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Abstract 

Context: Fetal ovarian development and primordial follicle formation underpin future female fertility.  

Prokineticin (PROK) ligands regulate cell survival, proliferation and angiogenesis in adult 

reproductive tissues including the ovary. However, their expression and function during fetal ovarian 

development remains unclear.   

Objective: To investigate expression and localization of the PROK ligands, receptors and their 

downstream transcriptional targets in the human fetal ovary. 

Setting: This study was conducted at the University of Edinburgh. 

Participants: Ovaries were collected from 37 morphologically normal human fetuses. 

Design and Main Outcome Measures: mRNA and protein expression of PROK ligands and 

receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting and 

immunohistochemistry.  Functional studies were performed using a human germ cell line stably 

transfected with PROKR1. 

Results: Expression of PROK1 and PROKR1 was significantly higher in later gestational ovaries (17-

20 weeks) than at earlier gestations (8-11 and 14-16 weeks).  PROK2 also significantly increased 

across gestational age.  PROKR2 expression remained unchanged.  PROK ligand and receptor 

proteins were predominantly localised to germ cells (including oocytes within primordial follicles) 

and endothelial cells, indicating these cell types to be the targets of PROK signalling in the human 

fetal ovary.  PROK1 treatment of a germ cell line stably-expressing PROKR1 resulted in ERK 

phosphorylation, and elevated COX2 expression.   

Conclusions: Developmental changes in expression and regulation of COX2 and pERK by PROK1 

suggest that PROK ligands may be novel regulators of germ cell development in the human fetal 
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ovary, interacting within a network of growth and survival factors prior to primordial follicle 

formation.  

 

Introduction 

During fetal life, the germ cell complement of the ovary goes through a series of complex processes, 

initiating with germ cell specification and migration into the gonad, followed by proliferation and 

entry into meiosis, and culminating in the formation of primordial follicles (1).  Proper development 

of the ovary and primordial follicles defines a female’s future reproductive capacity (2), failure of 

which could lead to premature ovarian insufficiency (POI) or infertility.  These dynamic 

developmental events are regulated by the germ cell niche, a milieu of autocrine, juxtacrine and 

paracrine factors of both germ cell and somatic cell origin that govern the balance between germ cell 

proliferation and development, or cell death (3).  Although some of the regulators involved in the 

germ cell niche have been identified (4), the overall mechanisms governing fetal ovarian development 

remain unclear. 

 

Prokineticin (PROK)1 and PROK2 (85 and 81 aa respectively) are peptide regulators of angiogenesis 

and inflammation (5).  The PROK ligands share 85% homology and signal interchangeably via two 

G-coupled protein receptors, PROK receptor 1 and 2 (PROKR1 and PROKR2) to activate the MAP 

kinase and STAT signaling pathways (6,7).  PROK ligands promote proliferation, differentiation and 

survival in both endothelial and immune cells, and have well defined functions in the vascular and 

gastrointestinal systems (8,9).  

 

PROK ligand expression is highest in endocrine tissues including the reproductive organs, (10,11), 

however the role(s) of PROK signalling in the ovary and testis remains unclear.  PROK ligands are 

expressed by the interstitial cells of the fetal testis (10), the granulosa cells of primordial and primary 
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follicles, and in the corpus luteum of the adult ovary (12,13), wherein PROK1 is hypothesized to 

regulate cellular remodeling.  Genome-wide studies of gene expression during human fetal ovarian 

development have demonstrated increased expression of PROK1 in the fetal ovary compared to the 

testis (14), and an increase in PROK2 in the human fetal ovary with gestation (15), suggesting 

possible roles for PROK1 and PROK2 during fetal ovarian development.   In addition, the PROK 

ligands regulate the expression of several factors thought to be involved in ovarian development 

including the interluekin-6 (IL6)-type cytokine Leukaemia Inhibitory Factor (LIF), and 

cyclooxygenase-2 (COX2), which catalyses the formation of prostaglandins from arachadonic acid 

(11,16), all of which are expressed by the human fetal ovary.  Further investigation of the localization 

and function of the PROK receptors in the fetal ovary has yet to be performed.   

