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PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have
found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous frac-
tures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice
and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone
turnover is limited. In this study, we have used ex-vivo computerised tomography to examine the effect of
Phospho1 deletion on tibial bone architecture inmice at a range of ages (5, 7, 16 and 34weeks of age) to establish
whether its role is conserved during skeletal growth andmaturation.Matrixmineralisation has also been report-
ed to influence terminal osteoblast differentiation into osteocytes and we have also explored whether
hypomineralised bones in Phospho1 KO mice exhibit modified osteocyte lacunar and vascular porosity. Our
data reveal that Phospho1 deficiency generates age-related defects in trabecular architecture and compromised
cortical microarchitecture with greater porosity accompanied by marked alterations in osteocyte shape, signifi-
cant increases in osteocytic lacuna and vessel number. Our in vitro studies examining the behaviour of osteoblast
derived from Phospho1 KO and wild-type mice reveal reduced levels of matrix mineralisation and modified
osteocytogenic programming in cells deficient in PHOSPHO1. Together our data suggest that deficiency in
PHOSPHO1 exerts modifications in bone architecture that are transient and depend upon age, yet produces con-
sistent modification in lacunar and vascular porosity. It is possible that the inhibitory role of PHOSPHO1 on oste-
ocyte differentiation leads to these age-related changes in bone architecture. It is also intriguing to note that this
apparent acceleration in osteocyte differentiation evident in the hypomineralised bones of Phospho1 KO mice
suggests an uncoupling of the interplay between osteocytogenesis and biomineralisation. Further studies are
required to dissect the molecular processes underlying the regulatory influences exerted by PHOSPHO1 on the
skeleton with ageing.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Bone formation involves a cascade of events leading to the deposi-
tion of mineral (biomineralisation), critical to skeletal maintenance
throughout life. Mineralisation occurs by a series a complex physico-
chemical and biochemical processes that facilitate the deposition of
a solid hydroxyapatite (HA) phase [1]. Biomineralisation can be
. This is an open access article under
considered a two-step process, which involves de novo induction of
mineral formation within the protective enclave of the lumen of osteo-
blast and chondrocytematrix vesicles (MVs) followed by propagation of
induced mineral into the extravesicular matrix [2,3]. These formation
and propagation steps of HA deposition are carefully regulated by a
balance of mineralisation promoters and inhibitors.

The recognised local inhibitors include inorganic pyrophosphate
(PPi) and organic non-collagenous proteins or peptides of the extracel-
lular matrix (ECM) such as osteopontin [4–6]. Bone mineralisation
is also dependent on a tight local balance between extracellular
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A) Longitudinal strain map on the medial side of the bone surface of WT and
Phospho1KO tibia at 5, 7 and 16weeks of agewithmaximumand average values obtained
following 12N compressive load. B) Loading displacement for 7 and16week old Phospho1
KO and WTmice.
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(e) levels of Pi and PPi and when ePPi is deficient or in excess, the
skeleton is either over- or under-mineralised, respectively [7,8]. The
complex interplay between PPi formation, transport and degradation
directly controls the ePi/PPi balance and thereby the propagation of
HA out with the confines of the MV.

Current evidence suggests that there are several principal proteins
involved in regulating bone mineralisation, which include tissue-
nonspecific alkaline phosphatase (TNAP), an ectoenzyme expressed
on the surface of chondrocytes, osteoblasts and their shed MVs [9].
TNAP hydrolysis maintains ePPi levels at physiological concentra-
tions which also yields Pi for HA formation within the ECM [10]. Nucle-
otide pyrophosphatase phosphodiesterase 1 (NPP1) also regulates
mineralisation by generating PPi ectoplasmically from nucleoside
triphosphate substrates [11,12] whereas the multiple-pass transmem-
brane protein ANK achieves this by mediating intracellular to extracel-
lular channelling of PPi [13,14]. Mouse models with NPP1 or ANK
mutations show decreased levels of PPi and bone hypermineralisation
[14,15]. PHOSPHO1 (phosphatase, orphan 1) which directly regulates
PPi availability, has also now been identified.

TNAP deficiency in humans results in hypophosphatasia (HPP)
and is linked to increased plasma PPi levels due to impaired
pyrophosphatase function. Similarly, mice deficient in TNAP function
(Alpl−/−) are born with normally calcified skeletons but by postnatal
day 6 skeletal hypomineralisation becomes apparent and worsens
with age until their early demise by postnatal day 20 [7,16]. The failure
of bones to calcify after birth appears to result from a block in HA prop-
agation in the ECM, beyond the confines of the MV membrane [17,18],
as a consequence of accumulated ePPi levels due to lack of TNAP's
pyrophosphatase activity [19–21] and concomitant pyrophosphate-
induced increase in osteoblast production of osteopontin [22,23].
Importantly, electron microscopy has revealed that MVs from
Alpl−/− mice and from patients with hypophosphatasia possess the
ability to initiate HA formation within the sheltered interior of the
MV [24,25]. These findings suggest that alternative mechanisms
may regulate the intravesicular initiation of mineral formation. One
candidate is PHOSPHO1, a soluble cytosolic phosphatase and a mem-
ber of the haloacid dehalogenase (HAD) superfamily of hydrolases
[26].

PHOSPHO1 was first identified in the chick where it is expressed
at 120-fold higher levels in mineralising than non-mineralising tis-
sues [27]. It is active in osteoblast and chondrocyte MVs and has
specificity for phosphoethanolamine (PEA) and phosphocholine
(PCho) [28,29]. The reduced ability of the chick wing and leg long
bones to mineralize in the presence of the PHOSPHO1 inhibitor,
lansoprazole, provided initial confirmation of the pivotal functional role
of PHOSPHO1 in skeletal mineralisation [30]. More recently, PHOSPHO1
deficient mice, Phospho1-R74X (Phospho1 KO) were found to show
elevated ePPi levels and to displaymultiple skeletal abnormalities, includ-
ing spontaneous fractures, bowed long bones, osteomalacia and scoliosis
in early life [31]. These pathological changes were clearly evident at
1month of age in Phospho1 KOmice, and this effect is thought to become
progressivelyworsewith age. Furthermore, tibiae from Phospho1KOmice
are more ductile and did not fracture during 3-point bending but de-
formed plastically [32,33], likely due to a reduced elastic modulus
and hardness [32,33].

