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Highlights 19 

 20 

 21 

3CSK4 induces calcium influx, ROS production and MMP-9 secretion   22 

e ROS production induced by Pam3CSK4  was blocked by the SOCE inhibitor 2-APB 23 

 24 

Abstract 25 

Toll-like receptors (TLR) are a family of pattern recognition receptors that sense microbial 26 

associated molecular patterns (MAMP) such as microbial membrane components and 27 

nucleic acids of bacterial origin. Polymorphonuclear neutrophils (PMN) are the first cell of 28 

the innate immune system to arrive at the site of infection or injury and elicit oxidative and 29 

non-oxidative microbicidal mechanisms. Observations in human and mouse suggest that 30 

TLR ligands can induce direct responses in PMN. So far, there is no information of the 31 

effect of synthetic TLR ligands on the response of bovine PMN. The objective of this study 32 

was to evaluate the functional response of bovine PMN incubated with four synthetic TLR 33 

ligands: ultrapure LPS (TLR4), Pam3CSK4 (TLR2/1), HKLM (TLR2) and FSL-1 (TLR2/6). 34 

The results show that all the ligands increment cells size as identified by changes in the 35 

FSC-SSC as part of the flow cytometric analysis. Interestingly, only Pam3CSK4 36 

consistently induced a calcium influx, increased ROS production and secretion of 37 

gelatinase granules, whereas no response was seen using other ligands. Furthermore, 38 

exposure of bovine PMN to ultrapure LPS, Pam3CSK4, HKLM or FSL-1 for 24 hours did 39 
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not impact on apoptosis of these cells. Our data provide evidence for a selective response of 40 

bovine PMNs to TLR ligands. 41 

 42 

Keywords: PMN, ROS, Toll-like receptors, Bovine, Innate immunity. 43 

Abbreviations: SOCE: Store Operated Calcium Entry. AUC: Area under the curve. RFU: 44 

Relative fluorescence units. RLU:  Relative luminescence units.  45 

  46 
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1. Introduction 47 

Polymorphonuclear neutrophils (PMN) are the first line of cellular defense against bacterial 48 

and fungal agents (Yu and Czuprynski, 1996), and rapidly arrive at the site of injury or 49 

infection, recognizing and attempting to resolve the infection through various antimicrobial 50 

mechanisms (Segal, 2005). These include phagocytosis, reactive oxygen species (ROS) 51 

production, secretion of granules that contains several antimicrobial proteins (Borregaard 52 

and Cowland, 1997; Paape et al., 2003), the ability to cast neutrophil extracellular traps 53 

(NET) (Behrendt et al., 2010; Brinkmann et al., 2004) and chemokine/cytokine production 54 

that induces the arrival of leukocytes to the site of infection (Hammond et al., 1995). The 55 

complex process of mounting these steps of the inflammatory response must be tightly 56 

regulated in order to avoid subsequent damages to host cells by overshooting responses 57 

(Nathan, 2006). In this context, the detection and sensing of the molecules produced in the 58 

first steps of infection or injury (i.e. chemoattractants) and microbial associated molecular 59 

patterns (MAMPs) are relevant.  60 

Toll like receptors (TLR) are a family of pattern recognition receptors (PRR) which sensing 61 

different MAMPs that includes lipoproteins, lipopolysaccharide, flagellin and nucleic acids 62 

from bacterial origin. In addition, these receptors bind endogenous ligands such as heat 63 

shock proteins (HSP) and structural molecules such as fibrinogen, heparan sulfate and 64 

soluble hyaluronan. These molecules are constituents of the extracellular matrix and are 65 

termed as danger-associated molecular pattern (DAMP), as their recognition by TLRs is 66 

associated with inflammatory response during tissue damage and tissue repair (Kawai and 67 

Akira, 2010). The intracellular signaling pathways activated after TLR-ligand binding have 68 

been classified in the MyD88-dependent pathway and the MyD88-independent or TRIF-69 
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dependent pathway. The MyD88 dependent pathway involves the recruitment of IL-1 70 

receptor-associated kinases: IRAK4, IRAK1, IRAK2, TRAF-6 and the activation of the 71 

MAPK pathway. This cascade of events leads to the translocation of the nuclear 72 

transcription factor NF-ĸB and the increased expression of proinflammatory genes as COX-73 

2, CXCL-8 and IL-6. This pathway is essential for all TLRs with the exception of TLR3. 74 

The TRIF-dependent pathway also activates NF-ĸB and, in addition, the interferon 75 

regulatory transcription factor 3 (IRF-3) leading to an increased transcription of type I 76 

interferons (Akira, 2011; Kawai and Akira, 2010).  77 

To date, 10 TLRs has been identified in bovines (McGuire et al., 2006) and the presence of 78 

these receptors in cells of the innate immune system permits an initial response that is 79 

amplified by the adaptive immune system. However, less is known about the direct 80 

activation of TLRs in cells of the innate immune system. In bovines, the TLRs has been 81 

associated with the recognition of Mycobacterium (M.) tuberculosis and M. bovis by 82 

macrophages (Werling et al., 2006), infectious agents involved in bovine respiratory 83 

disease (Hodgson et al., 2005) and E. coli mediated mastitis (De Schepper et al., 2008). 84 

PMN have been described to express numerous PRRs (Brown, 2006; Chavakis et al., 85 

2003), and specifically in bovines the detection of mRNA for TLR1, TLR2, TLR4, TLR6, 86 

TLR7 and TLR10, but not TLR3, TLR5, TLR8, TLR9 has been reported previously 87 

(Conejeros et al., 2011). Exposure of human neutrophils to TLR agonist triggered or 88 

primed cytokine release, superoxide generation, and L-selectin shedding, while inhibiting 89 

chemotaxis to CXCL8 and increasing phagocytosis of opsonized latex beads. Some of these 90 

effects where amplified when PMN where pre-incubated with GM-CSF (Hayashi et al., 91 