 

We investigated the expression and function of components of the PROK signalling pathways during 

human fetal ovarian development.  The expression of the PROK ligands and their receptors was 

characterised during key stages of ovarian development leading up to primordial follicle formation, 

and functional studies on the role of PROK signalling in regulating gene expression undertaken using 

a human germ cell tumour line (TCam-2 cells (17)) stably transfected with the PROKR1 receptor  

(21,24). 

Materials and Methods 

Tissue collection 

Human fetuses (8–20 weeks gestation (by ultrasound and foot length; based on last menstrual period)) 

were obtained following medical or surgical termination of pregnancy. Informed consent was given 

and the study approved by the Lothian Research Ethics Committee (LREC 08/S1101/1). All 

specimens were morphologically normal. Gonads were dissected and mesonephric tissue removed. 

Sex of 8-12 week specimens was determined by SRY PCR genotyping (18). Ovaries were snap frozen 

at −80° C or fixed in Bouin's solution.  Separate specimens were utilized for qRT-PCR, western 
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blotting, and immunohistochemical staining as described below, with a total of 37 specimens utilized 

for this study (8-12 week tissues (n=9), 14-16 weeks (n=13), 17-20 weeks (n=15)). 

RNA extraction and cDNA synthesis 

Total RNA was extracted using RNeasy Micro Kit (Qiagen, Crawley, UK) with on-column DNaseI 

digestion as per the manufacturer's instructions. First-strand cDNA synthesis was performed using 

Superscript VILO Master Mix (Life Technologies, Paisley, UK) according to the manufacturer's 

instructions. Duplicate negative control reactions in which the reverse transcriptase enzyme was 

omitted were also performed.  

Quantitative RT-PCR 

Quantification of mRNA expression relative to a housekeeping gene was performed using 

PowerSYBR Green Master Mix and the ABI7500Fast system (both Life Technologies).  

Quantification was performed as described previously (19). Primer sequences utilized for this study 

are detailed in Table I.   

Immunohistochemistry 

Ovarian sections (5 μm) were mounted on microscope slides (VWR, Radnor, PA, USA), dewaxed and 

rehydrated.   Immunohistochemistry was performed as described previously (19) using rabbit anti-

human PROK1 (1:250; Phoenix Pharmaceuticals, CA, USA), PROKR1 (1:100, MBL, MA, USA), 

PROKR2 (1:50, MBL) or goat anti-human PROK2 (1:50, Santa Cruz, CA, USA).  Primary antibody 

was detected using a goat anti-rabbit biotinylated secondary antibody (1:500, Vector Labs, CA, USA) 

or a rabbit anti-goat biotinylated secondary antibody (1:500, Dako, Glostrup, Denmark).  Antibody 

was visualised using streptavidin-horseradish peroxidase (Vector) and 3,3-diaminobenzidine (DAB, 

Dako).  The primary antibodies used in this study are not known to cross react, and negative controls 

in which the primary antibody was omitted were performed in parallel to determine any non-specific 

http://molehr.oxfordjournals.org/content/18/2/88.long#T1
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staining. Images were captured using an Olympus Provis microscope (Olympus Optical Co., London, 

UK) equipped with a Kodak DCS330 camera (Eastman Kodak Co, Rochester, NY). 

Production of a hPROKR1 expression vector 

The open reading frame of human PROKR1 was amplified from pcDNA2-humPROKR1 (11,16) by 

PCR using primers attb1 and attb2, to add a Kozak sequence and prolactin signal peptide in-frame 

upstream of the PROKR1 sequence, creating attb1-Prl-humPROKR1-attb2.  Gateway cloning sites 

within the attb1 and attb2 primers enabled Gateway shuttling of the PCR product into the pLenti6-

cppt-CMV-DEST-opre vector, to create pLenti6-cppt-CMV-Prl-hPROKR1-opre (referred to hereafter 

as pLenti6-hPROKR1).  Primer sequences were: attb1: 5’-

ggggacaagtttgtacaaaaaagcaggctcaccatggacagcaaaggttcgtcgcagaaagggtcccgcctgctcctgctgctggtggtgtcaaa

tctactcttgtgccagggtgtggtctccgcgccaatggagaccaccatggggttcatggatgacaatgccacc-3’ and attb2: 5’-

ggggaccactttgtacaagaaagctgggtatcttattttagtctgatgcagtccacctc-3’. 