Previous micro-computed tomography (μCT) analysis of 1-
month-old Phospho1 KO showed increased trabecular number and
decreased trabecular space but no significant difference in BV/TV
ratio compared to WT mice, along with a significant reduction in
cortical mineral density in both femur and tibia [31]. Together,
these findings suggest that PHOSPHO1 serves a critical role in bone
mineralisation during development and growth. This, we have
hypothesised, is related to its capacity to scavenge Pi from both PEA
and PCho in order to generate the Pi concentration needed to estab-
lish a Pi/PPi ratio permissive for the initial formation of HA crystal in-
side the MVs [3,29].
To date, analyses of the Phospho1 KO phenotype have been limit-
ed to young mice which are characterised by active modelling of the
skeleton and as PHOSPHO1 has been implicated in the initiation of
bone mineralisation, it is unclear whether this role is conserved in
later life in the mature murine skeleton where bone turnover is lim-
ited [31,32]. Furthermore, the level of mineralisation and the proper-
ties of the bone matrix are associated with bone strength and
stiffness [34–36]. We therefore sought to determine how Phospho1
contributes to tibial surface strain and stiffness using digital image
correlation as reported previously [37]. Since matrix mineralisation
has also been reported to influence terminal osteoblast differentia-
tion into osteocytes [38,39] and angiogenesis [40–46], it is also
important to determine whether the osteoblast-to-osteocyte transi-
tion and vascular porosity [47–51] are impaired in PHOSPHO1
deficient mice as this may have profound effects on skeletal architec-
ture and biomechanical properties due to an impaired ability of the
skeleton to respond appropriately to mechanical loading [52,53]. In
this study, we have therefore used high resolution CT to examine
the effect of Phospho1 deletion on tibial bone architecture in mice
at a range of ages to establish whether its role is conserved during
growth and maturation of the skeleton. Furthermore, we have also
explored whether the hypomineralised bones in these mice exhibit
modified osteocytic and vascular content.
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2. Materials and methods

2.1. Animal model

Phospho1-R74X-null mutant (Phospho1 KO)micewere generated by
N-ethyl-N-nitrosoureamutagenesis (ENU) as described previously [31].
Mice were housed up to 4 per cage in polypropylene cages with wood
chip and paper bedding and provided standard mouse chow and
water ad libitum throughout the study. Weaners up to 8 weeks of age
were fed a standard rodent breeding diet and thereafter a standard ro-
dent maintenance diet (Special Diet Services, South Witham, UK). All
procedures complied with the UK Animals (Scientific Procedures) Act
1986 and were reviewed and approved by the ethics committee of
The Roslin Institute, University of Edinburgh and the Royal Veterinary
College (London, UK).

We chose to study the role of Phospho1 in the maintenance of bone
architecture at various life stages and therefore used male mice at 5
Fig. 2. Trabecular bone phenotype ofWT (solid) and Phospho1KO (dashed) tibia at 5, 7, 16 and 3
physical tibia to determine (B) trabecular bone volume/total volume (BV/TV), (C) trabecular b
connectivity density and (G) representative 3D μCT images of tibial trabecular bone in WT an
16- as well as n = 5 for 34-week old WT and KO mice. Statistical comparisons: p b 0.05 WT an
(young, early stage of growth), 7 (growing, later stage of growth), 16
(skeletally mature) and 34 (post-maturation) weeks of age.

2.2. Load-related tibial bone surface strains using digital image correlation

Digital image correlation (DIC) was used to describe strain distribu-
tion engendered by load application through points of articulation [37,
54]. Accordingly, male wild-type (WT) and Phospho1 KO mice (n = 4/
strain) at 5, 7 and 16 weeks old were euthanized, and right tibiae
were exposed and covered with a thin layer of matt, water-based,
white paint. Bones were subsequently speckled with matt, acrylic,
black inkusing a high precision air brush [54]. Legswere inserted in cus-
tom built loading cups attached to a material testing machine (Instron
5800, High Wycombe, UK) and loaded at a rate of 8 N/min up to 12 N/
min. These cups ensured the bone to be loaded axially across the knee
and ankle joints [55]. Two CCD cameras (100 mm lenses, GOM GmbH,
Germany) mounted on a tripod at a reciprocal distance of 148 cm
4weeks of age. (A) Tibial length. Ex vivo high-resolution analyses of distal proximalmeta-
one volume (BV), (D) trabecular total volume (TV), (E) trabecular number, (F) trabecular
d KO mice. Linear graphs represent means ± SEM. Group sizes were n = 6 for 5-, 7- and
d KO of same age.



Table 1
Results from the ANOVA, testing the significance of the main effects of genotype and
age and their interactions between WT and Phospho1 KO in metaphyseal trabecular and
cortical bone.

Parameters Genotype Age Genotype ∗ age

Tibial length b0.001 b0.001 b0.05
Trabecular bone

BV/TV (%) NS b0.001 NS
BV (mm3) NS b0.001 NS
TV b0.001 b0.001 NS
Tb.N b0.05 b0.001 b0.01
Conn.Dn (mm) b0.01 b0.001 b0.01

Cortical bone
BV/TV (%) b0.001 b0.001 NS
BV (mm3) NS NS b0.001
Ct.Th b0.001 b0.001 NS
Tot.Po % b0.001 b0.001 NS
B.Ar NS NS b0.001
MMI NS b0.001 NS
TMD b0.001 b0.001 NS
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were positioned horizontally in front of the loading cups, at a distance of
42 cm, to provide a 15×12mm field of viewwith 1.2mmdepth of focus.
The two cameras were rotated towards each other meeting at 25° angle
on the bone surface. A high-precision panel 15mm×12mmwas used to
calibrate the system (GOMGmbH, Germany). The bonewas illuminated
by two diode lamps with polarised filters. During the loading, images of
the medial side of the tibiae surface were recorded at 1 N interval using
the ARAMIS 5M System (GOM GmbH, Germany), with a resolution of
7.5 × 10.9 μm. Post processing of the images was done using
19 × 19 pixel square facets, with 15 pixel step facet. Strains on the
bone surface were computed with a computation size of 5 and a validity
quote of 65%. Accuracy was determined at zero loading (zero strains) by
taking three images in the un-deformed state during the experiments.
Maximum and average strains on the medial surface were calculated at
12 N for all samples. The noise was consistent throughout all the tests
and of approximately 0.03%.

2.3. High-resolution micro and nano-computed tomography

2.3.1. μCT
Tibiae from 5-, 7- and 16- (n= 6/age group) as well as 34-week old

(n = 5) Phospho1 KO mice and WT were fixed in 70% EtOH and stored
until scanning using the Skyscan 1172 (Skyscan, Kontich, Belgium),
with X-ray tube operated at 50 kV and 200 μA, 1600 ms exposure
timewith a 0.5mm aluminium filter and a voxel size of 5 μm. The scan-
ning time for each sample was approximately 2 h. The slices were then
reconstructed using NRecon 1.6.9.4 (Skyscan, Kontich, Belgium). 2D/3D
analyses were performed using CTAn 1.13.5.1+ version software
(Skyscan, Kontich, Belgium). CTVol 2.6.0 r98 version (Skyscan, Kontich,
Belgium) was used for 3D visualisation. Phantom calibrated μCT was
used to assess cortical tissue mineral density (TMD) on a stack of 100
slices for cortical region at 37% of total tibial length using two
Skyscan-supplied bone phantoms with known mineral density values
of 0.25 and 0.75 g/cm3 calcium hydroxyapatite. The phantoms were
scanned and reconstructed with the same settings used to scan tibiae
from WT and Phospho1 KO mice.

