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Abstract: The International Committee for Taxonomy of Viruses (ICTV) recognizes four 

species of tick-borne orbiviruses (TBOs): Chenuda virus, Chobar Gorge virus, Wad Medani 

virus and Great Island virus (genus Orbivirus, family Reoviridae). Nucleotide (nt) and 

amino acid (aa) sequence comparisons provide a basis for orbivirus detection and 

classification, however full genome sequence data were only available for the Great Island 

virus species. We report representative genome-sequences for the three other TBO species 

(virus isolates: Chenuda virus (CNUV); Chobar Gorge virus (CGV) and Wad Medani virus 

(WMV)). Phylogenetic comparisons show that TBOs cluster separately from insect-borne 

orbiviruses (IBOs). CNUV, CGV, WMV and GIV share low level aa/nt identities with other 

orbiviruses, in ‘conserved’ Pol, T2 and T13 proteins/genes, identifying them as four distinct 

virus-species. The TBO genome segment encoding cell attachment, outer capsid protein 1 
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(OC1), is approximately half the size of the equivalent segment from insect-borne 

orbiviruses, helping to explain why tick-borne orbiviruses have a ~1 kb smaller genome. 

Keywords: Chenuda virus; Chobar Gorge virus; Wad Medani virus; Great Island virus; 

Kemorovo virus; Orbivirus; Reoviridae; full genome; dsRNA virus; sequencing 

 

1. Introduction 

The orbiviruses are icosahedral, non-enveloped dsRNA viruses belonging to the genus Orbivirus 

within the family Reoviridae. The genus currently includes 22 species (representing 22 distinct virus 

serogroups) that have been recognized by the International Committee for the Taxonomy of Viruses 

(ICTV) [1]. Recent phylogenetic comparisons of isolates from different Orbivirus species, with 

‘unclassified’ isolates from the genus, have led to proposals to ICTV for recognition of seven additional 

species [1–8]. 

The orbiviruses have a wide host range that collectively includes domestic and wild ruminants, 

equines, marsupials, sloths, bats, birds and humans [1,9–12]. They also infect and are transmitted by a 

range of hematophagus arthropods, including Culicoides, phlebotomines (sandflies), mosquitoes and 

ticks. The tick-borne orbivirus (TBOs) species include Chenuda virus, Chobar Gorge virus, Wad 

Medani virus and Great Island virus. It has been suggested that ‘Kemerovo virus’ (currently a  

sub-group within Great Island virus) could also be recognized as a separate species [13,14]. The genus 

includes one ‘tick orbivirus’ St Croix River virus (SCRV), as the only member of the distinct and more 

distantly related species St Croix River virus. 

The species Chenuda virus includes seven serotypes/strains: Chenuda virus (CNUV), Baku virus 

(BAKUV), Essaouira virus (ESSV), Huacho virus (HUAV), Kala Iris virus (KIRV), Mono Lake virus 

(MLV) and Sixgun city virus (SCV). CNUV was isolated in 1954 from ticks in Egypt, with serological 

evidence of infection in birds, camels, pigs, buffalo, dogs, donkeys and rodents [9]; BAKUV was 

isolated in 1970 in the USSR [9]; and HUAV was isolated in Peru in 1967, while MLV and SCV were 

isolated in 1966 and 1969, respectively, in the USA. The geographical distribution of ESSV and KIRV 

has been described in Morocco [15]. The species Chobar Gorge virus includes two serotypes/strains: 

Chobar Gorge virus (CGV) isolated in 1970 from Ornithodoros spp. ticks in Nepal; and Fomede virus 

(FV) isolated in 1978 from a bat in Kindia, Guinea. There is serological evidence for infection of cattle, 

horses, sheep, buffalo and humans [9]. The species Wad Medani virus includes two serotypes: Wad 

Medani virus (WMV) isolated in 1952 from ticks collected at Wad Medani in Sudan; and Seletar virus 

(SELV) isolated in 1961 from ticks collected in the Seletar district, Singapore. There is serological 

evidence for infection of cattle, camel, pigs, buffalo and rodents [1,9,16]. 

The orbivirus genome consists of ten linear segments of dsRNA (Seg-1 to Seg-10 in order of 

decreasing molecular weight), which are packaged within a triple layered icosahedral protein capsid [1]. 

The genome segments encode seven structural (VP1 to VP7) and four non-structural (NS1, NS2, 

NS3/NS3a, and NS4) proteins [17–20] (Tables 1 and 2). In recent years, genome sequence data has 

steadily become more important for virus identification [5,21,22]. Full genome data and phylogenetic 

comparisons have supported development of faster and more reliable, virus-species specific and  
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virus-serotype specific diagnostic assays for some Orbivirus species, using either conventional or  

real-time RT-PCR [23–25]. Sequence data also provide a basis for molecular epidemiology studies, 

identifying different topotypes, virus lineages and even the origins of the individual genome segments 

present within reassortant orbivirus strains [5,13,22,26–30]. 

Full-genome sequence data are now available for representative/reference strains of the ten 

established species of the Culicoides-borne orbiviruses (CBOs), for one phlebotomine-borne orbivirus 

(PBO) and four of the six mosquito-borne orbiviruses (MBOs). Although full genome sequence data are 

also available for SCRV (a tick orbivirus (TO)), the genomes from isolates from only one species of 

TBOs have previously been fully sequenced (for isolates Great island virus (GIV), Kemerovo virus 

(KEMV) and Tribec virus (TRBV)). We report full genome sequences for representative isolates of the 

species Chenuda virus, Chobar Gorge virus and Wad Medani virus, providing a basis for further comparisons 

to other orbiviruses and the identification of novel TBO isolates and species (see Tables 1 and 2). 