2003). In addition, direct activation of TLR2 or TLR4 with synthetic TLR agonist induces 92 
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changes on the expression of adhesion molecules, CXCL8 production, ROS generation and 93 

random migration (Aomatsu et al., 2008; Sabroe et al., 2003). In contrast, there is no 94 

information regarding the effect of synthetic TLR ligands in the direct activation of bovine 95 

PMN. However, bovine PMN have been show to respond with ROS production to the 96 

dectin-1/TLR 2 ligand zymosan (Conejeros et al., 2011), suggesting that the incubation of 97 

bovine PMN with TLR ligands can induce the activation of these cells. Intracellular 98 

calcium concentration governs several functional responses in bovine PMN as ROS 99 

production, MMP-9 secretion, CD11b and CD63 expression, chemotaxis and F-actin 100 

polymerization (Conejeros et al., 2012). One of the mechanisms that explain the rise of 101 

intracellular calcium concentration is the store operated calcium entry (SOCE). This 102 

retrograde process involves the opening of membrane calcium channels in response to the 103 

recognition of inositol 1,4,5-triphosphate (IP3) by the corresponding receptors (IP3R) in the 104 

endoplasmic reticulum. The rise in cytoplasmic IP3 is produced by PI3K in response to the 105 

bind of the ligand with the corresponding G-coupled receptor located at the plasmatic 106 

membrane. These ligands include different inflammatory mediators as platelet activating 107 

factor (PAF), LTB4, C5a and CXCL8. The increasing evidence regarding the modulation 108 

of oxidative and non-oxidative responses in bovine PMN supports the therapeutic potential 109 

of this pathway in inflammatory diseases with neutrophil infiltration in cattle (Burgos et al., 110 

2011).  111 

Given the lack of knowledge regarding the activation of bovine PMN by TLR ligands, we 112 

intended to study functional responses associated with neutrophil activation in the presence 113 

of synthetic ligands for TLR 2/1: Pam3CSK4, TLR 4: ultrapure LPS, TLR2: HKLM and 114 

TLR2/6: FSL-1. The evaluated parameters in bovine PMN exposed to these ligands were 115 
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size and shape changes, phagocytosis, intracellular calcium concentration, ROS production, 116 

gelatinase granules secretion, CD11b and L-selectin and apoptosis. In addition and due to 117 

the evidence that supports the role of the rise in intracellular calcium concentration in the 118 

first steps of activation of bovine PMN, the PMN were exposed to Pam3CSK4 in the 119 

presence of the SOCE inhibitors 2-APB 50 µM and MRS1845 15 µM.  120 

2. Material and Methods 121 

2.1. Animals and samples 122 

Blood samples were obtained by jugular venipuncture of healthy adult Holstein Friesian 123 

heifers from one of the herds of the University Austral of Chile, Valdivia, Chile. The cattle 124 

were maintained in the ruminant section of the Veterinary Hospital on a grass diet ad 125 

libitum with grain supplementation. The blood was collected in ACD tubes (Becton 126 

Dickinson, NJ, USA) and maintained at room temperature (RT) for less than 20 min prior 127 

to the beginning of the assays. All experiments were conducted in accordance with 128 

institutional review board-approved protocols. 129 

2.2. Synthetic TLR ligands and SOCE inhibitors 130 

Pam3CSK4 and ultrapure LPS from E. coli serotype EH100 Ra were obtained from Enzo 131 

Lifesciences (NY, USA), diluted in nanopure water to stock concentration of 1 mg/ml and 132 

stored at -20 °C. HKLM was obtained from KPL (MA, USA) at stock concentration of 133 

5x10
10 

cells/ml and stored in aliquots at -20 °C until use. FSL-1 was acquired from EMC 134 

microcollections (Tübingen, Germany), suspended in nanopure water to a stock 135 

concentration of 1mg/ml and stored at -20 °C until further use. 2-APB was acquired from 136 

Sigma Aldrich (St. Louis, MO, USA), suspended in DMSO 100% at stock concentration of 137 
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100 mM and stored at -80 °C. MRS1845 was obtained from Tocris Bioscience (Bristol, 138 

UK), suspended at stock concentration of 10 mM in DMSO 100% and stored at -20 °C. 139 

2.3. Isolation of bovine PMN 140 

Blood in ACD tubes (Becton Dickinson, NJ, USA) was used for the isolation of bovine 141 

PMN according to the method described by Roth and Kaeberle (Roth and Kaeberle, 1981) 142 

with minor modifications. After collection, the blood was gently rocked for 5 min and then 143 

centrifuged at 1000g for 20 min at 20 °C. The plasma and the buffy coat were carefully 144 

aspirated, and the remaining red blood cells (RBC) and PMN pellet in the bottom of the 145 

tube was suspended in Hank’s balanced salt solution (HBSS). The mixture was transferred 146 

to a new sterile 15 ml polypropylene tube (BD, NJ, USA) and centrifuged again at 1000g 147 

for 20 min at 20 °C. The supernatant was aspirated, discarded and the RBC were removed 148 

by a flash hypotonic lysis with 1 volume of cold phosphate buffered water solution 149 

containing 5.5mM NaH2PO4 , 8.4 mM HK2PO4 at pH 7.2. After 1 min of RBC lysis a 2 150 

volumes of hypertonic phosphate buffer containing 5.5 mM NaH2PO4, 8.4 mM HK2PO4, 151 

0.46 M NaCl and pH 7.2 was added to recover the isotonicity and the tubes were 152 

centrifuged at 600g for 10min at 20 °C. This RBC lysis step was repeated once and after 153 

the cells were washed three times with HBSS with centrifugation steps of 500g for 10 min 154 

at 20 °C. The purity of the cell preparation was assessed by flow cytometry and a purity ≥ 155 