2.3.2. NanoCT
The tibial-fibula junction in 5-, 16-, and 34-week old (n = 4/age

group) Phospho1 KO mice and WT was scanned using the Skyscan
1172 (Skyscan, Kontich, Belgium) X-ray microtomograph. The sam-
ples were placed in Orthodontic Wax (Kerr, CA, USA) at 50 kV and
200 μA, 9800 ms exposure time with a 0.25 mm aluminium filter
(99.999% purity, Goodfellow, Huntington, UK), voxel size of 0.6 μm,
360° at a rotation step of 0.25°. Two-frame averaging was used to im-
prove the signal-to-noise ratio. The scan time for each sample was
approximately 7 h. Prior to reconstruction, thermal shift in projec-
tion images was corrected in NRecon 1.6.9.4 (Skyscan, Kontich,
Belgium). The slices were then reconstructed in NRecon using a
ring correction factor of 15, smoothing of 1 and 35% beam hardening
correction.

2.4. Morphometrical analysis

2.4.1. Trabecular and positional cortical analysis
Prior to analysis, μ-CT images were re-oriented in DataViewer

1.5.0 (Skyscan, Kontich, Belgium), such that the cross-section
within the transverse plane was perpendicular to the long axis of
the bone. Tibial length was measured in CTAn 1.13.5.1+ software
using a straight line measuring tool and the appearance of the
trabecular ‘bridge’ connecting the two primary spongiosa bone
‘islands’ was set as reference point for analysis of the metaphyseal
trabecular bone adjacent to the epiphyseal growth plate. 5% of the
total bone length from this point (towards the diaphysis) was
utilised for trabecular analysis of the proximal tibia. Cortical bone
was analysed at one point along the bone shaft, at 37% of the total
length (proximal-middle) from the reference starting slice (first
appearance of medial tibial condyles). These areas were chosen in
reference to previously published data on cancellous and cortical
tibial bone [52,56,57]. As bones from different mice varied in
length it was more useful to define a percentage of bone length
for analysis of these regions in order to reduce undersampling/
oversampling effects. The selected trabecular and cortical regions
of interests were analysed using CTAn BatMan software (Skyscan,
Kontich, Belgium) and morphometric parameters were recorded.

2.4.2. Whole bone cortical analysis
Whole bone analysis was performed on datasets derived from

whole CT scans using BoneJ [58] (version 1.13.14) a plugin for
ImageJ [59]. Following segmentation, alignment and removal of
fibula from the dataset, a minimum bone threshold was selected
for each bone to separate higher density bone from soft tissues
and air. The most proximal and the most distal 10% portions of tib-
ial length were excluded from analysis, as these regions include the
trabecular bone. This threshold was used in “Slice Geometry”with-
in BoneJ plugin to calculate cross sectional area (CSA), second mo-
ment of area around minor axis (Imin), second moment of area
around major axis (Imax) and mean thickness determined by
local thickness in 2D (Mean Thick).

2.4.3. NanoCT lacunae and canal analysis
300 consecutive images from the tibia–fibula junctionwere selected

from each specimen. The images were loaded in CTAn software
(Skyscan, Kontich, Belgium). Initially, foreground was segmented from
background and a series of noise removal ‘despeckling’ steps were
performed. Pores smaller than 13 μm3 and larger than 1500 μm3 were
assumed to be noise and canals, respectively and the rest were consid-
ered to be lacunae. Osteocyte lacunar indices included average lacunar
number (N.Lc), average volume (Lc.V), thickness (Lc.Th), separation
(Lc.Sp), connectivity density (Lc.Con.Dnn) as well as canal indices in-
cluding average canal number (Ca.N), average volume (Ca.V), thickness
(Ca.Th), separation (Ca.Sp) and canal connectivity density (Ca.Con.Dnn)
were calculated bymeasuring the 3D parameters of each discreet object
within the volume of interest after segmentation. Shape analysis of the
lacunae was conducted utilizing ‘Analyze Particles’ function in BoneJ.
Shape parameters were then computed for each ellipsoid based upon
the resulting three radii. The best-fit ellipsoid provided lacuna major
radius (Lc.λ1), lacuna intermediate radius (Lc.λ2) and lacuna minor
radius (Lc.λ3), which correspond to the lacuna's principal axes (i.e.
the eigenvalues of the inertial matrix). These values allowed calculation
of the degree of lacunar equancy (Lc.Eq N= Lc.λ3 / Lc.λ1), degree of la-
cunar elongation [Lc.El = 1 − (Lc.λ2 / Lc.λ1)] and degree of lacunar
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flatness [Lc.Fl N= 1 − (Lc.λ3 / Lc.λ2)] [60,61]. The composition of the
structure was then plotted using a Flinn diagram [62] showing
major:intermediate axis ratio on the y-axis and the intermediate:minor
axis ratio on the x-axis.

2.5. Primary osteoblast cultures

Primary calvarial osteoblast cells were isolated from 3 day-old
WT and Phospho1 KO mice [39]. Briefly, excised calvaria underwent
Fig. 3. Cortical bone phenotype of WT (solid) and Phospho1 KO (dashed) tibia at 5, 7, 16 and 34
showing (A) cortical total volume (TV), (B) cortical bone volume/total volume (BV/TV), (C) cor
(F) cortical mean polar moment of inertia, (G) cortical tissue mineral density and (H) represen
graphs represent means ± SEM. Group sizes were n = 6 for 5-, 7- and 16- as well as n = 5 for
sequential enzyme digestion [1 mg/ml collagenase type II (10 min);
1 mg/ml collagenase (30 min); 4 mM EDTA (10 min); 1 mg/ml colla-
genase (30 min)]. The cells were collected from each digest, re-
suspended in α-MEM supplemented with 10% FBS and 50 μg/ml
gentamicin and cultured at 37 °C with 5% CO2 until confluent. For ex-
periments, cells were seeded at a density of 1.5 × 104 cells/cm2. At
confluency (day 0), growth medium was supplemented with
50 μg/ml ascorbic acid (Sigma) and 6 mM calcium chloride for up
to 28 days to induce extracellular matrix mineralisation. The
weeks of age. Ex vivo high-resolution analyses of cortical bone at 37% of total tibial length
tical cross sectional thickness, (D) cortical total porosity, (E) cortical degree of anisotropy,
tative 3D μCT images of tibial cortical bone at 37% tibial length in WT and KOmice. Linear
34-week old WT and KO mice. Statistical comparisons: p b 0.05 WT and KO of same age.
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medium was changed every second/third day and samples collected
at days 0, 7, 14, 21 and 28 of culture.
2.6. Assessment and quantification of mineralisation

