C., Scott, J.M., Hartigan-O’Connor, D., Salvatori, G., Barjot, C., Robinson, A.S., 

Crawford, R.W., Brooks, S.V. and Chamberlain, J.S. (2002) Functional correction of adult mdx mouse 

muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc. Natl Acad. Sci. USA, 

99, 12979–12984. 

37. Sharp, P.S., Bye-a-Jee, H. and Wells, D.J. (2011) Physiological characterization of muscle strength 

with variable levels of dystrophin restoration in mdx mice following local antisense therapy. Mol. 

Ther., 19, 165–171. 

38. Cacchiarelli, D., Incitti, T., Martone, J., Cesana, M., Cazzella, V., Santini, T., Sthandier, O. and 

Bozzoni, I. (2011) miR-31 modulates dystrophin expression: new implications for Duchenne muscular 

dystrophy therapy. EMBO Rep., 12, 136–141.  

39. Aoki, Y., Nakamura, A., Yokota, T., Saito, T., Okazawa, H., Nagata, T. and Takeda, S. (2010) In-

frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-

deficient mdx mouse. Mol. Ther., 18, 1995–2005.  

40. Malerba, A., Sharp, P.S., Graham, I.R., Arechavala-Gomeza, V., Foster, K., Muntoni, F., Wells, D.J. 

and Dickson, G. (2011) Chronic systemic therapy with low-dose morpholino oligomers ameliorates the 

pathology and normalizes locomotor behavior in mdx mice. Mol. Ther., 19, 345–354. 

41. Heier, C.R., Damsker, J.M., Yu, Q., Dillingham, B.C., Huynh, T., Van der Meulen, J.H., Sali, A., 

Miller, B.K., Phadke, A., Scheffer, L. et al. (2013) VBP15, a novel anti-inflammatory and membrane-

stabilizer, improves muscular dystrophy without side effects. EMBO Mol. Med., 5, 1569–1585.  



42. Wu, B., Cloer, C., Lu, P., Milazi, S., Shaban, M., Shah, S.N., Marston-Poe, L., Moulton, H.M. and Lu, 

Q.L. (2014) Exon skipping restores dystrophin expression, but fails to prevent disease progression in 

later stage dystrophic dko mice. Gene Ther., 21, 785–793. 

43. Stedman, H.H., Sweeney, H.L., Shrager, J.B., Maguire, H.C., Panettieri, R.A., Petrof, B., Narusawa, 

M., Leferovich, J.M., Sladky, J.T. and Kelly, A.M. (1991) The mdx mouse diaphragm reproduces the 

degenerative changes of Duchenne muscular dystrophy. Nature, 352, 536–539.  

44. Roberts, T.C., Blomberg, K.E., McClorey, G., El Andaloussi, S., Godfrey, C., Betts, C., Coursindel, T., 

Gait, M.J., Smith, C.I. and Wood, M.J. (2012) Expression analysis in multiple muscle groups and 

serum reveals complexity in the microRNA transcriptome of the mdx mouse with implications for 

therapy. Mol. Ther. Nucleic Acids, 1, e39.  

45. Zaharieva, I.T., Calissano, M., Scoto, M., Preston, M., Cirak, S., Feng, L., Collins, J., Kole, R., 

Guglieri, M., Straub, V. et al. (2013) Dystromirs as serum biomarkers for monitoring the disease 

severity in Duchenne muscular Dystrophy. PLoS One, 8, e80263.  

46. Nadarajah, V.D., van Putten, M., Chaouch, A., Garrood, P., Straub, V., Lochmuller, H., Ginjaar, H.B., 

Aartsma-Rus, A.M., van Ommen, G.J., den Dunnen, J.T. et al. (2011) Serum matrix metalloproteinase-

9 (MMP-9) as a biomarker for monitoring disease progression in Duchenne muscular dystrophy 

(DMD). Neuromuscul. Disord., 21, 569–578. 

47. Arechavala-Gomeza, V., Kinali, M., Feng, L., Brown, S.C., Sewry, C., Morgan, J.E. and Muntoni, F. 

(2010) Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein 

expression. Neuropathol. Appl. Neurobiol., 36, 265–274.  

48. Briguet, A., Courdier-Fruh, I., Foster, M., Meier, T. and Magyar, J.P. (2004) Histological parameters 

for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul. Disord., 14, 

675–682. 