90% was a condition for continuing with the assays. The cell preparation was maintained 156 

on ice until the experiments were performed.  157 

2.4. Size and morphology changes of bovine PMN  158 
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Isolated PMN were suspended in HBSS containing 0.9 mM CaCl2 at a final concentration 159 

of 1x10
7 
cells/ml. For the assays, 2.5 x 10

4
  PMN were mixed with 1 µg/ml of ultrapure 160 

LPS, 10 µg/ml of Pam3CSK4 , 108 cells/ml of HKLM, or 1µg/ml of FSL-1  in cytometer 161 

tubes (BD Biosciences, San Diego, CA), respectively. The size changes in the forward light 162 

scatter (FSC) axis of the PMN gate were registered after 10 sec of incubation by flow 163 

cytometry recording 10.000 events. The results are presented as side light scatter (SSC) 164 

versus FSC. The data was analyzed to obtain histograms of FSC changes using the Flow Jo 165 

7.2.1 software (www.flowjo.com Tree Star, Inc., USA) 166 

2.5. Phagocytosis assay 167 

Whole blood was incubated with the TLR ligands for 15 min and the percentage of positive 168 

PMN to phagocytosis was determined using the pHrodo phagocytosis kit for flow 169 

cytometry containing bioparticles derived from S. aureus (Life Technologies, CA, USA) 170 

following the manufacturer’s instructions. 10.000 events were recorded in a FACS Canto II 171 

flow cytometer and analyzed with the FACSDIVA 6.1 software (BD Biosciences, CA, 172 

USA) 173 

2.6. Intracellular calcium measurement 174 

PMN were suspended in HBSS at a concentration of 1 x 10
7
 cells/ml and incubated with 175 

1µM FLUO-4/AM (Molecular Probes, Oregon, USA) for 30 min at 37°C. The cells were 176 

washed two times in HBSS, and suspended at 1 x 10
7
 cells/ml in HBSS containing 0.9 mM 177 

CaCl2. For the assays, 1x10
6 

cells per well were used and stimulated with increasing 178 

concentrations of ultrapure LPS, Pam3CSK4, HKLM or FSL-1. For the inhibition assays 179 

with 2-APB 50 µM and MRS1845 15 µM the cells were incubated for 15 min before the 180 
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addition of the Pam3CSK4 10 µg/ml. The Ca
2+ 

influx was measured at 37 °C in a Varioskan 181 

microplate reader (Thermo, USA) at 488 nm and 525 nm, excitation and emission 182 

wavelengths respectively. The area under the curve (AUC) after 400 sec of stimulation for 183 

each treatment was determined and plotted as concentration in logarithmic scale x AUC. 184 

Each point represents the mean ± SEM. 185 

2.7. ROS production measurement 186 

Before the treatments, a total of 1 x 10
6  

PMN per well were incubated with luminol 80µM 187 

for 5 min at 37°C. Basal production of ROS was registered and increased concentrations of 188 

ultrapure LPS, Pam3CSK4, HKLM or FSL-1 were added to the corresponding wells. The 189 

light emission produced by the reaction of luminol and H2O2 was measured over the time in 190 

a Varioskan microplate reader (Thermo, USA). For the inhibition assays the cells were 191 

incubated for 15 min before the addition of luminol with 2-APB 50µM and MRS1845 192 

15µM. The AUC of the chemoluminiscence curves registered was calculated and 193 

represented as concentration in logarithmic scale x concentration. Each point represents the 194 

mean ± SEM. 195 

2.8. Determination of MMP-9 activity 196 

A total of 1 x 10
6
 PMN in 500 µl HBSS containing 0.9 mM CaCl2 were incubated with 197 

increasing concentrations of ultrapure LPS, Pam3CSK4, HKLM or FSL-1 for 120 min at 198 

37°C. For the inhibition assays the cells were incubated for 15 min before the addition of 199 

the Pam3CSK4 10 µg/ml with 2-APB 50µM and MRS184515 µM. After incubation, the 200 

cells were centrifuged at 600g for 6 min at 20 ºC. A total of 300 µl of the supernatant was 201 

recovered and used for gelatinase activity analysis. Substrate gel electrophoresis was 202 

performed using the method described by Li (Li et al., 1999), with minor modifications. 203 
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Briefly, 10 µl of supernatant was loaded on 10% polyacrylamide gels (0.75 mm thick) 204 

containing 0.28% gelatin.  The gels were run at 200 V for 1 h in a Bio-Rad Mini Protean II 205 

electrophoresis system (Bio-Rad Laboratories, Richmond, CA) and then soaked twice in 206 

2.5% Triton X-100 in distilled water on a shaker at RT for 30 min. Then, the gels were 207 

soaked in reaction buffer consisting of 100 mM Tris (pH 7.5) and 10 mM CaCl2 at 37 ºC 208 

overnight. The gels were stained in 0.5% Coomassie Brilliant Blue R-250 (Winkler, 209 

Santiago, Chile) in acetic acid:methanol:water (1:3:6). Evidence of enzymatic activity was 210 

determined by non-staining areas in which the gelatin was degraded. The calculation of the 211 

apparent molecular masses of the gelatinolytic bands was made using a reference to a 212 

standard pre-stained molecular mass marker (Fermentas International Inc., Canada). To 213 

measure the activity, the gels were digitalized, and the intensity of the bands was 214 

determined using ImageJ 1.46r software. The results are presented in bar graphs as 215 

normalized densitometry units x concentration. 216 

2.9. Flow cytometric analysis of CD11b and L-selectin 217 

200 µl of whole blood were incubated with of ultrapure LPS, Pam3CSK4, HKLM or FSL-1 218 

for 30 min at 37 °C in 12x75 mm polypropylene round bottom tubes (BD, NJ, USA). Then, 219 