Cell monolayers were fixed with 4% paraformaldehyde (PFA) for
5 min at 4 °C. After several washes in PBS, cells were stained with
aqueous 2% (w/v) Alizarin red solution (Sigma) at pH 4.2, for 5 min at
room temperature, before washingwith water, to remove any unbound
stain. The Alizarin red stain was subsequently solubilised in 10%
cetylpyridiniumchloride (Sigma) and theoptical density of the resultant
solution determined at 570 nm by spectrophotometry (Thermo
Multiskan Ascent).
Fig. 4. Cross sectional area (CSA) of WT (black) and Phospho1 KO (grey) tibia at 5, 7, 16 and 34
excluding proximal and distal metaphyseal bone showing cross sectional area at (A) 5 weeks,
sizes were n = 6 for 5-, 7- and 16- as well as n = 5 for 34-week old WT and KO mice. (E) Gra
2.7. Real-time quantitative PCR (RT-qPCR)

RNA was extracted from primary osteoblast cell cultures using an
RNeasymini kit (Invitrogen) according to themanufacturer's instructions.
For each sample, total RNAcontentwas assessed by absorbance at 260nm
and purity by A260/A280 ratios, and then reverse-transcribed. RT-qPCR
was performed using the SYBR green detection method on a Stratagene
Mx3000P real-time qPCR system (Stratagene, CA, USA), or a LC480 instru-
ment (Roche) as previously described. Pdpn primers were purchased
from PrimerDesign Ltd, Southampton, UK (forward AAC AAG TCA CCC
CAA TAG AGA TAA T, reverse CTA ACA AGA CGC CAA CTA TGA TTC).
Sost primers were purchased from Qiagen (sequences not disclosed).
Reactions were run in triplicate and routinely normalised against
Gapdh (PrimerDesign Ltd. Sequences not disclosed).
weeks of age. Whole bone analyses of cortical bone between 10–90% of total tibial length,
(B) 7 weeks, (C) 16 weeks and (D) 34 weeks. Line graphs represent means ± SEM. Group
phical heat map representation of average tibial cross sectional area.
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2.8. Western blotting

The tibial diaphysis from 3 week old WT and Phospho1 KO mice was
snap-frozen in liquid nitrogen and stored at−80 °C. Bones were subse-
quently ground in liquid nitrogen and then homogenised in 500 μl RIPA
buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5% sodium deoxycholate,
0.1% SDS, 50 mM Tris, pH 8.0) (Sigma) containing protease inhibitors
(Roche). Lysates were frozen at−20 °C. Protein concentrations were de-
termined by aDC assay (Bio-Rad, HemelHempsted, UK) and 10 μg of pro-
tein was separated using a 10% bis-tris gel and then transferred to a
nitrocellulose membrane and probed with goat anti-mouse E11
(1:1000, R&D Systems) and goat anti-mouse Sclerostin (1:500, R&D
systems), followed by HRP-linked rabbit anti-goat secondary antibody
(1:3000, Dako, Cambridge, UK), diluted in 5% non-fat milk (Marvel,
Fig. 5.Minimumandmaximumsecondmoments of area (Imin and Imax respectively) ofWT (b
cortical bone between 10–90% of total tibial length, excluding proximal and distalmetaphyseal b
weeks. Line graphs represent means ± SEM. Group sizes were n = 6 for 5-, 7- and 16- as well
Lincs UK). Membranes were washed in TBST and the immune com-
plexes visualised by chemiluminescence using the ECL detection kit
and an ECL film-based technique (GE Healthcare, Amersham, UK).
Equal loading of protein was confirmed by stripping the blot in Restore
Western stripping buffer (Pierce, Rockford, USA) for 30min at 37 °C and
subsequent re-probing with HRP-conjugated anti β-actin antibody
(170000, Sigma). Densitometric analysis was performed using ImageJ
Software (U. S. National Institutes of Health, Maryland, USA).
2.9. Statistical analysis

Statistical analyses were performed using either GraphPad Prism 6
(GraphPad Software, Inc., San Diego, CA) or “R”, version 3.1.1 (R
lack) and Phospho1 KO (grey) tibia at 5, 7, 16 and 34weeks of age.Whole bone analyses of
one showing Imin and Imax at (A, B) 5weeks, (C,D) 7weeks, (E, F) 16weeks and (G,H) 34
as n = 5 for 34-week old WT and KO mice.
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Foundation for Statistical Computing, Vienna, Austria; http://www.
r-project.org). Continuous measurements were summarised as
means ± SEM. Linear model (two-way analysis of variance) was
used to determine the effects of age (5, 7, 16 and 34 weeks) and ge-
notype (WT and Phospho1 KO) and their interaction on all pheno-
typic measurements and normality of residuals was assessed
using the Shapiro–Wilk test. Bonferroni post-hoc correction was car-
ried out for whole bone measurements, whilst no p-value adjustment
was made on the post-hoc comparison for CSA, Imin, Imax and mean
thickness from 10 to 90% tibial length. This was to preserve the original
inferential statistics across the 10–90% tibial length and results were
interpreted cautiously across tibial length. Statistical significance level
was set at 5%.
Fig. 6.Mean cortical thickness of WT (black) and Phospho1 KO (grey) tibia at 5, 7, 16 and 34 w
excluding proximal and distal metaphyseal bone showing mean cortical thickness at (A) 5 w
Group sizes were n = 6 for 5-, 7- and 16- as well as n = 5 for 34-week old WT and KO mice. (
3. Results

3.1. Phospho1 deficiency reduces tibial average strain and stiffness in
young, growing mice and this effect diminishes with skeletal maturation

Spatial strain distributionwas calculated across themedial tibia, based
on the three components of displacement measured by the digital image
correlation (DIC) system; however, Fig. 1 shows only strain in the axial
(loading) direction, as transverse and shear strains both had relatively
low magnitude in comparison. In agreement with previous studies [37,
54], axial compressive loads generated a non-uniform strain field across
the surface of the tibia, with tension on the medial side because of its
curved shape. It was not possible to detect strain distribution in tibiae
eeks of age. Whole bone analyses of cortical bone between 10–90% of total tibial length,
eeks, (B) 7 weeks, (C) 16 weeks and (D) 34 weeks. Line graphs represent means ± SEM.
E) Graphical heat map representation of average tibial mean cortical thickness.

http://www.r-project.org
http://www.r-project.org


Fig. 7. Graphical heat map representation of statistical significance of the effect of geno-
type (Phospho1 deficiency) (G) and its interaction with age (GxA) on CSA, Imin, Imax
and Ct.Th of tibia between 10 and 90% of length. Red p ≤ 0.000–0.001, yellow p ≤ 0.001–
0.01, green p ≤ 0.01–0.05 and blue p N 0.05. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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from 5 week-old Phospho1 KOmice due to their relatively small size (the
cups were too close and the bone was not visible by the cameras, Fig. 1A).