2. Results 

2.1. Virus Propagation and Genomic dsRNA Electropherotype 

Isolates of CNUV (EGY1954/01), CGV (NEP1970/01) and WMV (SUD1952/01) were obtained 

from the Orbivirus Reference Collection (ORC) at The Pirbright Institute [31]. These viruses were used 

to infect BHK cell monolayers, inducing characteristic cytopathic effects (CPE) at 48 to 72 hours post 

infection. Genomic dsRNAs purified from these infected cell cultures, were analyzed by 1% agarose gel 

electrophoresis (AGE) (Figure 1). Each of the tick-borne orbiviruses exhibited an overall 2-4-4 size 

distribution (2 large, 4 medium and 4 small genome-segments), although considerable variability was 

observed in the relative migration/sizes of both their ‘medium’ and ‘small’ genome segments (Seg-3 to 

Seg-6 and Seg-7 to Seg-10) (Figure 1), supporting classification of these isolates within distinct species [1]. 

The mosquito-borne orbiviruses also show a 2-4-4 distribution (with a different overall size distribution), 

while the Culicoides-borne orbiviruses have a much larger outer capsid protein 1 (OC1) encoding gene, 

resulting in a 3-3-4 migration pattern.  
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Table 1. Characteristics of dsRNA genome segments and proteins of the Chenuda virus (CNUV), Chobar Gorge virus (CGV) and Wad Medani 

virus (WMV) viruses. 

Virus/Segment 
Segment 

Length (bp) 

Protein 

Encoded 

Predicted 

Protein Length 

(aa) 

Predicted 

Protein Mass 

(kDa) 

ORFs bp 

(Including Stop 

Codon) 

5' 

NCRs 
3' NCR 

5' Conserved 

Termini 

3' Conserved 

Termini 

% GC 

Content 

Accession 

Numbers 

CNUV            

Seg-1 3895 Pol 1285 145.08 11-3868 10 30 5'-GUAAAA CGAUAC-3' 53.6 KP268794 

Seg-2 2787 T2 908 102.62 13-2739 12 51 5'-GUAAAA UCCUAC-3' 54.7 KP268795 

Seg-3 1931 CaP 632 72.14 7-1905 6 29 5'-GUAAAA GAGUAC-3' 54.9 KP268796 

Seg-4 1767 OC1 568 63.34 18-1724 17 46 5'-GUAUAA ACUUAC-3' 54.3 KP268797 

Seg-5 1700 TuP 536 60.8 33-1643 32 60 5'-GUAAAA UGCUAC-3' 56.3 KP268798 

Seg-6 1672 OC2 535 58.92 25-1632 24 43 5'-GUAAAA GCUUAC-3' 56.5 KP268799 

Seg-8 1177 T13 365 40.71 18-1115 17 65 5'-GUAAAA ACUUAC-3' 57.3 KP268801 

Seg-7 1230 ViP 384 42.54 29-1183 28 50 5'-GUAAAA CGAUAC-3' 57.1 KP268800 

Seg-9 1005 
Hel 315 33.21 16-963 15 45 

5'-GUAAAA AGCUAC-3' 56.9 KP268802 
NS4 183 21.67 116-667 115 341 

Seg-10 746 
NS3 223 23.69 21-692 20 57 

5'-GUAAAA UGAUAC-3' 57.4 KP268803 
NS3a 211 22.3 57-692 56 57 

Total 17910      Consensus 5'-GUAA/UAA NG/C/ANUAC-3` 55.9  

CGV            

Seg-1 3888 Pol 1284 144.64 12-3866 11 25 5'-GUUUA ACCUAC-3' 52.1 KP268784 

Seg-2 2796 T2 909 103.26 15-2744 14 55 5'-GUUUA AGAUAC-3' 50.6 KP268785 

Seg-3 1944 Cap 635 73.1 9-1916 8 31 5'-GUUUA AGAUAC-3' 52 KP268786 

Seg-4 1806 OC1 587 65.88 18-1781 17 28 5'-GUUUA GGAUAC-3' 50.5 KP268787 

Seg-5 1673 TuP 524 59.64 39-1613 38 63 5'-GUUUA GGAUAC-3' 53.7 KP268788 

Seg-6 1644 OC2 535 58.24 17-1624 16 23 5'-GUUUA AGAUAC-3' 54.9 KP268789 

Seg-7 1180 T13 355 39.63 22-1089 21 94 5'-GUUUA AGAUAC-3' 53.3 KP268790 

Seg-8 1167 ViP 369 41.52 20-1129 19 41 5'-GUUUA AGAUAC-3' 55 KP268791 
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Table 1. Cont. 

Virus/ 

Segment 

Segment 

Length (bp) 

Protein 

Encoded 

Predicted Protein 

Length (aa) 

Predicted Protein 

Mass (kDa) 