Cell culture, treatments and generation of TCam-2 cells stably expressing PROKR1 

TCam-2 cells (a kind gift of Dr. Leendert Looijenga (20)) were cultured as previously described (21).  

To generate stably transfected cells, TCam-2 cells were plated at ~70% confluency in a 10 cm dish 

and and transfected with 5 µg pLenti6-hPROKR1, using TransIT –LT1 (Mirus Bio, WI, USA) reagent 

according to manufacturer’s instructions.  Stable transfectants  were selected using Blastacidin (10 

µg/ml, Invivogen, CA, USA). Selection was maintained for routine culture, but removed for treatment 

with PROK1.  PROKR1 transfected Ishikawa cells, cultured as previously reported (11), were utilized 

as a positive control.  

For identification of downstream targets, stably transfected PROKR1-TCam-2 cells (PROKR1-

TCam-2 cells) were treated with vehicle (dH20) or 40nM recombinant human PROK1 (Peprotech, NJ, 

USA, dissolved in dH2O) with cells harvested at various timepoints in RLT buffer (Qiagen) prior to 

RNA extraction. 
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Western blotting 

Protein samples were isolated in RIPA buffer post-treatment and quantified by Bradford Assay (Bio-

Rad, Hercules, CA, USA).  15-30µg lysate was denatured in SDS loading buffer containing 2-

mercaptoethanol (Sigma-Aldrich, Poole, UK) and separated on 12% Tris-HEPES-SDS gel (for 

PROKR1 detection) or 4-20% gradient SDS gels ((pERK detection) Thermo Scientific, 

Loughborough, UK).  Proteins were transferred onto Immobilon-FL PVDF membranes (Millipore, 

Watford, UK) using Semi-Dry Fast Transfer Buffer (Thermo Scientific) on a Fast Semi-Dry Transfer 

Blotter (Thermo Scientific).  Membranes were blocked with Li-Cor blocking buffer (Odyssey, 

Cambridge, UK) and incubated with primary antibodies for pERK (1:2000, Cell Signalling, MA, 

USA), PROKR1 (1:2500, MBL) or -tubulin (1:10,000, Sigma-Aldrich).  Corresponding secondary 

antibody was utilized; anti-rabbit IgG conjugated to Alexa Fluor 680 (1:10000 Invitrogen Life Tech) 

or anti-mouse IgG conjugated to IRDye 800 (1:10000 Rockland), followed by scanning on a Li-Cor 

Infra-Red Imaging System (Odyssey, Lincoln, NE, USA).  Densitometry was performed using ImageJ 

software.  

Proliferation assay 

Sulforhodamine B (SRB, Sigma-Aldrich) colorimetric assay was utilised to determine cell density.  

PROKR1-TCam-2 cells were plated at 2,000 cells per well in a 96-well plate and fixed at varying 

timepoints post PROK1 treatment as described with 20% trichloroacetic acid (Sigma-Aldrich).  

Cellular proteins were stained with 0.04% SRB (vol:vol) in 1% acetic acid (Sigma-Aldrich).  After 

staining SRB was resuspended in 10 mM Tris and cell density quantified at 505 nm. 

Statistical Analysis 

Gestational qRT-PCR and pERK densitometry data were analysed by ANOVA with the Newman–

Keuls post-test for statistical significance.  qRT-PCR data post PROK1 treatment of PROKR1-TCam-

2 cells were analysed using paired t-tests with GraphPad Prism 5.0 software. 
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Results 

PROK signalling components are developmentally regulated in the human fetal ovary 

The presence and pattern of expression of transcripts encoding PROK signalling components during 

human fetal ovarian development was investigated by qRT-PCR for the PROK ligands (PROK1 and 

2) and receptors (PROKR1 and 2) across a range of gestations (from 8-20 weeks).  Ovarian specimens 

were grouped into three gestational stages broadly to reflect key developmental events; the 

proliferation of undifferentiated PGCs (8-11 weeks gestation), the formation of germ cell nests and 

initial entry of germ cells into meiosis (14-16 weeks) and on-going meiotic entry and the onset of 

primordial follicle formation (17-20 weeks) (22,23). 