1 ml of lysing buffer (BD Pharm Lyse, CA, USA) was added with each tube, with gently 220 

vortex just after the addition of the buffer. The mixture was incubated at RT, protected 221 

from light, for 15 min. After, a centrifugation step of 200g for 5 min at RT was performed 222 

and the supernatant was discarded carefully. Then, 2 ml of stain buffer (BD Pharmingen, 223 

CA, USA) was added to wash the cells and the solution was centrifuged at 200g for 5 min 224 

at RT. This step was repeated once and the cells were suspended in 100µl of stain buffer for 225 

immunofluorescent staining. For CD11b 5 µl (0.2 mg/ml) of human CD11b antibody 226 
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coupled with allophycocyanin (APC; clone M1/70 from BD Pharmingen, CA, USA) was 227 

added. For the L-selectin immunostaining 10µl of the L-selectin antibody coupled with 228 

phycoerytrin was added (PE; clone DREG-56 from BD Pharmingen, CA, USA). The tubes 229 

were incubated for 20 min at RT in darkness and washed two times with 1 ml of stain 230 

buffer with centrifugation steps of 200g for 5 min at RT. Finally, the cells were suspended 231 

in 300µl of stain buffer and analyzed by flow cytometry (FACSCanto II, BD, CA, USA). 232 

10,000 events were registered in the neutrophil gate population. These antibodies show 233 

cross-reactivity with bovine PMN and have been described previously for us and other 234 

authors (Conejeros et al., 2012; Swain et al., 1998).  235 

To confirm the observed results another antibody, specific for bovine CD11b was used 236 

(monoclonal antibody center, WSU, Washington, USA) in isolated PMN. 0.5x10
6
 PMN 237 

were incubated with the TLR ligands for 30 min and after two washing steps with stain 238 

buffer as described above were incubated with 15 µg/ml an antibody that is specific for 239 

bovine CD11b  (monoclonal antibody center, WSU, Washington, USA) protected from 240 

light for 20 min on ice. After a two washing steps, 1/100 dilution of secondary anti-mouse 241 

IgG antibody coupled to Alexa 488 (Life technologies, CA, USA) was added and the 242 

solution was incubated for 20 min in the dark. After incubation, the cells were centrifuged 243 

at 200g for 5 min and washed two times with stain buffer. Finally, the cells were gently 244 

suspended in 300 µl for flow cytometry analysis. Data analyses were performed using 245 

FACSDIVA (BD Biosciences, CA, USA) and FlowJo 7.1 (www.flowjo.com Tree Star, 246 

Inc., USA) software.  247 

2.10. Flow cytometric analysis of CD11b, TLR2 and TLR4 248 
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Bovine PMN from 3 animals were examined for co-expression of CD11b with either TLR2 249 

or TLR4. 0.5 x 10
6  

of isolated bovine PMN per antibody combination were placed in a 250 

round bottomed 96-well plate and centrifuged at 200g for 2 min before suspending cells in 251 

40 μl of stain buffer. 5 μl of each antibody (or stain buffer) was added corresponding 252 

antibody combinations as follows: (1) no antibody control,  (2) isotype controls (IgG2b 253 

coupled with Fluorescein isothiocyanate (FITC) (AbD Serotec, Oxford, UK) and IgG2a 254 

coupled with Alexa 647 (Life Technologies, Paisley, UK), for TLR4 and huCAL Fab-255 

dHLX-MH (AbD Serotec, Oxford, UK) for TLR2, (3) mouse anti-bovine CD11b IgG2b 256 

coupled to FITC and human anti-bovine TLR2 huCAL Fab bivalent coupled to Alexa 647 257 

(both AbD Serotec, Oxford, UK) (Kwong et al., 2011) and (4) mouse anti-human CD11b 258 

IgG1 coupled to FITC (AbD Serotec, Oxford, UK) and mouse anti-human TLR4 IgG2a 259 

coupled to Alex 647 (Novus Biologicals, Cambridge, UK). Incubation of antibody and cells 260 

was allowed to proceed at 4 C for 30 min in the dark before washing cells with addition of 261 

150 μl of stain buffer and centrifugation at 200g for 2 min. Washing was repeated twice 262 

more and cells suspended in 400 μl for analysis using a FACS Calibur (BD Biosciences, 263 

Oxford UK) running Cell Quest Pro acquiring 10,000 events. Data analyses using were 264 

performed using Flow Jo V10 (www.flowjo.com Tree Star, Inc., USA). Further 265 

confirmatory experiments were performed using HEK293T cells alone or expressing either 266 

bovine TLR2 or bovine TLR4 in combination with bovine MD2. Briefly as above, 0.5 x 267 

10
6  

cells were placed a round bottomed 96-well plate and centrifuged at 200g for 2 min 268 

before suspending cells in 45 μl of stain buffer. 5 μl of each antibody was added for 30 min 269 

at 4C in the dark; isotype control IgG2a coupled with Alexa 647 (Life Technologies, 270 

Paisley, UK) for TLR4 and huCAL Fab-dHLX-MH (Abd Serotec, Oxford, UK) for TLR2, 271 
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human anti-bovine TLR2 huCal Fab bivalent coupled to Alexa 647 (AbD Serotec, Oxford, 272 

UK) or mouse anti-human TLR4 IgG2a coupled to Alex 647 (Novus Biologicals, 273 

Cambridge, UK). Cells were washed and analysis performed as above. Staining was 274 

observed for HEK293T cells expressing bovine TLR2 or bovine TLR4/MD2 only, 275 

validating further the cross-reactivity of these antibodies.  276 

2.11. Assessment of live, apoptotic and dead PMN 277 

0.5 x 10
6
 isolated PMN dispensed in a 96-well microplate were incubated for 24 hours at 278 

37°C and 5% CO2 in 200 µl of RPMI-medium with increasing concentrations of ultrapure 279 