Consistent with previous findings [32,63], patterns of tissue
strain showed that tibiae in Phospho1 KO mice were more compliant
at 5 and less so at 7 weeks of age than corresponding bones in WT
group. However, average patterns of strain appeared to converge
with advancing age, and were very similar in tibiae of WT and
Phospho1 KO at 16 weeks of age (Fig. 1A). Measurement of compres-
sive displacement at varying load magnitudes supported these find-
ings by showing that tibia of Phospho1 KO mice were more
compressible (25%) than WT mice at 7 weeks, under the same load
(Fig. 1B). In contrast, compressive extension in Phospho1 KO tibiae
Table 2
Porosity parameters representing lacuna and vascular porosity of male WT and Phospho1 K
age:genotype interactions. Data represent means ± SEM with group sizes of n = 4 for WT and

Morphometric
index

WT 5 weeks
n = 4

KO 5 weeks
n = 4

WT 16 weeks
n = 4

KO 16 w
n = 4

Bone parameters
Ct.TV (mm−3) 0.085 ± 0.005 0.157 ± 0.002 0.140 ± 0.005 0.180 ±
Ct.Th (mm) 0.089 ± 0.000 0.063 ± 0.002 0.119 ± 0.007 0.114 ±

Canal parameters
N.Ca 74 ± 8.495 282 ± 54.580 62 ± 13.444 136 ±
N.Ca/Ct.TV (mm−3) 895.7 ± 137.35 1928.8 ± 458.01 509 ± 93.76 715 ±
Ca.V/Ct.TV (%) 1.266 ± 0.233 2.375 ± 0.558 1.033 ± 0.302 1.128 ±

Lacunae parameters
N.Lc 1707 ± 234.6 5900 ± 768.9 2930 ± 574.3 5367 ±
N.Lc/Ct.TV (mm−3) 20,483 ± 3327 38,761 ± 5951 25,026 ± 1519 29,336 ±
Lc.V/Ct.TV (%) 0.571 ± 0.103 0.995 ± 0.137 0.665 ± 0.033 0.675 ±
bLc.EqN 0.316 ± 0.011 0.363 ± 0.023 0.367 ± 0.014 0.548 ±
bLc.ElN 0.433 ± 0.031 0.511 ± 0.026 0.346 ± 0.050 0.450 ±
bLc.FlN 0.439 ± 0.014 0.253 ± 0.041 0.426 ± 0.060 0.337 ±
did not differ from WT at 16 weeks (Fig. 1B); both WT and Phospho1
KO mice exhibited a maturation-related reduction in compressive
displacement between 7 and 16 weeks of age and this modification
was more marked in Phospho1 KO mice (Fig. 1B). Thus, in line with
previous studies [32,63] we found that the bone of Phospho1 KO mice
is less stiff during growth and we also show that these differences in
the degree of stiffness appear to be corrected upon attainment of
skeletal maturity.

3.2. Phospho1 deficiency generates age-related defects in trabecular bone,
but produces compromised cortical bone architecture at all ages

To explore whether these genotype-related differences in load-
strain relationships are reflected in bone organisation, we have chosen
specific ‘landmark’ locations along the tibia to analyse both trabecular
and cortical bone architectures [52,56,57]. We find that Phospho1 defi-
ciency results in reduced tibial length in mice at all ages examined
(Fig. 2A; p b 0.05), which was 17, 14, 10, and 11% shorter than WT
tibia at 5, 7, 16 and 34weeks respectively. These data are also consistent
with greater age-related lengthening of tibiae in Phospho1KOcompared
to WTmice. Both age (p b 0.001) and genotype (p b 0.001) affect tibial
length and an interaction between age and genotype is detected
(Table 1; p b 0.05).

μCT based comparison of the tibial trabecular bone compartment re-
vealed significantly higher BV/TV and trabecular number in Phospho1
KO mice at 5 and 34 weeks of age (Fig. 2B; p b 0.05), but no significant
differences in these parameters at either 7 or 16 weeks of age. This,
however, would appear to mask the significantly lower bone volume
in 7 week-old Phospho1 KO mice (p b 0.05) which was not apparent at
either 5 or 34 weeks of age and corresponds with lower total volume
of the metaphyseal trabecular compartment in Phospho1 KO than in
WT mice at all ages (p b 0.05). There were no significant differences in
trabecular thickness between WT and KO bones but, as expected, this
increased with age (p b 0.001, Appendix 1). Trabecular connectivity
density (Fig. 2F) was significantly greater in Phospho1 KO mouse tibiae
at 5 (p b 0.05) and somewhat elevated at 34 weeks, but no differences
were apparent between KO and WT bones at 7 or 16 weeks of age.

Multiple comparisons across all groups revealed significant effects of
Phospho1 deficiency on trabecular total volume, number and connectiv-
ity density (p b 0.001; b0.05 and b0.01 respectively, Table 1) and signif-
icant interaction between genotype and age in trabecular number,
connectivity density (p b 0.01; Table 1), trabecular separation and ec-
centricity (p b 0.05; Appendix 1). Together these analyses reveal that
Phospho1 deficiency leads to the elaboration of a smaller metaphyseal
trabecular area at all ages, reduces BV at only some ages, and results in
O mice at 5, 7, 16 and 34 weeks of age, detailing post-hoc comparisons for significant
Phospho1 KO mice from different ages.

eeks WT 34 weeks
n = 4

KO 34 weeks
n = 4

Effect of
genotype

Effect
of age

Interaction
age ∗ genotype

0.012 0.117 ± 0.009 0.132 ± 0.022 b0.01 b0.01 NS
0.011 0.144 ± 0.007 0.124 ± 0.003 b0.01 b0.001 NS

44.434 20 ± 4.366 63 ± 22.595 b0.001 b0.01 b0.05
185.91 164 ± 34.26 430.6 ± 92.88 b0.05 b0.001 NS
0.228 0.142 ± 0.045 0.546 ± 0.141 b0.05 b0.001 NS

740 789 ± 373 2197 ± 573 b0.001 b0.001 NS
2282 6276 ± 2830 15,917 ± 1629 b0.01 b0.001 NS
0.142 0.157 ± 0.060 0.404 ± 0.060 b0.05 b0.001 NS
0.196 0.394 ± 0.074 0.368 ± 0.023 NS NS NS
0.043 0.527 ± 0.049 0.491 ± 0.023 NS b0.05 NS
0.038 0.356 ± 0.024 0.267 ± 0.070 b0.01 NS NS
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greater trabecular number at other ages, compared with WT mice.
These data indicate that Phospho1 deficiency leads to a defect in whole
bone structure below the metaphyseal growth plate where age-
related trends in trabecular architecture differ between the WT and
Phospho1 deficient bones.