Transcripts encoding PROK ligands and receptors were expressed in the human fetal ovary across all 

gestations investigated.  Expression of PROK1 increased significantly in 17-20 week ovarian tissue 

compared to both 8-11 (4.9 fold) and 14-16 weeks (2.4 fold, p=0.02 and 0.05 respectively, n=5-7 

samples per group, Figure 1A).  PROK2 expression also increased with increasing gestation, with 

transcript levels 12- and 24-fold higher in the 14-16 and 17-20 week, compared to 8-11 week fetal 

ovaries  (p=0.02 and p=0.0001 respectively, Figure 1B).  PROKR1 displayed a similar expression 

pattern to that of PROK1, with a significant increase specifically in 17-20 week tissue in comparison 

to both 8-11 (2.4 fold) and 14-16 week fetal ovaries (2.3 fold, p=0.008 and 0.007 respectively, Figure 

1C).  Conversely, no gestational change in expression was determined for PROKR2 (Figure 1D).   

PROK ligands localised to the germ cell nests in developing human fetal ovaries 

The extent and localisation of PROK ligand protein expression was established using 

immunohistochemistry on sections of human fetal ovaries isolated from fetuses across a range of 

gestations.  Expression of PROK1 and PROK2 was not detected in early tissues (8-12 weeks, data not 

shown), but was readily detected in fetal ovaries after 14 weeks gestation.  PROK1 expression was 

germ cell-specific, with pairs or groups of germ cells staining intensely compared to other germ cells 

within the same nest (Figure 2A-B).  This expression pattern was seen throughout later gestational 
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tissues (14-19 weeks, n=3), with primordial follicles also demonstrating PROK1 expression (Figure 

2B inset).  PROK2 expression appeared much weaker than that of PROK1, with expression seen in 

germ cell nests, including both germ and pre-granulosa cells (Figure 2C-D).  This expression pattern 

was consistent across later gestation (14-19 weeks, n=3), although definitive staining in primordial 

follicles was not seen.  

PROK receptors are expressed by germ cells of the fetal ovary 

To determine the targets of PROK action in the human fetal ovary, the PROK receptors were also 

investigated via immunohistochemistry.  As with the PROK ligands, the PROK receptors were not at 

detectable levels in early tissues (8-12 weeks, data not shown).  However, both receptors were 

detectable in later gestations (14-19 weeks, n=3).  PROKR1 was strongly expressed by the germ cells 

of the fetal ovary, with no staining seen in somatic cells surrounding germ cell nests or in negative 

control tissue (Figure 2E and inset). The endothelial cells of blood vessels in the human fetal ovary 

also expressed PROKR1 (in keeping with its role in angiogenesis; Figure 2F).  PROKR2 protein was 

also expressed by germ cells, but not in somatic and pre-granulosa cells (Figure 2G-H).   

PROKR1-TCam-2 cells as a model for fetal germ cells 

TCam-2 cells are derived from a human germ cell tumour and have been previously characterised as a 

model of human fetal germ cells, as they express numerous markers of early human germ cells 

(21,24).  Parental TCam-2 cells expressed PROKR1 mRNA at comparable levels to that detected in 

the human fetal ovary (Figure 3B), however in contrast to the human fetal ovary, PROKR1 protein 

was almost undetectable in TCam-2 cells (Figure 3A).  For this reason, coupled with the fact that 

TCam-2 cells are refractory to transfection, TCam-2 cells stably transfected with the PROKR1 

receptor (PROKR1-TCam-2 cells) were generated to enable functional analysis of PROK ligand 

signalling onto germ cells.  Levels of PROKR1 mRNA were significantly higher in stably-transfected 

PROKR1-TCam-2 cells than in parental TCam-2 cells, or in the human fetal ovary (Figure 3B).  

However, PROKR1 protein levels in the transfected PROKR1-TCam-2 cells were found to be 
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comparable to those detected in the human fetal ovary (Figure 3A).  Ishikawa cells, stably transfected 

with PROKR1 (PROKR1 ISHI) were utilized as a positive control for mRNA and protein expression 

of PROKR1.  PROKR1 functionality and downstream signal transduction in stable PROKR1-TCam-2 

cells was confirmed via induction of phosphorylated ERK (pERK) post PROK1 (40 nM) treatment 

(Figure 3C), with significant induction after 5 minutes compared to vehicle (dH2O) treated cells (3.8 

±1.9 (PROK1) vs. 1.7±0.6 (dH2O) -fold pERK induction compared to T0, Figure 3D).  This induction 

is comparable to that seen previously post PROK1 treatment in PROKR1 ISHI cells (11).  