LPS, Pam3CSK4, HKLM or FSL-1. After the incubation, the medium was gently removed 280 

and the samples were processed with the annexin V-FITC and PI detection kit I for 281 

apoptosis following the manufacturer’s protocol (BD Pharmingen, CA, USA).  282 

2.12. Statistical analysis 283 

The results are illustrated as mean ± SEM for at least three independent experiments. One-284 

way analysis of variance (ANOVA) with Dunnett’s multiple comparison test were 285 

performed using GraphPad Prism v5.3 software (GraphPad Software Inc., CA, USA) with a 286 

significance level of 5%. For the determination of statistical significant differences in the 287 

percentages of phagocytosis-positive PMN a one-tailed Student t test was used comparing 288 

the control vs ligand conditions.   289 

3. Results 290 

3.1. Effect of synthetic TLR ligands on cell size and morphology of bovine PMN 291 
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All TLR ligands used in this study induced a rapid change in cell size and morphology of 292 

bovine PMN. As early as 10 sec after the onset of stimulation, a shift along the FSC axis, 293 

indicating a shift in cell size, could be observed in the histograms analysis of the gated 294 

PMN population when the cells were exposed to ultrapure LPS, Pam3CSK4, HKLM and 295 

FSL-1 in the specified concentration (Fig 1).  296 

3.2. Exposure of bovine PMN to TLR ligands induces the phagocytosis of S. aureus 297 

bioparticles 298 

Percentage of phagocytosis-positive PMN was determined using a phagocytosis kit for flow 299 

cytometry containing bioparticles derived from S. aureus conjugated with the pHrodo dye. 300 

The incubation of whole blood with the TLR ligands results in an increase of the PMN 301 

positive for phagocytosis compared with the control condition, except for the ultrapure LPS 302 

treatment which did not reach significance (Table 1) 303 

3.3. Exposure of bovine PMN to TLR ligands does not affect CD11b expression or L-304 

selectin (CD62L) shedding  305 

Activation of the TLR2 pathway by Pam3CSK4 treatment has recently been shown to 306 

induce CD11b/CD18 surface expression and ROS production by human neutrophils (Lee et 307 

al., 2012). As TLR stimulation in the present experiment impacted in the morphology of 308 

bovine PMN after a very short time of exposure, we next wanted to assess whether CD11b 309 

expression and L-selectin shedding were also affected. Addition of all TLR ligands to 310 

whole blood preparations failed to result in any differences of CD11b or L-selectin 311 

expression. In order to investigate if this observation effect was dependent on the antibody, 312 

other blood cells or blood components the measure of CD11b was repeated adding the 313 
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synthetic TLR ligands to isolated PMN and using another anti-bovine CD11b antibody. 314 

However, even using isolated PMN expression levels of CD11b remained unaltered (data 315 

not shown). 316 

3.4. TLR2 and TLR4 expression by bovine PMN 317 

Given changes in PMN morphology upon stimulation with synthetic TLR ligands and lack 318 

of CD11b- or CD62L-shedding we examined the expression of TLR2 and TLR4 cell 319 

surface protein levels. While various TLR mRNA has been previously reported for bovine 320 

PMN (Conejeros et al., 2011), little has been described for cell surface expression largely 321 

based upon availability of cross-reactive antibodies. Here we show by flow cytometry that 322 

CD11b
+
 bovine PMN express both TLR2 and TLR4 compared to isotype controls (Fig 2A). 323 

Antibody cross-reactivity was further assessed using HEK293T cells expressing either 324 

bovine TLR2 or bovine TLR4/MD2. HEK293T cells expressing bovine TLR2 or 325 

bovineTLR4/MD2 but not HEK293T cells alone were found to be positive for TLR2 or 326 

TLR4 respectively (Fig 2B).  327 

3.5. Stimulation of PMN with a synthetic TLR2 ligand results in increased 328 

intracellular calcium concentration and ROS production 329 

We were recently able to show that zymosan, a dectin-1/TLR2 ligand, induced ROS, but 330 

not RNS production in a CD11b-, but not dectin-1-dependent manner (Conejeros et al., 331 

2011). As the initial observations supported that TLR ligands induces the rapid activation 332 

of isolated bovine PMN, we investigated next whether TLR-ligand interaction increased 333 

intracellular calcium concentration in bovine PMN. Indeed, cells treated with Pam3CSK4 at 334 

10µg/ml, but not in lower concentrations showed an increase in intracellular calcium 335 
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concentration (p < 0.05). No changes in intracellular calcium concentration were observed 336 

when cells were exposed to different concentrations of ultrapure LPS, HKLM and FSL-1 337 

(Fig 3A). As intracellular calcium concentrations may also impact on ROS production, we 338 

assessed next whether exposure of bovine PMN to TLR ligands can trigger ROS 339 

production. Similar as before, ROS production was increased significantly when cells were 340 

exposed to Pam3CSK4 at a concentration of 10µg/ml, but not at lower concentrations. 341 

Surprisingly, FSL-1 1µg/ml also induced significantly (p < 0.05) ROS production, however 342 

at a later time-point compared to Pam3CSK4.  No effect was observed when cells were 343 

exposed to increasing concentrations of ultrapure LPS or HKLM (Fig 3B). Representative 344 

registries of the results for calcium influx and ROS production are shown in the appendix 345 

(Fig A.2) 346 

3.6. Pam3CSK4-induced MMP9 secretion partially depends on ROS production 347 

As ROS has been shown to up-regulate MMP-9 (gelatinase) expression via a MAPK-AP-1 348 

dependent signaling pathway in human PMN (Ehrenfeld et al., 2009), we determined next 349 

whether MMP-9 activity was increased in supernatants of treated cells in order to determine 350 

the effect of the synthetic TLR ligands on the secretion of gelatinase granules. High 351 

concentration of Pam3CSK4, but none of the other TLR ligands tested induced a significant 352 

increase in the secretion of MMP-9 (p < 0.05) as observed in the zymography assay after 353 