ORFs bp (Including 

Stop Codon) 
5' NCRs 3' NCR 

5' Conserved 

Termini 

3' Conserved 

Termini 

% GC 

Content 

Accession 

Numbers 

CGV            

Seg-9 1093 
Hel 346 36.76 15-1055 14 41 

5'-GUUUA AGAUAC-3' 54 KP268792 
NS4 238 28.26 46-762 45 334 

Seg-10 708 
NS3 206 23.16 22-642 21 69 

5'-GUUUA AGAUAC-3' 53.8 KP268793 
NS3a* 192 21.64 64-642 63 69 

Total 17899      Consensus 5'-GUUUA A/GG/CA/CUAC-3' 53  

WMV            

Seg-1 3944 Pol 1303 146.7 11-3922 10 25 5'-GUAUAA UGCUAC-3' 52.4 KP268804 

Seg-2 2791 T2 909 102.37 13-2742 12 52 5'-GUAUAA AGCUAC-3' 53.4 KP268805 

Seg-3 1920 Cap 622 71.21 8-1876 7 47 5'-GUUUAA GACUAC-3' 52.1 KP268806 

Seg-4 1805 OC1 580 65.44 19-1761 18 47 5'-GUAAAA CGCUAC-3' 53.8 KP268807 

Seg-5 1761 TuP 535 60.28 28-1635 27 129 5'-GUAAAA UGCUAC-3' 54.6 KP268808 

Seg-6 1686 OC2 542 58.92 23-1651 22 38 5'-GUUAAA UGCUAC-3' 53.4 KP268809 

Seg-8 1169 T13 354 39.08 19-1083 18 89 5'-GUAAAA GGCUAC-3' 54.9 KP268811 

Seg-7 1207 ViP 376 39.99 26-1156 25 54 5'-GUAAAA UGCUAC-3' 57 KP268810 

Seg-9 997 
Hel 313 33.8 14-955 13 45 

5'-GUAAAA UGCUAC-3' 53.2 KP268812 
NS4 189 22.42 102-671 101 329 

Seg-10 729 
NS3 219 23.85 15-674 14 58 

5'-GUUAAA UCCUAC-3' 53.5 KP268813 
NS3a 214 23.27 30-674 29 58 

Total 18009      Consensus 5'-GUA/UA/UAA NG/A/CCUAC-3' 53.8  

GIV              

Seg-1 3897 Pol 1285 146.84 12-3869 10 31 5'-GUAAA AUCCUAC-3' 55.9 HM543465 

Seg-2 2794 T2 908 102.9 19-2745 12 52 5'-GUAAA AAGAUAC-3' 57.6 HM543466 

Seg-3 1936 Cap 635 72.81 6-1913 7 26 5'-GUAAA AAGCUAC-3' 57.3 HM543467 

Seg-4 1722 OC1 551 62.32 18-1673 18 52 5'-GUAAA AGGAUAC-3' 58.8 HM543469 
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Table 1. Cont. 

Virus/ 

Segment 

Segment 

Length (bp) 

Protein 

Encoded 

Predicted Protein 

Length (aa) 

Predicted Protein 

Mass (kDa) 

ORFs bp (Including 

Stop Codon) 
5' NCRs 3' NCR 

5' Conserved 

Termini 

3' Conserved 

Termini 

% GC 

Content 

Accession 

Numbers 

GIV            

Seg-5 1731 Tup 531 59.86 41-1636 27 98 5'-GUAAA AAGAUAC-3' 59 HM543468 

Seg-6 1666 OC2 537 59.51 21-1634 22 35 5'-GUAAA GUCCUAC-3' 58.6 HM543470 

Seg-7 1181 T13 357 39.64 18-1091 18 93 5'-GUAAA AAGAUAC-3' 58.8 HM543471 

Seg-8 1172 ViP 359 38.87 46-1125 25 50 5'-GUAAA AGGAUAC-3' 59.3 HM543472 

Seg-9 1056 Hel 321 34.45 55-1020 13 39 5'-GUAAA AAGGUAC-3' 58.3 HM543473 

  NS4 190 22.52 176-748 175 311     

Seg-10 703 NS3 171 19.4 146-661 145 45 5'-GUAAA AGGAUAC-3' 57.6 HM543474 

  NS3a 149 16.99 212-661 211 45     

Total 17858      Consensus 5'-GUAAA ……….UAC-3' 58.1  

KEMV              

Seg-1 3896 Pol 1285 146.01 12-3868 11 31 5'-GUAAAA AGGAUAC-3' 55.3 HQ266591 

Seg-2 2792 T2 908 102.74 19-2745 18 50 5'-GUAAAA AGGAUAC-3' 57.1 HQ266592 

Seg-3 1934 Cap 632 72.4 6-1904 5 33 5'-GUAAAA AACUUAC-3' 55.2 HQ266593 

Seg-4 1730 OC1 554 62.53 18-1682 17 51 5'-GUAAAA AAGAUAC-3' 56.4 HQ266594 

Seg-5 1719 Tup 529 60.03 40-1629 39 93 5'-GUAAAA AAGAUAC-3' 58.9 HQ266595 

Seg-6 1668 OC2 537 59.44 23-1636 22 34 5'-GUAAAA AGGUUAC-3' 56.5 HQ266596 

Seg-7 1197 ViP 368 40.93 46-1152 45 48 5'-GUAAAA AAGAUAC-3' 56.4 HQ266597 

Seg-8 1183 T13 357 39.5 19-1092 18 94 5'-GUAAAA AAGUUAC-3' 57.7 HQ266598 

Seg-9 1049 
Hel 317 34.19 59-1012 58 40 

5'-GUAAAA AAGAUAC-3' 54.1 HQ266599 
NS4 151 17.62 285-740 284 312 

Seg-10 707 
NS3 214 23.41 19-663 18 47 

5'-GUAAAA AGGAUAC-3' 55.4 HQ266600 
NS3a 208 22.78 37-660 36 47 

Total 17875      Consensus 5'-GUAAAA AA/GG/CA/UUAC-3' 56.3  

* In NS3 ORF, 1st, 2nd and 4th codons encode methionine, therefore putative NS3a starts at nucleotide position 64. For the abbreviations of putative proteins refer to Table 3. 
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Table 2. List of recognized Orbivirus species and proposed new species with their coding assignments and available genome sequence data. 