49. Wells, D.J., Wells, K.E., Walsh, F.S., Davies, K.E., Goldspink, G., Love, D.R., Chan-Thomas, P., 

Dunckley, M.G., Piper, T. and Dickson, G. (1992) Human dystrophin expression corrects the 

myopathic phenotype in transgenic mdx mice. Hum. Mol. Genet., 1, 35–40. 

 

Acknowledgments: Funding: This work was supported by grants from the Association 

Française contre les Myopathies (C.G., G.M., K.W., T.C. and L.O.; programme number 

14784), the Muscular Dystrophy Campaign (C.B.; programme number RA4/858), the 

Duchenne Research Fund (J.H.), the Medical Research Council (S.H.; programme number 

G0900887) and the Wellcome Trust (R.T.). Work in the laboratory of M.J.G. was supported 

by the Medical Research Council (MRC programme number U105178803). Author 

contributions: C.T.C., L.O. and M.J.G. co-designed and synthesised the peptide-PMO 

compounds. C.G., G.M., C.B., S.H. and S.E.A performed peptide optimisation and duration 

experiments. D.J.W. injected mice for the physiology experiments. S.M., K.E.W., R.L.T. & 

D.J.W. performed in situ muscle function studies. S.M., K.E.W. & J.H. quantified dystrophin 

levels and analysed muscle pathology on mice for the physiology studies. D.J.W. and 

M.J.W. designed and managed the experiments. Manuscript was co-written by S.M. & C.G. 

and edited by D.J.W. and M.J.W.. All authors approved the final version. Competing 

interests: M.J.W., M.J.G. and C.B. are inventors on a filed patient on identification of cell 

penetrating peptides and conjugates of a cell penetrating peptide and a cargo molecule filed 

jointly by the MRC Cambridge and the University of Oxford. 

 



Figures:  

Fig 1. Acute delivery of Pip6a-PMO protects against muscle damage in mdx mice. 

Twelve-week old male mdx mice received a single tail vein injection of Pip6a-PMO (3, 

6, 9 or 12.5mg/kg); muscle function was assessed 2 weeks later. (A) Using an eccentric 

contraction protocol (10% stretch of optimal muscle length), TA muscles were assessed 

for their resistance to eccentric contraction-induced muscle damage. Each tetanic force 

is expressed as a percentage of the baseline force produced prior to the first eccentric 

contraction. From eccentric contraction number 3 mdx mice treated with 12.5mg/kg and 

9mg/kg of Pip6a-PMO were significantly more protected than 6mg/kg or 3mg/kg 

treated mice. Data were analysed using a two-way repeated-measure ANOVA with 

Tukey's post hoc test, n=3-4/group, (*p =<0.05). Error bars represent SEM. (B) Force-

frequency curve showing no improvement in specific isometric force between any of 

the treatment groups (N/cm2).  

 



 

Fig 2. Acute delivery of Pip6a-PMO in mdx mice. Twelve-week old male mdx mice received a 

single tail vein injection of Pip6a-PMO (3, 6, 9 or 12.5mg/kg); mice were assessed 2 

weeks later. (A) Immunohistochemistry confirmed homogenous dystrophin expression 

throughout the TA muscle in mice treated with 12.5mg/kg of Pip6a-PMO. The number 

of dystrophin positive fibres dramatically reduced in a dose-related response. Scale bar, 

100 microns. (B) Western blot analysis of dystrophin protein 2 weeks after a single 

systemic Pip6a-PMO injection (9mg/kg or 12.5mg/kg). Analysis of internally deleted 

dystrophin revealed 5-15% of wild-type dystrophin expression levels in TA muscles of 

Pip6a-PMO treated mdx mice. Dystrophin protein was not detected in 6mg/kg and 

3mg/kg treated mice (data not shown). (C) Reverse transcriptase-quantitative PCR 

(RT-qPCR) showing the percentage of exon skipping in TA muscles of Pip6a-PMO 

treated mice. We observed an increase in the percentage of dystrophin-skipped 

transcript as the dose of the peptide-PMO increased. (D) Serum TIMP-1 expression in 

Pip6a-PMO treated mice. A significant reduction in circulating TIMP-1 protein in 

12.5mg/kg treated mice compared to 6mg/kg and 3mg/kg mice was noted. (E) Linear 

regression analysis showing a positive correlation between resistance to eccentric 

contraction-induced muscle damage and dystrophin protein expression (R2=0.8687, 

p<0.001). PMO; phosphorodiamidate morpholino oligonucleotide. Kruskal Wallis 

analysis with Dunn’s post hoc test, n=3/4, * represents p= <0.05. 