A previous study reported reduced cortical mineral density and oste-
oid accumulation in the cortical bone of Phospho1 KO mice compared
with WT [32]. Our examination of the cortical bone at 37% of the total
tibia length in Phospho1 KO and WT mice shows that cortical bone
volumewasnotmodified by Phospho1deficiency at anyof the ages stud-
ied; post-hoc analysis did, however, reveal expected age-related trends
(p b 0.001; Fig. 3A). Age-related trends were also evident in TV (p b

0.001; Appendix 1) but this did not appear to be modified in Phospho1
KO mice. In contrast, bone volume/total volume was significantly
lower in bones of Phospho1 KO mice older than 5 weeks (7, 16 and 34
weeks; Fig. 3B; p b 0.05). Thus, genotype (p b 0.001; Table 1) and age
(p b 0.001; Table 1) both affected BV/TV but these did not exhibit inter-
action, supporting an age-independent effect of Phospho1 deficiency.

Cortical cross sectional thickness was significantly lower (p b 0.01;
Fig. 3C) in Phospho1KOmice at all ages, except at 34weeks. Furthermore,
both genotype and age affected cortical thickness (p b 0.001) but no in-
teraction was found. Cortical total porosity was significantly higher in
Phospho1 KO bones at 7, 16 and 34weeks (p b 0.001; Fig. 3D) and no in-
teraction between genotype and age was detected. Moreover, our data
show that Phospho1 deficiency did not affect cortical bone area at any
age (Fig. 3E). No differences in mean polar moment of inertia were
observed in Phospho1 KO mice at 5 or 7 weeks but levels were higher
compared to WT at 16 weeks and lower at 34 weeks (p b 0.05;
Fig. 3F). Thus, cortical analysis at this particular location along the tibial
shaft suggested that Phospho1 deficiency compromised cortical
microarchitecture and leads to greater cortical porosity at all ages. Fur-
thermore, our data show that TMD was significantly lower at 5 and
7weeks in Phospho1deficientmice (p b 0.05; Fig. 3G) but no differences
were observed at 16 and 34 weeks of age.
Fig. 8. A) Flinn diagram displaying lacunar shapes in WT and Phospho1 KO tibia at tibia–
fibula junction from various ages. The x axis represents lacunar flatness which was calcu-
lated by dividing lacunar intermediate radius (l2: length of best-fit ellipsoid's intermediate
radius) with lacunar minor radius (l3: length of best-fit ellipsoid's minor radius). The y
axis represents lacunar elongation which was calculated by dividing lacunar major radius
(l1: length of best-fit ellipsoid'smajor radius)with lacunar intermediate radius (l2: length
of best-fit ellipsoid's intermediate radius). Data representmeanswith group sizes of n=4
forWT and KOmice from different ages. B) Surface representation of the lacunar (yellow)
and red (vascular porosity) segmented from 300 consecutive images from tibia–fibula
junction from both genotypes and each age. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
3.3. Phospho1 deficiency produces age-related architectural changes in
gross tibial anatomy and generates marked structural anomalies not
observed by conventional analysis

To determinewhether these cortical bone deficiencies at this particu-
lar location in Phospho1 KO mice were generalised along the tibial shaft,
we undertook whole-bone cortical analysis. We excluded the first and
last 10% of total length, where there was significant trabecular bone vol-
ume, and removed the fibula by manual segmentation. Medians of the
residuals normality test p-values along the % tibial length were 0.477,
0.157, 0.104 and 0.111 for CSA, Imin, Imax and Ct.Th, respectively.

Our examination found that cross-sectional area (CSA) was signifi-
cantly higher in KO compared to WT tibiae near the distal tibia at all
ages (Fig. 4; 60–90%). In contrast, CSA was lower in proximal regions
(Fig. 4; ~20–35%) in 7 and 34 week old Phospho1 KO mice. Despite
this, no significant interaction between age and genotypewas detected.

To provide an estimate of tibial resistance to bending forces, we also
calculated the second moment of area around minor (Imin) and major
axes (Imax). These data show that Imin and Imax in Phospho1 KO tibiae
deviate fromWT patterns and are significantly greater toward the distal
tibia at all ages; no genotype: age interaction was detected (Fig. 5). In
contrast, Imax is lower in proximal regions of the tibia of Phospho1 KO
mice. Together, CSA, Imin and Imax indicate that Phospho1 deficiency
produces tibial architecture likely reflecting regionalised changes in
bending resistance at all ages, which is lower in proximal regions in 7
and 34 week-old mice and greater in the distal third at all ages (Fig. 7).

Phospho1 KO mice also exhibited lower cross sectional thickness in
almost all tibial regions at 5, 7 and 16 weeks, but did not differ from
WT at 34 weeks of age (Fig. 6). Comparison across ages reveals that
this lack of difference at 34 weeks is primarily due to greater decline
in thickness with maturation/ageing in WT than in KO tibiae. These di-
vergent age-related changes in cortical thickness in Phospho1 KO tibiae
contribute to significant age:genotype interactions (at locations along
almost all the tibial length; Fig. 7). In addition to revealing greater utility
of such whole bone analyses (that measurement at one location, 37%,
may not necessarily always be representative), these data demonstrate
that Phospho1 deficiency produces proximodistally, regionalised modi-
fications in indices of bending strength and cortical architecture, and
leads to age-related changes in cross sectional thickness along the tibial
length which diverge from WT.

3.4. Phospho1 deficiency increases lacunar and vascular bone porosity

Regional control of bone architecture is thought to involve integra-
tion with the mechanical milieu by osteocytes and the process of
mineralisation has been linked to osteocytogenesis [38,39]. We
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therefore sought to determine whether Phospho1 deficiency modifies
osteocyte organisation, as well as vascular porosity, by measuring 3D
morphometric parameters in high resolution images. Consistent with
earlier analyses, we confirmed both lower TV and cortical thickness in
Phospho1 KO tibiae at all ages (Table 2). Our morphometric evaluation
of the cortical bone at the tibia–fibula junction shows that porosity (or
lacunar space) is greater in Phospho1 KO than in WT bones, containing
significantly greater numbers of osteocyte lacunae (N.Lc; p b 0.001;
Table 2) with significantly greater volume (Lc.V; p b 0.001; Table 2).
Whilst age also significantly impacts upon osteocyte lacunar number
and volume, no interaction with genotype was observed. Intriguingly,
analysis of lacunar shape showed that Phospho1 KO bone contained os-
teocytes occupying somewhat elongated lacuna with significantly
lower levels of lacunar flatness (Lc.El; p b 0.01). Based on these data,
we have constructed a Flinn diagram [62] (Fig. 8) which shows that
lacunar elongation and flatness were also both significantly affected
post-maturation, but no age-related interactionwith Phospho1deficien-
cy was evident. Whilst Phospho1 deficiency did not significantly alter
lacunar equancy (Lc.Eq) in any age, relationships between lacunar elon-
gation and flatness are plotted (Fig. 8) and support divergence in osteo-
cyte shape in Phospho1 deficient bone.