   Genome Segments/Putative Proteins Encoded Vectors 

  Seg 1 2 3 4 5 6 7 8 9 10  

Sl No Serogroup/Species Abbreviation Pol OC1 T2 OC1 T2 Cap Cap OC1 Tup Cap Tup OC2 T13 ViP Hel T13 ViP Hel ViP NS3  

1 Bluetongue virus BTV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √  

2 African horse sickness virus   AHSV √ √ − − √ − √ − − − √ √ − − √ √ − − √ √  

3 Equine encephalosis virus EEV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √  

4 Eubenangee virus EUBV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √  

5 
Epizootic haemorrhagic 

disease virus 
EHDV √ √ − − √ − √ − − − √ √ − √ − √ − √ − √ CBOs 

6 Lebombo virus LEBV √ − √ √ − − √ − − − √ √ √ − − − √ √ − √  

7 Orungo virus ORUV √ √  − √ − √ − − − √ √ √ − − − √ √ − √  

8 Palyam virus virus PALV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √  

9 Warrego virus WARV √ √ − − √ − √ − − − √ √ √ − − √ − √ − √  

10 Wallal virus WALV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √  

11 Changuinola virus CGLV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √ PBO 

12 Corriparta virus CORV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √  

13 Ieri virus IERIV − − − − − − − − − − − − − − − − − − − −  

14 Peruvian horse sickness virus PHSV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √ MBOs 

15 Umatilla virus UMAV √ − √ √ − − − − √ √ − √ − √ − √ − √ − √  

16 Wongorr virus WGRV − − P* − − − − − − − − − − − − − − − − −  

17 Yunnan orbivirus YUOV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √  

18 Chobar gorge virus CGV √ − √ − − √ − √ − − √ √ √ − − − √ √ − √  

19 Chenuda virus CNUV √ − √ − − √ − √ − − − √ − √ − √ − √ − √ TBOs 

20 Wad Medani virus WMV √ − √ − − √ − √ − − √ √ − √ − √ − √ − √  

21 Great island virus GIV √ − √  − √  √ − − √ √ √ − − − √ √ − √  

22 St'Croix river virus SCRV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √ TO 
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Table 2. Cont. 

   Genome Segments/Putative Proteins Encoded Vectors 

  Seg 1 2 3 4 5 6 7 8 9 10  

Sl No Proposed species Abbreviation Pol OC1 T2 OC1 T2 Cap Cap OC1 Tup Cap Tup OC2 T13 ViP Hel T13 ViP Hel ViP NS3  

1 Pata virus PATAV √ √ − − √ − √ − − − √ √ − √ − √ − √ − √ CBO 

2 Kemerovo virus KEMV √ − √  − √  √ − − √ √ − √ − √ − √ − √ TBO 

3 Breu Branco virus  √ − √ √ − − √ − − − √ √ − √ − √ − √ − √ MBO 

4 Sathuvachari virus SVIV √ − √ √ − − √ − − − √ √ − √ − √ − √ − √ MBO 

5 Mobuck virus  √ − √ √ − − √ − − − √ √ − √ − √ − √ − √ MBO 

6 Heramatsu virus HERMV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √ CBO 

7 Tibet orbivirus TIBOV √ √ − − √ − √ − − − √ √ √ − − − √ √ − √ CBO 

For the abbreviations of putative proteins refer to Table 3. Prototype viruses of recognized species, for which full genomes are available, are highlighted in grey. Viruses 

sequenced in this study are highlighted in green. √ = Full length sequence are available; P* = Partial sequence only; CBO = Culicoides-borne orbivirus; MBO =  

Mosquito-borne orbivirus; TBO = Tick-borne orbivirus; TO = Tick orbivirus. Accession numbers for the sequences of each genome segment are provided in supplementary 

data Table S1. 
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Table 3. Coding assignments of the Tick-borne [Chenuda virus (CNUV), Chobar Gorge virus (CGV), Wad Medani virus (WMV), Great Island 

virus (GIV) and Kemerovo virus (KEMV)], Culicoides-borne [Bluetongue virus (BTV)], phlebotomine-borne [Changuinola virus (CGLV)] and 

mosquito-borne [Corriparta virus (CORV), Peruvian horse sickness virus (PHSV), Yunnan orbivirus (YUOV)] orbiviruses. 

Seg No Putative Function 
BTV/CGLV (CBO/PBO) 

Genes 

CORV/PHSV/YUOV 

(MBOs) Genes 

CNUV/WMV (TBOs) 

Genes 
CGV (TBO) Genes GIV (TBO) Genes 

KEMV (TBO) 

Genes 

1 
RNA dependent RNA 

Polymerase (Pol) 
Seg-1, VP1(Pol) Seg-1, VP1(Pol) Seg-1, VP1(Pol) Seg-1, VP1(Pol) Seg-1, VP1(Pol) Seg-1, VP1(Pol) 

2 
Outer capsid  

protein (OC1) 

Seg-2, VP2(OC1) 
Seg-2, VP2(T2)  Seg-2, VP2(T2)  Seg-2, VP2(T2)  Seg-2, VP2(T2)  Seg-2, VP2(T2) 

3 T2, Major subcore protein (T2) Seg-3, VP3(T2) Seg-3, VP3(OC1) Seg-3, VP3(CaP)  Seg-3, VP3(CaP)  Seg-3, VP3(CaP)  Seg-3, VP3(CaP) 

4 
Minor core protein—Capping 

enzyme (CaP) 
Seg-4, VP4(CaP) Seg-4, VP4(CaP)  Seg-4, VP4(OC1) 

Seg-4, VP4(OC1)  Seg-4, NS1(TuP) 
Seg-4, VP4(OC1) 

5 Tubule protein (TuP) Seg-5, NS1(TuP) Seg-5, NS1(TuP) Seg-5, NS1(TuP) Seg-5, NS1(TuP) Seg-5, VP4(OC1)  Seg-5, NS1(TuP) 

6 Outer capsid protein (OC2) Seg-6, VP5(OC2) Seg-6, VP5(OC2) Seg-6, VP5(OC2) Seg-6, VP5(OC2) Seg-6, VP5(OC2) Seg-6, VP5(OC2) 

7 
Major core-surface protein 

(T13) 

Seg-7, VP7(T13)  
Seg-7, NS2(ViP) 

Seg-7, NS2(ViP)  
Seg-7, VP7(T13) 

Seg-7, VP7(T13)  
Seg-7, NS2(ViP) 