PROK1 regulation of prostaglandin signalling components 

In the endometrium, PROK1 regulates the expression of COX2 and LIF (11,16); both of which have 

been identified as possible regulators of human ovarian germ cell development (19,25).  Whether this 

regulatory relationship also occurs in human fetal germ cells was investigated by culturing stably 

transfected PROKR1-TCam-2 cells in the presence or absence of 40nM recombinant human PROK1 

for 12 hours.  Treatment of PROKR1-TCam-2 cells with PROK1 resulted in a significant 2.9-fold 

increase in the expression of COX2 compared to cells treated with vehicle (dH2O) (p=0.01, n=5, 

Figure 4A).  COX2 induction was confirmed to be due to PROK1 signalling via PROKR1, as parental 

TCam-2 cells expresses relatively little PROKR2 and did not respond to PROK1 treatment 

(Supplemental Figure 1).  COX2 induction was noted as early as 4 hours post PROK1 treatment 

(Supplemental Figure 2). No change was detected in the expression of the other prostaglandin 

precursor enzymes COX1 and PTGES (which encodes the enzyme that catalyses the terminal step of 

prostaglandin synthesis, from prostaglandin precursor to prostaglandin E2, Figure 4B and C).  

Treatment with PROK1 also had no effect on the expression of genes encoding three prostaglandin E 

receptors (EP2, EP3 and EP4, Supplemental Figure 3A) which are known to be expressed by germ 

cells in the human fetal ovary (19) and have been shown to form positive feedback loops with COX2 

to promote their expression in the renal system (26,27).  Additionally, expression of LIF nor the other 

genes that encode related IL6-type cytokines; IL6 and oncostatin-M (OSM) were altered with PROK1 

treatment (Figure 4D-F).  These data demonstrate that IL6-type cytokines do not respond to PROK1 
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treatment in this model, in contrast to such regulation in other reproductive tissues.  Further, these 

data confirm that PROK1, acting via PROKR1, is able to regulated COX2 specifically in an in vitro 

model of human fetal germ cells, and does not initiate a positive feedback loop of prostaglandin E2 

signalling in this system.  As prostaglandin signalling has previously been related to enhanced germ 

cell survival in human fetal ovaries, we examined if PROK1, acting via PROKR1, altered PROKR1-

TCam-2 cell number at 1, 2 and 4 days post PROK1 treatment (Supplemental Figure 3B).  No change 

in SRB colorimetric assay was determined suggesting PROK1 is unable to induce changes in 

PROKR1-TCam-2 cell survival or proliferation.    

Discussion 

Identifying novel regulators of fetal ovarian development is essential to enhance our understanding of 

the processes which lead up to primordial follicle formation, which in turn is critical for female 

reproduction.  The PROK ligands are peptide regulators in various female reproductive tissues, 

including the endometrium (11,16), placenta (28), and fallopian tube (29).  Additionally, studies have 

identified that PROK ligands are expressed in the granulosa cells of immature follicles and theca of 

corpora lutea in the adult ovary, where they are hypothesised to regulate differentiation allowing for 

luteinisation (12,13).  Furthermore, PROK receptors are expressed in both steroidogenic cell types of 

the adult ovary (13).  Homozygous ablation of the PROK receptors in murine models revealed loss of 

Prokr2, but not Prokr1, resulted in atrophy of the reproductive system (both male and female) (30), 

however this phenotype was found to be the result of absent GnRH neurons in the hypothalamus, 

resulting in the loss of hormone production necessary for reproductive development.  Within the adult 

human ovary PROKR1 is abundant (31), and this study reveals this is also the case in the fetal ovary. 