120 min of exposure (Fig 4).  354 

To assess whether the effect of Pam3CSK4 on calcium influx, ROS production and MMP-9 355 

secretion was a direct effect, two SOCE inhibitors: 2-APB and MRS1845 were used to 356 

further investigate the observation. Indeed, pre-incubation of cells with both inhibitors prior 357 
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to Pam3CSK4 exposure partially inhibited the calcium influx (p < 0.05; Fig 5A). Further, 358 

the effect of SOCE inhibitors on ROS production induced by Pam3CSK4 was tested. 2-APB 359 

almost completely inhibited ROS production induced by Pam3CSK4 (p < 0.05), but not 360 

MRS1845 (Fig 5B). Astonishingly, MMP-9 secretion from bovine PMN induced by 361 

Pam3CSK4 was unaffected by the treatment with either 2-APB or MRS1845 (Fig 5C). 362 

Representative diagrams of the obtained registries for calcium influx and ROS production 363 

from which the area under the curve (AUC) was calculated are shown in (Fig A.3) 364 

3.7. Stimulation with TLR ligands does not induce apoptosis in bovine PMN 365 

Exposure to bacteria and subsequent phagocytosis has been shown to subsequently induce 366 

apoptosis in human PMN (for review see (McCracken and Allen, 2014)). As exposure to 367 

some TLR ligands induces ROS production in bovine PMN, which in turn can lead to the 368 

induction of cell death (for review see (Geering and Simon, 2011)), we assessed whether 369 

stimulation by defined TLR ligands would result in neutrophil apoptosis. PMN were 370 

incubated with increasing concentrations of ultrapure LPS, Pam3CSK4, HKLM and FSL-1, 371 

and analyzed after 24 h by flow cytometry using an AnnexinV/Propidium Iodide kit (BD 372 

Biosciences). In these experimental conditions, none of the TLR ligands had an impact on 373 

the percentage of live, apoptotic or dead cells (p > 0.05) (Fig 6). 374 

4. Discussion 375 

In the present study, we confirmed the expression of TLR2 and TLR4 by flow cytometry on 376 

bovine PMN, and assessed the effect of synthetic TLR ligands, namely ultrapure LPS 377 

(TLR4), Pam3CSK4 (TLR2/1), HKLM (TLR2) and FSL-1 (TLR2/6) on the functions of 378 

bovine PMN. Previous reports in human support the hypothesis that TLR ligands can 379 
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induce direct activation of PMN, resulting in increased bacterial killing and an 380 

inflammatory response (Aomatsu et al., 2008; Hayashi et al., 2003; Sabroe et al., 2003). In 381 

addition, it is known that PMN from different species have important differences in terms 382 

of specificity and magnitude of the response (Brown and Roth, 1991).  383 

In this report, isolated bovine PMN showed surface expression of TLR2 and TLR4, which 384 

is in line with human PMN (Chang et al., 2007; Hayashi et al., 2003; Sabroe et al., 2002). 385 

When exposed to different synthetic TLR ligands, bovine PMN showed a rapid increase in 386 

size and shape changes as detected by changes in the forward scatter. These changes 387 

occurred as early as after 10 sec of incubation, indicating a fast activation process in 388 

stimulated cells compared to unstimulated condition (Jain et al., 1991). Accordingly, this 389 

parameter has been interpreted as a marker of cell activation in human and bovine PMN 390 

(Lotz et al., 2004; McClenahan et al., 2000).  391 

TLR ligands induces a slightly increase (10%) in the phagocytosis activity of bovine PMN, 392 

except for ultrapure LPS. These findings are in line with the previous observation in human 393 

PMN where the exposure to TLR ligands induces an increase in the phagocytosis of latex 394 

beads (Hayashi et al., 2003). In our experimental setup, the PMN were incubated with 395 

bioparticles derived from S. aureus conjugated with the pHrodo dye, and the fluorescence 396 

occurs only in an acidified medium and permits the detection of intra-phagosomal 397 

phagocytosis discarding the particles attached –but not phagocytized-to the cell membrane. 398 

Rise in intracellular calcium concentration is an early event in the activation of bovine 399 

PMN and governs several functional responses such as ROS production, degranulation and 400 

expression changes in adhesion molecules (Burgos et al., 2011). In this context, we 401 
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intended to assess if TLRs ligands triggers an increase in the intracellular calcium 402 

concentration in bovines PMN exposed to ultrapure LPS, Pam3CSK4, HKLM and FSL-1. 403 

Observation of bovine PMN exposed to TLR ligands shows that only Pam3CSK4 10µg/ml 404 

displayed an increase in intracellular calcium influx compared with those not exposed or 405 

exposed to ultrapure LPS, HKLM and FSL-1. To our knowledge, this is the first report of 406 

increased calcium concentration in bovine PMN exposed to Pam3CSK4. 407 

In the present study the exposure of bovine PMN to Pam3CSK4 10µg/ml resulted in an 408 

intense increase of the ROS production compared with unstimulated PMN. In addition 409 

FSL-1 induced ROS production in a later time point compared with Pam3CSK4. In support 410 

of this, several ligands of the TLRs have been reported as modest inductors of ROS 411 

production in human PMN and have a priming effect over the ROS production induced by 412 

fMLP (Hayashi et al., 2003; Sabroe et al., 2003). In addition, differences between species 413 

have been reported previously in terms of the agent that induces ROS production and the 414 

magnitude of this response (Brown and Roth, 1991; Styrt, 1989). In the bovine model, it 415 

was reported previously that ROS production was increased with the TLR2/TLR6/dectin-1 416 

ligand zymosan (Nagahata et al., 2007) and LPS from Escherichia coli did not increase the 417 

total ROS production at a concentration of 50µg/ml (Revelo and Waldron, 2012), 418 

confirming our observations. To our knowledge this is the first report involving the 419 

activation of this parameter on bovine PMN exposed to Pam3CSK4. However, since TLRs 420 

were not silenced or neutralized we cannot discard that the effect elicited by Pam3CSK4 and 421 