8 
Viral inclusion body protein 

(ViP) 
Seg-8, NS2(ViP) Seg-8, VP7(T13)  Seg-8, VP7(T13) Seg-8, NS2(ViP) Seg-8, NS2(ViP) Seg-8, VP7(T13) 

9 
Minor core protein—helicase 

enzyme (Hel) 
Seg-9, VP6(Hel), NS4 Seg-9, VP6(Hel), NS4 Seg-9, VP6(Hel), NS4 Seg-9, VP6(Hel), NS4 Seg-9, VP6(Hel), NS4 

Seg-9, VP6(Hel), 

NS4 

10 
Virus release  

protein (VRP) 
Seg-10, NS3(VRP) Seg-10, NS3(VRP) Seg-10, NS3(VRP) Seg-10, NS3(VRP) Seg-10, NS3(VRP) Seg-10, NS3(VRP) 

CBO = Culicoides-borne orbivirus; MBO = mosquito-borne orbivirus; TBO = Tick-borne orbivirus; TO = tick orbivirus. The arrows indicate the shift of corresponding 

segments in different Orbivirus species. Previous studies have indicated that BTV genome-segments 2, 3, 4, 5 and 6 are homologous to segments 5, 2, 3, 6 and 4, respectively, 

of GIV [13,32]. However, the analyses of TBOs presented here indicate that Seg-2, 3, 4 of BTV are homologous to Seg-4, 2 and 3 of the TBOs. The genome segments of the 

different orbiviruses are numbered in order of decreasing size. The black arrows indicate the relative positions of homologous segments, where their size order has changed. 
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Figure 1. Agarose gel (1%) electrophoretic profile of the dsRNAs of the tick-borne orbivirus 

isolates Chenuda virus (CNUV), Chobar Gorge virus (CGV) and Wad Medani virus (WMV) 

along with mosquito-borne and Culicoides-borne orbiviruses. Lane 1 = BTV-1w 

(LIB2007/05); Lane 2 = EHDV-8e (AUS1982/05); Lane 3 = CORV (AUS1960/01);  

Lane 4 = CGV (NEP1970/01); Lane 5 = CNUV (EGY1954/01); and Lane 6 = WMV  

(SUD 1952/01). 

2.2. Sequence Analyses of the Chenuda virus (CNUV), Chobar Gorge Virus (CGV) and Wad Medani 

Virus (WMV) Genome Segments 

Full length nucleotide sequences for Seg-1 to Seg-10 of Chenuda virus (CNUV), Chobar Gorge 

(CGV) and Wad Medani virus (WMV) (ORC isolates: EGY1954/01 NEP1970/01 and SUD1952/01, 

respectively) have been determined and submitted to GenBank, with accession numbers KP268794 to 

KP268803; KP268784 to KP268793; and KP268804 to KP26813, respectively. The properties of the 

tick-borne orbiviruses genome segments and their encoded proteins are given in Table 1, allowing the 

coding assignments to be determined for each genome segment and compared to data for other 

orbiviruses (Table 2). The total genome of CNUV, CGV, WMV, GIV and KEMV are 17,910, 17,899, 

18,009, 17,858 and 17,874 base pairs (bp), respectively. Although these viruses show some differences 

in the sizes of their equivalent genome segments, their full genome sizes are comparable, although 

smaller (~ 1 kb) (possibly reflecting their smaller OC1 protein and gene) than the insect-borne orbivirus 

(IBO) genomes, which range from 18,915 bp in Palyam virus (a CBO), to 19816 bp in Yunnan orbivirus 

(a MBO). 

The average GC content of the Culicoides-borne orbiviruses genome segments is between 39% in 

Warrego virus (WARV) to 45.9% in equine encephalosis virus (EEV). Changuinola virus (CGLV), 

which is a phlebotomine-borne orbivirus, has 41.7% GC, while the mosquito-borne orbiviruses have a 

more diverse GC content between 36.7% in Peruvian horse sickness virus (PHSV) to 45.1% in Corriparta 

virus (CORV). In contrast, the genomes of all of tick-borne orbiviruses that have been sequenced have 
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a markedly higher GC content than the insect-borne orbiviruses, between 53% (CGV) and 58.1% (GIV) 

(Table 1). St Croix River virus (SCRV), which is a tick-associated virus and must therefore also replicate 

in tick cells, also has a high GC content of 51.9%. 

Like the other orbiviruses, all of the genome segments of the TBOs have conserved regions at their 

5'and 3' ends, and the first and last two nucleotides in all segments are inverted complements (Table 1). 

The 5' terminal dinucleotides and 3' trinucleotides are also identical to those found in members of other 

Orbivirus species. Collectively, the terminal non-coding regions (NCR) represent 3.67%, 3.63%, 4.11%, 

5% and 4.32% of the CNUV, CGV, WMV, GIV and KEMV genomes, respectively. Like most genome 

segments from other orbiviruses, RNAs of CNUV, CGV, WMV, GIV and KEMV all have shorter 5' 

than 3' NCRs (Table 1). 

Coding assignments for the TBO genome segments are shown in Table 3. Most of the TBO RNA 

segments are monocistronic, containing a single major open reading frame (ORF), which spans almost 

the entire length of the positive strand. The coding assignments for CGV, CNUV and WMV are 

identical, except in Seg-7 and 8, which have swapped their relative migration order/size in CGV. The 

TBO coding assignments are different from those of the insect-borne orbiviruses (Table 3), primarily 

because of differences in the sizes of the OC1 gene, which is much smaller (approximately half the size 

of the homologous gene from the insect-borne orbiviruses). 