This study is the first to examine possible roles for the PROK ligands in the human fetal ovary, after 

microarray analyses indicated a possible role for these factors during human fetal gonadal 

development (14,15).  We show that all PROK ligands and receptors are expressed in the human fetal 

ovary and that expression of both PROK1 and 2 and their shared receptor, PROKR1, are up-regulated 
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with ongoing human ovarian development, with marked increases from the period of germ cell 

proliferation before meiotic onset to the time of primordial follicle formation.  This is in agreement 

with the data from a previous study, which demonstrated increasing expression of PROK2 in the 

human fetal ovary during the second trimester (15). Unlike the adult ovary, where most PROK 

expression is restricted to the granulosa cells (12,13), PROK ligands and receptors were expressed by 

the germ cells in the fetal ovary.  Additional expression was seen in vascular endothelial cells, in 

keeping with the well-recognised role of PROK ligands in angiogenesis (32).  With primary 

expression of the PROK components restricted to the fetal germ cells, it is likely that signalling is 

autocrine or paracrine between adjacent or nearby germ cells. The finding that PROK1 was expressed 

highly in pairs and small groups of adjacent oocytes is consistent with discrete paracrine signalling 

and may suggest a role for PROK1 in the synchronous development of germ cells within individual 

nests as described in mouse (33) and human (34). 

Given that PROK signalling is predominately restricted to germ cells, we undertook functional studies 

of PROK action in vitro using TCam-2 cells stably transfected with the human PROKR1 receptor.  

TCam-2 cells express markers of undifferentiated human fetal germ cells (21,24) and thus may be 

considered comparable to the germ cells within the earlier gestational ovaries utilised in this study (8-

12 weeks)).  Using this stably transfected germ cell line, we demonstrated that PROK1, acting 

through PROKR1, is able to up-regulate phosphorylation of ERK.  Induction of pERK downstream of 

PROK1-PROKR1 signalling has been previously reported and is thought to be downstream of Gq-

PKC signalling (11).  Phosphorylation of ERK in PROKR1-TCam-2 cells demonstrates active 

intracellular signalling downstream of stably transfected PROKR1. 

PROK1 via PROKR1 signalling was also able to induce expression of COX2, encoding a 

prostaglandin synthesis enzyme, which we have previously shown to be expressed by germ cells in 

the human fetal ovary (19), the targets of PROK signalling in this organ.  Enhanced COX2 expression 

in TCam-2 cells in response to PROK1 was specific, as expression of the other prostaglandin 

synthesis enzymes (COX1, PTGES [which encodes the enzyme that catalyzes the terminal step of 
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prostaglandin E2 synthesis from prostaglandin precursor]) and receptors (EP2–4), which are known to 

be expressed by germ cells in the human fetal ovary (19) and have been shown to form positive 

feedback loops with COX2 to promote their expression in the renal system (26, 27). The IL6-type 

cytokines (IL6, LIF, and OSM) also remained unchanged. This is in contrast with studies that report 

PROK1 regulation of the prostaglandin E2 receptor EP4 in intestinal epithelial cells (9) and LIF 

activation in endometrial epithelial cell (16), and may suggest distinct function for PROK1 in germ 

cells. 

If PROK1 mediates an increase in COX2 expression in the fetal ovary, this would be likely to result in 

increased prostaglandin synthesis and action in that tissue. By selectively regulating COX2 (the 

inducible cyclooxygenase enzyme) rather than the constitutively-expressed COX1, PROK1 is likely to 

be involved in specific events in the fetal ovary rather than homeostatic function (35).  This positions 

prokineticin signalling upstream of prostaglandin synthesis within the human fetal ovary, a significant 

finding given that we have previously demonstrated prostaglandin signalling regulates the expression 

of multiple factors which influence fetal ovarian germ cell development (19).  Treatment of human 

fetal ovaries with prostaglandin E2 promotes the expression of the genes encoding the neurotrophin 

brain-derived neurotrophic factor (BDNF), the TGF-beta superfamily member activin A and the anti-

apoptotic BCL2 family member MCL1 (19), all of which are involved in the survival, proliferation or 

differentiation of germ cells.  Neurotrophins including BDNF are regulators of germ cell survival and 

follicle formation in the developing ovary (36,37), activin A promotes germ cell proliferation (38) and 

may regulate the timing of follicle formation (39) and MCL1 is expressed by oocytes immediately 

prior to follicle formation (34) and has been implicated in the regulation of mouse oocyte cyst 

survival and breakdown (40).  Therefore, PROK1-mediated up-regulation of COX2 may be one 

pathway through which PROK ligands co-ordinately regulate multiple signalling pathways controlling 

ovarian development.  Although there was no change in cell number after PROK1 treatment of 

PROKR1-TCam-2 cells in this study, PROK1 regulation of germ cell proliferation and survival 
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should be further investigated in primary ovarian tissue, containing both germ cells and surrounding 

stromal cells allowing for further elucidation of the signalling cascades downstream of PROK1 action.    