FSL-1 is due to the interaction with other receptors.  422 

MMP-9 or gelatinase B is released from granules of activated PMN and can play a role in 423 

the recruitment of PMN in the mammary gland in mastitis or in the lung of cows suffering 424 
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Mannheimia haemolytica pneumonia  (Li et al., 1999; Starr et al., 2004). In the present 425 

study Pam3CSK4 induces MMP-9 secretion compared with control condition whereas LPS, 426 

HKLM nor FSL-1 not. To date, no reports on secretion of this enzyme from bovine PMN 427 

induced by TLR ligands were found, but an approximation can be made with the results 428 

obtained in bovine PMN incubated with zymosan, a TLR2/dectin-1 ligand that triggers a 429 

dose dependent release of MMP-9 (Higuchi et al., 2007). In addition, in mice neutrophils 430 

MMP-9 secretion was highly dependent of the TLR signaling adaptor protein MyD88 431 

(Bradley et al., 2012) suggesting an important role of the TLR signaling in the secretion of 432 

this enzyme.  433 

Delayed apoptosis of PMN at the site of inflammation is an important factor that can 434 

explain in part the maintenance of the inflammatory response in the tissues. In subclinical 435 

mastitis, condition characterized by a persistent accumulation of PMN in milk, delayed 436 

apoptosis of PMN has been described (Boutet et al., 2004). In this report, the percentage of 437 

apoptotic-, alive- and dead bovine PMN exposed  to ultrapure LPS, Pam3CSK4, HKLM and 438 

FSL-1 (for 24 h) was investigated. There were no changes over these parameters suggesting 439 

that the activation induced by Pam3CSK4 is not due to the increasing number of apoptotic 440 

or dead cells. In support of this, human PMN exposed to purified LPS and Pam3CSK4 at 441 

similar concentrations induce delayed constitutive apoptosis of cells after 4 h of treatment, 442 

but this effect is not maintained when cells were incubated for 22 h (Sabroe et al., 2003). In 443 

addition, a previous report on bovine PMN showed that after exposition to LPS for 20 h the 444 

PMN apoptosis  remained unaltered (Sohn et al., 2007), although the percentage of 445 

apoptotic PMN was higher (61% average) than the value obtained in our observations 446 

(23.7% average) for the unstimulated condition. 447 
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One unexpected observation was the unresponsiveness of bovine PMN to LPS in the 448 

different parameters evaluated since this molecule has been largely associated with the 449 

activation of PMN. To interpret this, at least two factors, excluding incubation time and 450 

concentrations must be taken into account. Firstly, it has been reported that different 451 

preparations of LPS can elicit different responses depending on the purification protocol 452 

used to obtain LPS. In all the experiments performed in this report an ultrapure LPS, with 453 

several enzymatic hydrolysis steps was used and it is expected that this preparation of LPS 454 

activates specifically TLR4 but not TLR2 (Hirschfeld et al., 2000; Tapping et al., 2000). 455 

The majority of reports involving activation of bovine PMN via LPS involve the utilization 456 

of LPS without further steps of purification, a factor that was described as a source of 457 

differences in the neutrophil responses (Hirschfeld et al., 2000; Sabroe et al., 2003). 458 

Secondly, LPS activation of PMN may depend on the presence of lipopolysaccharide 459 

binding protein (LBP) and the surface expression of CD 14, to form the LPS receptor 460 

complex and serum is considered an important source of these factors (Sohn et al., 2007; 461 

Soler-Rodriguez et al., 2000). In our experimental setup, isolated bovine PMN were 462 

exposed to ultrapure LPS in a medium without serum and therefore with no additional LBP. 463 

As PMN also lack CD14 expression, the observed unresponsiveness could be attributed to 464 

this. Further research is needed to confirm these assumptions.  465 

In general, the blockage of the calcium influx results in a decreased activity of PMN, 466 

supporting the hypothesis of the potential therapeutic use of calcium entry inhibitors to treat 467 

inflammatory processes with persistent PMN infiltration in bovines (Burgos et al., 2011). 2-468 

APB is a SOCE inhibitor that interferes with the IP3 receptor at the ER level, decreasing 469 

release of intracellular calcium from this organelle (Anderson et al., 2005; Hauser et al., 470 
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2001). This effect causes a decrease in the calcium influx, and specifically in bovine PMN, 471 

causes the inhibition of several responses induced by PAF (Conejeros et al., 2012). 472 

MRS1845 is a dihydropiridine that inhibits voltage-dependent L-type calcium channels. In 473 

a screening of this class of molecules using HL60 cells stimulated with ATP, MRS1845 474 

was one of the more potent inhibitors of SOCE (Harper et al., 2003) and to our knowledge 475 

this is the first report regarding the effect of MRS1845 in bovine PMN.  Both SOCE 476 

inhibitors decreases the intracellular calcium concentration induced by Pam3CSK4 and only 477 

2-APB decreased the ROS production but not the MMP-9 secretion indicating that the 478 

gelatinase secretion induced by Pam3CSK4 is independent of the SOCE signaling pathway. 479 

These results suggest that the ROS production induced by Pam3CSK4 is due to the release 480 

of intracellular calcium from the ER rather than the entry of extracellular calcium because 481 

MRS1845 was not able to decrease this response. This data also contributes to the evidence 482 

regarding the key role of calcium signaling as second messenger in the activation of bovine 483 

PMN by ligands from different origin.  484 

5. Conclusions 485 

In cattle, some of the pathologies which are characterized by the persisting presence of 486 