As previously reported for BTV and Great Island virus (GIV) [18,19], Seg-9 of the TBOs also has 

two overlapping but out-of frame ORFs. The upstream ORF, which spans almost the entire length of 

Seg-9, encodes the viral helicase, VP6(Hel), while the second and overlapping +2 ORF, encodes NS4 

(Table 1). NS4 is hydrophilic and exhibits a high level of variability in both length and sequence, 

between the members of different Orbivirus species, sharing aa identities that range between 3.7% 

(between CNUV and WARV) to 51.3% (between BTV-8w and EHDV-1w). NS4 of CGV, CNUV, 

WMV, GIV and KEMV is 238aa, 183aa, 189aa, 190aa and 151aa long, respectively. NS4 of CGV is 

approximately 20% larger than in the other TBOs and is larger even than the CGV NS3 protein. The 

insect-borne orbiviruses usually have a smaller NS4 (76 aa in EHDV to 152 aa in CORV), although this 

does not significantly affect the overall size of Seg-9, which also codes for the viral helicase, VP6. 

2.3. Phylogenetic Analyses of the Tick-Borne Orbiviruses VP1/Pol Protein 

The orbivirus RNA dependent RNA polymerase (Pol) (encoded by Seg-1), is highly conserved and 

has previously been used in phylogenetic studies to classify viruses from the family Reoviridae, at both 

the species and genus level [11,22,26,33]. Phylogenetic comparisons of VP1(Pol)/Seg-1 showed higher 

sequence identity levels between the TBOs, than with the insect-borne orbiviruses (Table 4). Three 

groups were identified (Figure 2a,b) that correlate with the arthropod vectors used by each virus: one 

group consists of the CBOs and PBOs; a second group includes the MBOs; while the third group 

comprises TBOs. Distinct branching of CNUV, CGV, WMV and GIV within the TBO group again 

supports their classification within distinct Orbivirus species. In contrast, GIV and KEMV group more 

closely together, consistent with their current classification as different subgroups within the same 

Orbivirus species. As previously suggested [13], SCRV (which is a distant member of the genus that is 

thought to be a tick orbivirus (TO) rather than a TBO) ‘roots’ all other orbiviruses (Figure 2a,b). 
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Table 4. Percent amino acid and nucleotide identities of CNUV, CGV, WMV, GIV and KEMV viruses with other orbiviruses in VP1, T2 and 

T13 protein/genes. 

 CNUV CGV WMV GIV KEMV 

 VP1 T2 T13 VP1 T2 T13 VP1 T2 T13 VP1 T2 T13 VP1 T2 T13 

% aa identities                

BTV8w (CBO) 46.7 37.1 23.6 47.8 37.1 26.3 43.2 35.8 24.9 46.2 36.2 21.5 45.1 35.7 24.4 

PHSV (MBO) 49.5 46.6 32.9 51.6 46.2 28.4 46.9 45.5 31.6 47.6 45.2 29.5 47.9 45.4 30.1 

SCRV (TO) 39.5 24.9 16.5 40.3 24.7 18.9 39.2 24.6 22.3 41.5 24.6 17.1 39 25.1 18.5 

TBOs                

CGV 55.3 50.2 34.5 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

WMV 54.2 59.1 47.5 51.9 47.7 34.6 ---- ---- ---- ---- ---- ---- ---- ---- ---- 

GIV 58.3 62.4 52.8 53.7 51.5 35.3 54.2 57.9 52 ---- ---- ---- ---- ---- ---- 

KEMV 57.6 64.5 50.6 52.5 53.4 35.6 54.8 57.8 50.8 72.8 82.8 82.1 ---- ---- ---- 

% nt identities                

BTV8w (CBO) 50.6 45.4 34.4 52.3 45.2 36.5 49.1 43.9 35.4 49.7 44.7 36.4 49.7 44.8 35.4 

PHSV (MBO) 51.5 49.8 42.5 52.5 51.6 40.1 50.2 48.4 42.5 49.8 48.2 38.7 51.1 48.1 40.4 

SCRV (TO) 46.1 38.4 34.3 46.7 38.9 33.4 46.5 38.5 36.3 47.8 38.6 34.2 46.1 39.1 35 

TBOs                

CGV 53.9 53.7 43.5 ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 

WMV 54.6 57.8 51.5 53.1 53.2 45.4 ---- ---- ---- ---- ---- ---- ---- ---- ---- 

GIV 56.5 60.6 54.3 54.2 54.1 46.1 55 58.2 56.2 ---- ---- ---- ---- ---- ---- 

KEMV 57.1 61.6 56.6 53.8 54.6 44 55.6 57.2 55.4 65.4 73.4 70.9 ---- ---- ---- 

CBO = Culicoides-borne orbivirus; MBO = Mosquito-borne orbivirus; TBO = Tick-borne orbivirus; TO = Tick orbivirus. 
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Figure 2. Maximum likelihood (ML) trees showing phylogenetic comparisons of  

(a) VP1 protein, (b) VP1 nucleotide and (c) T2 protein sequences of CNUV, CGV and  

WMV with other Orbivirus species. The numbers at nodes indicate bootstrap confidence 

values after 1000 replications. The scale bar represents the number of substitutions per site.  

The CNUV, CGV and WMV isolates characterized in this study are marked with a black dot.  

CGV = Chobar Gorge virus; CNUV = Chenuda virus; WMV = Wad Medani virus;  

CBOs = Culioides-borne orbiviruses; PBO = Phlebotomine-borne orbivirus; MBOs = 

Mosquito-borne orbiviruses; TBOs = Tick-borne orbiviruses. In phylogenetic trees,  

CBOs are depicted in red, MBOs are depicted in blue, TBOs are depicted in green and tick 

orbivirus is depicted in black. Full names of virus isolates and accession numbers of proteins 

used for comparative analysis are listed in Table S1 (supplementary data). 