In conclusion, this study has demonstrated that the expression of the PROK ligands, and one of their 

shared receptors (PROKR1), is up-regulated around the time of the initiation of primordial follicle 

formation in the human fetal ovary. The finding that PROK1 promotes COX2 expression in an in vitro 

model of human fetal germ cells suggests a possible role for the PROK ligands in regulating 

prostaglandin signalling, which itself may influence germ cell survival, proliferation and development 

(19).  Taken together, these data suggest a novel role for prokineticin signalling in the human fetal 

ovary at a critical time-point in the determination of female fertility. 
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Table 1: Primer Sequences for PCR 

Gene Target Forward Primer (5’ – 3’) Reverse Primer (5’ -  3’) 

CNTF CAGGGCCTGAACAAGAACAT CTAAGAGCCTGGCCAACAAA 

COX1 TGTTCGGTGTCCAGTTCCAATA ACCTTGAAGGAGTCAGGCATGAG 

COX2 CCTTCCTCCTGTGCCTGATG ACAATCTCATTTGAATCAGGAAGCT 

EP1 AGATGGTGGGCCAGCTTGT GCCACCAACACCAGCATTG 

EP2 GACCGCTTACCTGCAGCTGTAC TGAAGTTGCAGGCGAGCA 

EP3 GACGGCCATTCAGCTTATGG TTGAAGATCATTTTCAACATCATTATCA 

EP4 ACGCCGCCTACTCCTACATG AGAGGACGGTGGCGAGAAT 

GAPDH GACATCAAGAAGGTGGTGAAGC GTCCACCACCCTGTTGCTGTAG 

IL6 GCCGCCCCACACAGACA CCGTCGAGGATGTACCGAAT 

LIF TGGTGGAGCTGTACCGCATA TGGTCCCGGGTGATGTTG 

OSM ACAGAGGACGCTGCTCAGTC AGGAGTCTGCTGGTGTCCTG 

PROK1 GTGCCACCCCGGCAG AGCAAGGACAGGTGTGGTGC 

PROKR1 TCTTACAATGGCGGTAAGTCCA CTCTTCGGTGGCAGGCAT 

PROK2 TTGGGCGGAGGATGCA AAATGAAGTCCGTAAACAGGCC 

PROKR2 GCTCTGTGCCTCCGTCAACT CCAGCAAGGCATTGGTGG 

PTGES GAAGAAGGCCTTTGCCAAC GGGTTAGGACCCAGAAAGGA 

RPL32 CATCTCCTTCTCGGCATCA AACCCTGTTGTCAATGCCTC 
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Figure 1: PROK ligand and receptor expression is up-regulated during human ovarian 

development.  Expression of the genes encoding PROK ligands and their shared receptors 

was analysed by qRT-PCR with the gestation range examined divided into three groups 

reflecting progression from predominantly germ cell proliferation, entry into meiosis and 

early primordial follicle formation; 8-11 weeks, 14-16 weeks, and 17-20 weeks..  (A) 

Expression of PROK1 increased in 17-20 weeks compared to both 8-12 and 14-16 weeks.  

(B) PROK2 expression increased across gestation, with17-20 weeks significantly increased 

compared to both 8-12 and 14-16 weeks.  (C) PROKR1 was significantly increased in 17-20 

weeks but no change was seen in PROKR2 expression (D).  Expression is relative to the 

housekeeping gene GAPDH.  Mean ±SEM, n=5-7 per group (* p<0.05, ** p<0.01, and *** 

p<0.001). 

 

Figure 2: PROK ligands and receptors are expressed in germ cell nests in the human 

fetal ovary.  PROK1 and 2 and their shared receptors PROKR1 and 2 (brown staining) were 

immunolocalised in the human fetal ovary (14 week ovarian tissue shown, representative of 

n=3 14-19 week specimens).  (A-B) PROK1 expression was germ cell (GC) specific in the 

human fetal ovary, with pairs or multiple closely associated GCs displaying heightened 

PROK1 expression compared to others nearby. No staining was seen in stromal cell streams 

(SC) or pregranulosa cells (PG; i.e. somatic cells interspersed within GC nests). (B inset)  

PROK1 was also expressed in primordial follicles (17 week specimen).  (C-D)  PROK2 was 

expressed by GCs and in PG cells within GC nests.  No staining was detected in SC streams. 