PMN in the injured tissue include bovine pneumonic pasteurellosis (Caswell et al., 1998) 487 

and subclinical mastitis (Boutet et al., 2004). Recognition of pathogens is critical in the 488 

initiation of inflammatory process and the activation of PMN by TLR ligands can be 489 

considered as one of the first steps of this process. The specificity of the recognition is 490 

variable between species and therefore is of interest the study of biological aspects of the 491 

innate immune system in domestic animals beyond classical models such as rodents 492 

(Werling et al., 2009). In this context this report gives useful information about the direct 493 
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activation of bovine PMN by the TLR 2/1 ligand Pam3CSK4. In addition, can be suggested 494 

that the SOCE inhibitor 2-APB can modulate the ROS production induced by Pam3CSK4 495 

whereas the induced secretion of MMP-9 seems to be independent of the increase in 496 

intracellular calcium concentration induced by this ligand.  497 
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Figures legend 664 

Figure 1 – Effect of synthetic TLR ligands on morphology of bovine PMN. 250,000 665 

isolated PMN were treated with the indicated concentrations of ultrapure LPS (uLPS), 666 

Pam3CSK4, HKLM and FSL-1 and the changes in size and shape were registered by flow 667 

cytometry. In the left panel dot plots of the side scatter (SSC) and forward scatter (FSC) are 668 

shown. In the right panel histograms showing the shift in FSC for each treatment is shown. 669 

The graphs are representative of three independent experiments. 670 

Figure 2 - TLR2 and TLR4 expression by bovine PMN. A) Isolated bovine PMN (0.5 x 671 

10
6
) were incubated with antibodies against CD11b (FITC) and either TLR2 (Alexa 647) or 672 

TLR4 (Alexa 647) with corresponding isotype controls. PMN were gated for CD11b 673 

expression with relative expression levels for TLR2 (-----) and TLR4 (- - - -) are shown 674 

relative to isotype controls (). TLR expression levels were determined by flow cytometry 675 

for 3 animals; data presented are representative with similar staining patterns observed for 676 

all animals tested. Data analysis was performed using Flow Jo V10 (www.flowjo.com Tree 677 

Star, Inc., USA). B) HEK cells (0.2 x 10
6
), native and expressing bovine TLR2 or bovine 678 

TLR4/MD2, were incubated with antibodies against TLR2 or TLR4 and corresponding 679 

isotype controls. Relative expression levels of TLR2 or TLR4 (- - - -) are shown compared 680 

to HEK cells alone (-----) and isoypte controls (). Data analysis was performed using 681 

Flow Jo V10 (www.flowjo.com Tree Star, Inc., USA). 682 

Figure 3 – Stimulation of bovine PMN with a synthetic TLR2 ligand results in 683 

increased intracellular calcium concentration and ROS production. A) 1x10
6
 isolated 684 

bovine PMN loaded with FLUO4-AM were treated with the indicated concentrations of the 685 

TLR ligands and the area under the curve (AUC) of the fluorescence emitted after 400 686 
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seconds was calculated. B) 1x10
6
 isolated bovine PMN were incubated with luminol 80µM 687 

and treated with the indicated concentrations of the TLR ligands. The chemoluminiscence 688 

was registered and the AUC was calculated. The upper X axis indicates the HKLM 689 

concentration in cells/ml and the lower X axis indicates the concentration of uLPS, 690 

Pam3CSK4 and FSL-1 in µg/ml. Both results were plotted in base 10 logarithmic scale. 691 

Statistical significance was determined by ANOVA and Dunnet test against the control 692 

(vehicle) condition for each ligand. *=p≤0.05, **=p≤0.01, n=3. 693 

Figure 4 – Pam3CSK4-induced MMP9 secretion from bovine PMN. 1x10
6 

PMN were 694 

treated with the indicated concentrations of ultrapure LPS, Pam3CSK4, HKLM and FSL-1 695 

and the supernatants were recovered and analyzed by zymography. The clear bands over 696 

blue background, indicative of gelatinolitic activity, were subject to densitometry analysis 697 

and the values were normalized to the control condition for each ligand. Bars represent the 698 

mean ± SEM of three independent experiments. Statistical significance was determined by 699 

ANOVA and Dunnet test against the control (vehicle) condition for each ligand. **=p≤0.01 700 

Figure 5 – Pam3CSK4-induced MMP9 secretion partially depends on ROS production. 701 

1x10
6
 PMN were pretreated for 15 min with the SOCE inhibitors 2-APB and MRS1845 702 

prior to the stimulation with Pam3CSK4 10 µg/ml and the calcium influx (A), ROS 703 

production (B) and MMP-9 secretion was determined as described previously. Bars 704 

represent the mean ± SEM of three independent experiments. Statistical significance was 705 

determined by ANOVA and Dunnet test against the control (vehicle) condition. 706 

Figure 6 – Stimulation with TLR ligands does not induce apoptosis in bovine PMN. 707 

500,000 PMN were incubated with the TLR ligands in RPMI medium at the indicated 708 
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concentrations. After 24 hours, the cells were analyzed using a commercial kit for the 709 

detection of Annexin V positives (apoptotic) and Propidium iodide positive (dead) cells by 710 

flow cytometry. No changes were observed compared with the control (vehicle) condition. 711 

Bars represent the mean ± SEM of three independent experiments. 712 

 713 

Table legend 714 

Table 1. Incubation with TLR ligands increase the percentage of phagocytosis-positive 715 

PMN 716 

TLR ligand Vehicle uLPS  

1 µg/ml 

Pam3CSK4 

 10 µg/ml 

HKLM  

10
8
 cells/ml 

FSL-1  

1 µg/ml 

% of phagocytosis-

positive PMN 
71.98±5.00 75.87±5.49

 ns
 83.85±3.31

* 
84.82±3.12

*
 84.22±2.87

*
 

 717 

 718 

Percentages of phagocytosis-positive PMN for each condition are shown as mean ± SEM. 719 

Significance was determined by a Student t test comparing with the untreated condition. 720 

ns= non-significant, *=p<0.05 (n=6). 721 
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