2.4. Phylogenetic Relationships of the Tick-Borne Orbivirus Subcore-Shell ‘T2’ Protein 

BlastX comparisons to homologous proteins from other orbiviruses, identified VP2 (encoded by Seg-2) 

of CNUV, CGV and WMV as the inner sub-core shell ‘T2’ protein. A phylogenetic tree constructed for 

orbivirus T2 proteins, separated the different isolates into groups that correlate with their different 

vectors, in a manner similar to the VP1 tree (Figure 2c). Three distinct clusters/groups were identified: 

one group, in which VP3(T2) is encoded by Seg-3, consisted of the CBOs and PBOs; while the second 

and third groups included MBOs and TBOs, respectively, in which VP2(T2) is encoded by Seg-2. 
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CNUV, CGV, WMV, GIV all branch separately in the Seg-2 and T2 protein trees, within TBO group, 

confirming that they represent distinct species. GIV and KEMV again group more closely together, 

consistent with their current classification as different subgroups within the same Orbivirus species 

(Figure 2c). SCRV again branches separately from the other orbiviruses. Pairwise aa/nt identities for T2 

protein/gene were given in Table 4. 

2.5. Phylogenetic Comparisons of the TBO Outer-Core T13 Protein 

The most abundant orbivirus structural protein, VP7(T13), is a strongly immuno-dominant  

serogroup-specific antigen [34] and is highly conserved within each Orbivirus species. Phylogenetic 

trees (ML trees) constructed for the aa sequences of VP7(T13) (supplementary Figure S1a) exhibited a 

topology similar to the T2 and VP1(Pol) trees, with three distinct groups that correlate with the vectors 

used by each virus (the CBOs/PBO, MBOs and TBOs). T13/Seg-7 of CGV, CNUV, WMV showed 

highest identity levels with GIV (35.3/46.1%, 52.8/54.3%, 52/56.2% aa/nt, respectively), supporting 

their classification within distinct species. Although the TBOs consistently showed lower aa/nt identity 

levels with the insect-borne orbiviruses (<33%/42.5%), their relationships to the mosquito-borne 

orbiviruses are closer than to the Culicoides-borne or phlebotomine-borne orbiviruses (Table 4). 

2.6. Phylogenetic Comparisons of Orbivirus Outer capsid Protein 1 (OC1) 

Outer capsid protein one (OC1) determines Orbivirus serotype and is highly variable in both its aa 

sequence and size. OC1 is encoded by Seg-2 (VP2) in the PBO and CBOs (represented by BTV), by 

Seg-3 (VP3) in the MBOs (represented by PHSV) and by Seg-4 (VP4) in the TBOs [5,11,13]. OC1 of 

the TBOs is approximately half the size of the equivalent protein of the CBOs.  

The aa sequence of the OC1 protein is more variable (within each Orbivirus species) than any  

of the other viral proteins, thought to reflect immune-selective-pressure from neutralizing antibodies  

(targeting OC1) that are generated by the vertebrate host [35,36]. However, despite this high level of 

serotype-specific variation in OC1, the ML tree constructed for this protein again showed three major 

clusters that correspond with the arthropod vectors used by each virus (like those for the Pol, T2 and 

T13 proteins) (Figure 3a). This consistent clustering, together with the higher sequence variation and 

major size differences observed in OC1, suggests that there is selective pressure to maintain the size and 

sequence (structure/function) of OC1 within each group. 

2.7. Phylogenetic Analysis of Other Structural and Non-Structural Proteins of the Tick-Borne Orbiviruses 

Phylogenetic trees constructed for the other structural and non-structural proteins of the TBOs show 

that the VP5 (OC2) (Figure 3b), VP3 (CaP), NS1(TuP) and NS2 (supplementary Figure S1b–d) all show 

similar relationships to those seen in VP1(Pol), sub-core ‘T2’ and core surface ‘T13’ proteins, with 

distinct monophyletic groups for the TBOs, MBOs and CBOs/PBO. Although NS3 (Figure 3c) and 

VP6(Hel) (Figure 3d) of the MBOs also cluster together in the phylogenetic trees, again grouping 

according to their vectors, both proteins (from the MBOs) form two subgroups. Although insufficient 

data is available concerning which mosquito species transmits each of these viruses, this sub-grouping 

suggests that they might use different groups or species of mosquito as vectors. 
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Figure 3. Maximum likelihood (ML) trees showing phylogenetic comparisons of amino acid 

sequences of (a) OC1 protein; (b) OC2 protein; (c) NS3 protein; and (d) VP6(Hel) protein 

of tick-borne orbiviruses with insect borne viruses. The numbers at nodes indicate bootstrap 

confidence values after 1000 replications. The scale bar represents the number of 

substitutions per site. The CNUV, CGV and WMV isolates characterized in this study are 

marked with a black dot. In phylogenetic trees, CBOs are depicted in red, MBOs are depicted 

in blue, TBOs are depicted in green and tick orbivirus is depicted in black color. Full names 

of virus isolates and accession numbers of proteins used for comparative analysis are listed 

in Table S1 (supplementary data). CGV = Chobar Gorge virus; CNUV = Chenuda virus; 

WMV = Wad Medani virus; CBO = Culioides-borne orbiviruses; MBOs = Mosquito-borne 

orbiviruses; TBOs = Tick-borne orbiviruses. 

In general, the phylogenetic trees for all of the orbivirus proteins indicate that members of each virus 

species group closely together, while members of distinct species are branched separately, regardless of 

the protein selected. 