(E-F) PROKR1 was primarily expressed by GCs as well as endothelial cells of blood vessels 

(BV) in the ovary. (G-H)  PROKR2 was also expressed by GCs but expression was not as 
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abundant. (E inset). Negative control tissue showed no staining.  Scale bars: A, C and E-H : 

50µm; B and D: 20µm.   

 

Figure 3: Characterisation of PROKR1-TCam-2 cells. Stable transfection and expression 

of PROKR1 in TCam-2 cells was validated at both the protein (A) and mRNA (B) level.  

Expression was investigated in comparison to parental TCam-2 cells (negative control), fetal 

ovarian tissue (15 weeks) and Ishikawa cells stably expressing PROKR1 (PROKR1 ISHI, 

positive control).   mRNA expression is relative to the housekeeping gene RPL32 and 

displayed as mean ±SEM.  (C-D) Functional signalling downstream of transfected PROKR1 

was confirmed in PROKR1-TCam-2 cells as determined by significant induction of 

phosphorylated ERK (pERK) post 40 nM PROK treatment (+PROK) compared to vehicle 

control (dH2O, VEH).  Significance is determined by ANOVA, **p≤0.001).  

 

Figure 4: COX2 is regulated by PROK1 in PROKR1-TCam-2 cells. PROKR1-TCam-2 

cells were treated for 12h with 40nM PROK1 (+PROK) or vehicle (dH2O, VEH) and mRNA 

expression changes evaluated via qRT-PCR.  (A) Expression of COX2, which encodes a 

prostaglandin biosynthesis enzyme, was significantly up-regulated in PROK1-treated 

PROKR1-TCam-2 cells, compared to vehicle-treatment.  No significant changes were seen 

with in expression of the other prostaglandin synthesis enzymes (B) COX1 or (C) PTGES.  

Additionally, no change is seen in the expression of genes encoding the IL6-type cytokines: 

(D) LIF, (E) IL6 or (F) OSM in PROK1-treated PROKR1-TCam-2 cells.  Expression is 

relative to the housekeeping gene RPL32.  Mean ±SEM, n=5 (* p<0.05). 
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Supplemental Figure 1: Validation of PROK1 via PROKR1 induction of COX2.  (A) 

Further characterisation of the parental TCam-2 cells demonstrates they express significantly 

less PROKR2 transcript that human fetal ovarian tissue (15-18 weeks).  (B) Further, 

treatment of parental TCam-2 cells with 40 nM PROK1 (+PROK) did not induce COX2 

expression compared to vehicle control (VEH), demonstrating that mRNA induction in 

PROKR1-TCam-2 cells is the result of PROK1 via PROKR1 downstream signalling.  Data 

shown is relative to housekeeping gene RPL32 and is mean ± SEM, *p≤0.05. 

 

Supplemental Figure 2: COX2 induction over time.  COX2 induction by PROK1 via 

PROKR1 was examined over a timecourse at 2, 4, 8, 12 and 24 hours (H).  Enhanced COX2 

mRNA was seen as early as 4 hours post PROK1 treatment (+PROK) compared to vehicle 

control (VEH). 

Supplemental Figure 3: Investigation of PROK1 functionality in PROKR1-TCam-2 

cells.  (A) As COX2, a prostaglandin synthesis enzyme, was induced by PROK1 treatment 

(+PROK) compared to vehicle treated PROKR1-TCam-2 cells (VEH), the prostaglandin E2 

receptors (EP1-4) were also investigated for changes in mRNA expression via qRT-PCR after 

12 hours of treatment, as they form a positive feedback loop in other tissues.  No change in 

expression was determined. (B) Changes in proliferation and survival were investigated 

downstream of PROK1 treatment of PROKR1-TCam2 cells treated with PROK or vehicle 

over 24, 48, and 96 hours.  No significant difference was determined via colorimetric SRB 

assay suggesting PROK1 does not function to alter cell turnover in these cells. 
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