Greater porosity in Phospho1 KO bonewas also consistentwithmea-
sures of vascular porosity, in which significantly higher canal number
Fig. 9. Characterisation of primary osteoblast-like cells isolated from WT and Phospho1 KO mic
mRNA expression levels and (E) Western blots of E11 and sclerostin. For in vitro culture studie
per study). For Western blots (E) data represent means ± SEM with group sizes of n = 4 for W
(N.Ca; p b 0.001 Table 2), density (N.Ca/Ct.TV; p b 0.05; Table 2) and
volume (normalised by cortical tissue volume; Ca.V/Ct.TV; p b 0.05;
Table 2) were evident in Phospho1 KO bones. There was significant
age-related decline in each of these parameters, and canal number
showed significantly (p b 0.05) greater decline in Phospho1 KO bone.
These data indicate that the lower tissue volume and reduced cortical
thickness at the tibia–fibula junction of Phospho1 deficient mice are
closely associated with increased porosity characterised by significant
increases in the number of osteocytic lacuna and vessels.
3.5. Phospho1 KO osteoblasts produce a hypomineralised matrix and show
distinct osteocyte differentiation kinetics

To explore whether these structural modifications and greater oste-
ocyte lacunar numbers might reflect inherent characteristics of osteo-
blasts undergoing mineralisation in the absence of Phospho1, we
examined the behaviour of primary osteoblasts fromWT and Phospho1
KOmice. Initial phenotypic characterisation of primary osteoblasts dem-
onstrated significantly lower levels of matrixmineralisation in Phospho1-
deficient primary osteoblast cultures than WT by days 21 and 28 of cul-
ture (p b 0.001; Fig. 9A/B). Despite reduced matrix mineralisation of
Phospho1 KO osteoblasts, RT-qPCR analysis showed that mRNA levels of
e to determine (A) mineralisation of cells, (B) E11/Pdpn mRNA expression levels, (D) Sost
s (A, B, C and D) results are the means ± SEM of three independent experiments (n = 4
T and KO mice.



288 B. Javaheri et al. / Bone 81 (2015) 277–291
E11/Pdpn, the early osteocyte marker, were significantly increased (vs
WT) at time points beyond day 7 (p b 0.05; Fig. 9C), suggesting that
osteoblast-to-osteocyte transition is nonetheless accelerated in the ab-
sence of PHOSPHO1. Phospho1 KO osteoblast cultures also exhibited in-
creased mRNA expression for Sost, a late osteocyte marker from day 7,
and faster decline in these levels at day 28, compared to WT (p b 0.001;
Fig. 9D). Western blot analysis of protein extracted from the tibia of
3 week old mice confirmed decreased sclerostin protein expression in
Phospho1 KO tibia in comparison to WT bones (p b 0.05; Fig. 9E). These
data suggest that Phospho1 exerts inherent effects on osteoblast charac-
teristics and influences the osteocytogenic programme.
4. Discussion

Our data indicate that tibiae of Phospho1KOmice are less stiff during
growth but rectified by skeletal maturation.Whole bone analyses show
that Phospho1 deficiency lowers proximal indices of bending resistance
at only some ages, but that levels are consistently higher in distal
regions at all ages. This is supported by data showing that Phospho1 de-
ficiency generates different age-related trends in whole bone structure
below the growth plate in WT and Phospho1 deficient bones, and com-
promised cortical microarchitecture with greater porosity at all ages.
Our data reveal that modified Phospho1 deficient bone morphology
also encompasses marked alterations in osteocyte shape and significant
increases in osteocytic lacuna and vessel number. The prospect that this
is due to inherent deficits in osteoblast behaviour is bolstered by our
data showing that primary Phospho1 deficient osteoblast-like cells ex-
hibit lower levels of matrix mineralisation andmodified osteocytogenic
programming in vitro.

Bone mineralisation is an essential and carefully controlled process
for skeletal function and is regulated by both promoters and inhibitors
of matrix mineralisation [64,65]. Biomineralisation is dependent on
PPi/Pi homeostasis which is regulated by the actions of TNAP [10,20,21,
66,67], NPP1 [11,12], ANK [13,14] and PHOSPHO1. Our knowledge of
the involvement of these proteins in the regulation of biomineralisation
and skeletal maintenance with maturation/ageing is incomplete.
Furthermore, earlier studies did not extensively investigate the role of
Phospho1 in age-relatedmaintenance of bone architecture andmechan-
ical properties post-maturation.

A previous study reported that Phospho1 deficiency resulted in in-
creased trabecular number and decreased trabecular space in tibia
[31]. This reported gain in trabecular bone mass was, in further studies,
ascribed to a structural support role rectifying for the observed weaker
(thinner and more porous) cortex [32]. However, this apparent com-
pensation does not match with mechanical properties and greater inci-
dence of greenstick fracture observed in Phospho1 KO mice, nor does it
provide an explanation for why the effects of Phospho1-deficiency differ
in the trabecular and cortical compartments. Herein, we extensively
investigate the role of Phospho1 deletion on bone architecture with
ageing.

In agreement with a previous study [32,54] our DIC and load-
deformation data showed that at younger age, Phospho1 KO tibia was
less stiff and was more compressible (25%) than WT bones; this effect
was however diminished in 16-week-old skeletally mature mice, sug-
gesting an age-dependent role on mechanical properties of Phospho1.
As described previously [31–33], Phospho1 deficiency results in a
lower accumulation of mineral in bones, that consequently, lowers stiff-
ness resulting in amore deformable bone. Thismore ductile bone is con-
sistentwith the protection of long bones from Phospho1KOmice against
fracture during 3-point bending (36). This greater deformability in
Phospho1 KO mice is supported by the bowing of long bones from an
early juvenile age and by fractures exhibiting predominantly green-
stick presentation [31]. Althoughwe have not tested bending properties
ofmice at 34weeks of age, our data suggest that PHOSPHO1 serves a rel-
atively limited role in the biomechanics of themature skeleton and that
biomechanical deficiencies due to the absence of PHOSPHO1 during
growth and development are eventually corrected (in later life) by al-
ternative mechanisms. Whether differences in cortical porosity and
polar moment of inertia, evident at 34 weeks, will be retained when
mice become even older remains to be elucidated in future studies.
The mechanism(s) for these age-related corrections in average strain
and stiffness are unclear but alternative mineralisation mechanisms
clearly exist as the complete ablation of PHOSPHO1 function only
leads to a decrease in the calcification ability ofMVs but not to a complete
lack of calcification [31,32]. It is feasible that whilst the generation of Pi
within MVs through the actions of PHOSPHO1 is optimum for rapid
and timely ECMmineralisation in early growth of the skeleton, this pro-
cess can be mimicked, through time, by the influx of TNAP generated ePi
into MVs via the phosphate transporter, PiT1 [3] in later life.