 



 

Fig 3. Tissue specific profiling of exon skipping and dystrophin restoration following Pip6a-

PMO administration. Twelve-week old male mdx mice were treated with a single 

12.5mg/kg intravenous dose of Pip6a-PMO. Tissues were harvested 1, 2, 4, 8, 12 and 

20 weeks post-injection. Data are shown from the TA (A, D, G and J), the heart (B, E, 

H and K) and the diaphragm (C, F, I and L). Reverse transcriptase-quantitative PCR 

(RT-qPCR) was performed to determine Dmd exon 23 exclusion (A-C). Total 

dystrophin protein restoration was assessed by western blot using an infrared detection 

system (D-F). Sarcolemmal associated dystrophin expression was assessed by 

immunostaining; sarcolemmal intensity measurements quantified dystrophin relative to 



laminin-α2 and normalised to C57Bl/10 (G-I); mean intensity values were used to 

generate a percentage recovery score (0%; untreated mdx, 100%; C57Bl/10) (J-L). 

Wks; weeks.  

 



 

Fig 4. Chronic delivery of Pip6a-PMO restores muscle function in mdx mice. Twelve-week old 

male mdx mice received ten fortnightly tail vein injections of 12.5mg/kg Pip6a-PMO. 

Muscle function was measured 2 weeks after the last tail vein injection. (A) TA muscles 

were assessed for their resistance to eccentric contraction-induced muscle damage 

(10% stretch of optimal muscle length). Each tetanic force is expressed as a percentage 

of the baseline force produced prior to the first eccentric contraction. Tetanic force was 

maintained throughout the protocol in Pip6a-PMO treated mice. In contrast, untreated 

mdx mice exhibited a 60±3.9% drop in force compared to baseline. (B) Force-frequency 

graph of TA muscles from Pip6a-PMO treated mdx mice showing a significant 

improvement in specific force (N/cm2) when stimulated between 80 – 180Hz compared 

to untreated littermate controls. (C) Immunohistochemistry confirmed dystrophin 

expression was homogeneous throughout the muscle in treated mice. (D) Western blot 

analysis of total dystrophin protein two weeks after the last systemic Pip6a-PMO 

injection. On average, 50% of dystrophin levels (relative to wild-type) were restored in 

TA muscles of Pip6a-PMO treated mdx mice. (E) Linear regression analysis showing a 

positive correlation between maximal specific force and dystrophin protein expression 

(R2=0.8134). The extrapolated data point highlights that 100% dystrophin levels yields 

a specific force of 24.1N/cm2, a maximal specific force value that is similar to wild-



type C57B/l10 mice. PMO; phosphorodiamidate morpholino oligonucleotide; 

Statistical analysis; two-way repeated-measures ANOVA with Tukey's post hoc test, 

n=6-7/group, * p= <0.05. Error bar represents SEM.  

 



 

Fig 5. Reduced pathology in the TA and diaphragms of Pip6a-PMO treated mice. Using 

minimum Feret’s diameter, the myofibre sizes in TA muscles from Pip6a-PMO treated 

and non-treated mice were assessed. (A) A noticeable reduction in the number of 

myofibres under 40µm and above 70 µm was observed in Pip6a-PMO treated mice 

indicating a reduction in small regenerating/fibre splitting and hypertrophic fibres, 

respectively. (B) Analysis of variation of coefficient confirmed a significant reduction 

in overall myofibre size variation in Pip6a-PMO treated mice. Unpaired t-test, 

n=7/group, p=0.0005. Immunohistological analysis of the diaphragm 2 weeks after the 



last tail vein injection of Pip6a-PMO. In contrast to untreated littermate control mice 

(C), homogenous dystrophin expression was noted throughout the diaphragms of 

Pip6a-PMOtreated mice (D). Histological analysis highlights a noticeable reduction in 

fibrosis and inflammatory infiltrate in Pip6a-PMO treated mice (F and H) compared to 

the untreated mdx mice (E and G). PMO; phosphorodiamidate morpholino 

oligonucleotide. 

 

 