Our previous studies have also disclosed that the impaired ECM
mineralisation noted in Phospho1 KO mice may be in part explained
by elevated osteopontin but not PPi levels. Indeed, the ablation of osteo-
pontin improves the skeletal phenotype of Phospho1 KO mice [68].
Whether differences in osteopontin expression between young and
older PHOSPHO1 deficientmice can explain the correction in bone phe-
notype with age is unknown and requires further examination.

Our positional μCT analysis indicates, in agreement with a previous
study [31], that Phospho1 deficiency resulted in increased trabecular
number, despite relative reductions in trabecular separation not
reaching statistical significance. This observation without considering
other structural parameters, such as BV and TV, suggests that Phospho1
acts as a negative regulator of trabecular bone and hence in its absence,
more trabeculae are formed. Alternatively, it is possible that greater
bone formation occurs in order to compensate for the bone's relatively
hypomineralised status. In this study, we report that despite smaller
proximal metaphyseal volume in KO group in all ages, BV was similar
to WT mice at 5 and 34 weeks of age and therefore increased BV/TV at
these ages is a reflection of smaller trabecular total volume. Moreover,
in agreement with Yadav et al. [9] cortical thickness was lower at
5 weeks and here we report that this effect is maintained through
growth and adulthood but disappears in post-maturation group. In con-
trast, total cortical porosity was not different at 5 weeks but consistently
higher in KO genotype in post-maturation groups. This type of positional
analysis of both trabecular and cortical compartments suggests a transi-
tory role of PHOSPHO1 in the maintenance of the trabecular bone and a
more consistent role in cortical compartment.

The deficiencies observed using conventional analysis provided in-
formation about the effect of Phospho1 deficiency in a short segment
of the cortical bone. Non-biased whole-bone analysis revealed that the
changes described at 37% of the tibial lengthwere not necessarily repre-
sentative of changes elsewhere in the bone. Several parameters of bone
strength were measured. The estimated strength and rigidity of the
bone can be determined through the study of the bone's cross sectional
geometry which includes cortical cross sectional area (CSA) and second
moments of area. CSA is directly related to a bone's strength against
compressive forces applied equally throughout the bone; factors such
as bone shape and the effects of muscle contraction however result in
long bones experiencing bending and torsional forces. Herein indices
of rigidity, including maximum and minimum resistance against bend-
ing forces in the cross section, second moment of area around minor
axis (Imin) and second moment of area around major axis (Imax)
[69], were also measured in WT and Phospho1 KO bones at all ages.
Our data from this approach reveal greater CSA, Imin and Imax
throughout the distal third (~60–90%) of the tibia from Phospho1
KO mice. In contrast, Phospho1 deficiency lowered CSA in regions of
the cortex closer to the proximal end of the tibia. These contrasting
differences between the effect of Phospho1 deficiency on the proxi-
mal and distal compartments of the tibia may indicate differential
role for Phospho1 during bone development, growth and skeletal ma-
turity or that responses in these regions differ due to their relative
undermineralisation.
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Previous studies have described the relationship between osteocytes
and their lacunae in humans and non-humans with mineralisation sta-
tus; however, the quantification of 3D osteocyte density andmorpholo-
gy has always been problematic due to the relatively small number of
osteocyte lacunae which cannot be visualised readily using traditional
techniques including confocal microscopy. Large-scale analyses of oste-
ocyte lacunar parameters in 3Dwill provide clarification on the relation-
ship betweenmineralisation and osteocyte density in vivo. A number of
previous studies [70–72] found no correlation between lacunar density
and bone formation, architecture or resorption. In contrast, many other
studies suggested that age [73], mechanical environment [51,74], diet
[75,76] and glucocorticoid treatment [77] significantly affect lacunar
morphology and density. It has also been reported that modification of
loading environment leads to significant reduction in lacunar density
[78]. Furthermore, Vashishth et al. [79] found positive correlations
between both cortical and cancellous bone mass accrual and lacunar
density. These inconsistent correlations between lacunar density and
structural parameters indicate that variation in lacunar density may
not be the major determinant of bone quality, although further in
depth studies are needed to confirm these observations. Herein, we re-
port that Phospho1 deficiency significantly increases lacunar density and
this effect remains after maturation. Furthermore, a similar observation
was made with regard to vasculature content. These data suggest that
osteoblast-to-osteocyte transition may be accelerated in the absence of
PHOSPHO1. This acceleration is consistent with our in vitro observations
inwhich osteoblasts from Phospho1-deficientmice exhibit elevated levels
of E11/Pdpn mRNA (the early osteocyte marker) at initial stages, yet re-
duced levels of Sost mRNA (a mature osteocyte marker) at later stages
of culture. The increase in E11/Pdpn mRNA levels in vitro was not ob-
served at protein levels ex-vivo, presumably due to its transitory elevation,
however, more stable reduction in Sost mRNA expression in vitro was
confirmed at protein level in bones from Phospho1 KO and WT mice.
These data suggest that PHOSPHO1 negatively regulates osteocytogenesis
and vascular porosity and in its absence both of these processes are
upregulated.

Moreover, we analysed lacunar morphology to dissect the possible
role of Phospho1 in regulation of lacunar shape. Using confocal micros-
copy,McCreadie et al. reported that lacunar shape or sizewas not differ-
ent between older women,with andwithout osteoporotic fracture [80].
In contrast, using high-resolution nanoCT, van Hove et al. suggested
that osteocytemorphology in the subchondral cortical bone of the later-
al articular surface of the proximal tibia obtained from osteoarthritic,
osteopenic, and osteopetrotic patients was significantly different,
which the authors attributed to their disease state [81]. Herein, we re-
port that Phospho1 deficiency alters lacunar shape with lacunae from
KO mice exhibiting a more elongated shape compared to flat lacunae
from the WT group. The shape of these osteocyte lacunae in WT
mouse bone only drifted towards those shapes evident in the Phospho1
KO mice once maturation had been reached.

Together our data suggest that deficiency in PHOSPHO1 exerts mod-
ifications in bone architecture that are transient and depend upon age,
yet produces consistent modification in osteocyte differentiation and
vascular porosity. It is possible that the inhibitory role of PHOSPHO1
on osteocyte differentiation leads to these age-related changes in bone
architecture. It is also intriguing to note that this apparent acceleration
in osteocyte differentiation evident in the hypomineralised bones of
Phospho1 KO mice suggests an uncoupling of the interplay between
osteocytogenesis and biomineralisation. Further studies are required
to dissect the molecular processes underlying the regulatory influences
exerted by PHOSPHO1 on the skeleton with ageing.
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