This reflects a relatively high level of conservation between homologous segments and proteins 

within each Orbivirus species, likely reflecting important functional and/or structural interactions and 

constraints on each of the RNAs and proteins. These functional interactions may restrict genome segment 

exchange/reassortment, to viruses within the same Orbivirus species, and suggests that any novel 

orbivirus isolate would be identifiable (at the virus-species level) based on a phylogenetic analysis of 

any of its proteins/genes. 
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3. Discussion 

Different orbivirus serogroups/species were originally identified and distinguished by a combination 

of their biological origins (host and vector), clinical signs and group-specific serological assays, 

including complement fixation (CF) and agar-gel immuno-precipitation (AGIP) tests and more recently 

serogroup-specific ELISA. However, significant similarities exist in the host ranges, clinical signs, 

arthropod vectors, distribution and serological properties between members of some different Orbivirus 

species. These similarities can result in low level or ‘one-way’ cross-reactions in serological assays  

(e.g., between bluetongue viruses (BTV); Epizootic hemorrhagic disease viruses (EHDV); and 

Eubenangee viruses (EUBV)), making virus detection and conclusive identification more difficult, 

particularly if the viruses can co-circulate and can cause mixed infections [1,37–40]. Reliable detection, 

identification and differentiation of different orbiviruses, using conventional serological methods are 

also labor intensive and are hampered by the limited availability of reference virus strains and antisera 

for representatives of all different Orbivirus species/serogroups. 

Electrophoretic analysis of orbivirus genome segments on 1% agarose gels (AGE) usually shows 

highly conserved size distributions and consequently migration patterns (electropherotype) within 

individual serogroups/species [1,41]. However, deletion, insertion or concatemerization events can occur 

that can cause significant changes in the migration of individual segments and the electropherotype of 

virus strains within a single species, as seen within the EHDV serogroup/species [42]. 

Differences in the size of equivalent genome segments between the CBOs, MBOs and TBOs, have 

been previously reported by several authors [5,11,26,32,43]. However, the migration patterns of different 

TBO species show significant similarities, exhibiting a 2-4-4 pattern that is distinct from those of the 

CBOs and MBOs (3-3-4 or 2-4-4 pattern). 

With the advent of more rapid and reliable sequencing methods, full genome sequence data have been 

generated for reference strains of many Orbivirus species [5,11,26,28,30,41,44,45]. The resulting 

sequence data sets which can be easily accessed for phylogenetic comparisons, now represent a primary 

tool for identification and classification of novel orbivirus isolates [22,26,27,33,43]. Such comparative 

studies also enhance our understanding of virus evolution and strain movements (molecular epidemiology). 

The intra-species genealogical and phylogenetic relationships of the CBOs (BTV, EHDV and  

AHSV) have been extensively studied, based on all ten genome segments/proteins [28,41,46–50].  

In contrast, the wider inter-species relationships of different orbiviruses have only been studied  

for some of the more conserved proteins (e.g., VP1(Pol) and T2 proteins) and only for a limited number 

of species [5,11,13,14,22,26,45]. Since the choice of genomic region and the length of the sequences 

analyzed could affect phylogenetic inferences [51], we have analyzed full genome sequences’ for 

representative isolates (CNUV, CGV and WMV) of the TBOs, providing ‘reference data-sets’ for species 

identification. These sequences were also compared to previously published data for other tick-borne 

orbiviruses: GIV and KEMV. 

The orbivirus polymerase ‘Pol’, sub-core-shell ‘T2’ and outer-core ‘T13’ proteins are all highly 

conserved. They have intra-species identity levels of >73%, >83%, and >73% aa identity (in BTV and 

EHDV) and maximum inter-species aa identity levels of 73%, 80% and 66%, respectively, between 

closely related virus species (such as BTV and EHDV) [5,11,46,49]. These genes/proteins have 

previously been used as ‘markers’ for identification and classification of both existing and novel 
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orbivirus isolates [5,7,11,27,33,49]. They have also provided targets for development of Orbivirus species 

and genus-specific RT-PCR assays for virus typing, diagnosis and virus discovery [8,11,25,52–54]. 

The tick-borne orbiviruses analyzed here, CNUV, CGV and WMV, share less than 65% aa identity 

in all three conserved proteins Pol, T2 and T13 confirming their classification as distinct species within 

the genus Orbivirus. However GIV and KEMV share 72.8%, 82.8% and 82.1% aa identity in Pol, T2 

and T13 proteins, respectively, very close to, or just beyond the previous maximum levels of variation 

detected within the CBO species (BTV and EHDV). It was therefore proposed that these two viruses 

could be recognized as two distinct species [13,14]. However, one of the primary determinants of virus 

species within the family Reoviridae is the ability of the different viruses within the same species to 

exchange/reassort genome segments during co-infection of the same cell, leading to the production of 

viable progeny reassortant virus strains [1]. The compatibility of individual viruses for reassortment 

depends on the ability of their different proteins/RNAs to interact and function efficiently during 

transmission/replication and will therefore require compatible structures and sequences, providing a 

relevant measure of similarity. It has previously been reported that GIV and KEMV virus can reassort 

their genome segments under laboratory conditions [55] and they are therefore classified within different 

sub-groups of the same Orbivirus species. Further sequence analyses of other virus isolates from the 

Great Island virus species may identify ‘intermediates’ between the different strains already analyzed, 

potentially filling in gaps, and confirming their inclusion within a single virus species.  

Phylogenetic comparisons of most orbivirus proteins (VP1(Pol), T2, T13, CaP, OC1, OC2, NS1 and 

NS2) show three ‘clusters’ that correspond to the arthropod vectors that transmit each virus (Figures 2  

and 3). These data and comparisons to the phylogenetic trees for different arthropod species [45], support 

the hypothesis that the orbiviruses have evolved through ‘co-speciation’ with their arthropod vectors and 

that the TBOs provide an ancestral ‘root’ for the insect transmitted orbiviruses [11,13,45]. Phylogenetic 

trees for the different proteins of the TBOs and MBOs show that they form two distinct phylogenetic 

clusters. For proteins VP1, T2, T13 NS1, NS2, OC1 and OC2 these groups originate from a common 

branch (Figures 2 and 3) and are more closely related to each other than to the equivalent proteins of the 

CBOs. In contrast, the groups containing sequences of CaP, Hel, and NS3, of the MBOs cluster more 

closely with the CBOs than with the TBOs (Figure 3c,d and supplementary Figure S1b). The 

monophyletic grouping of the individual orbivirus proteins (each according to the vectors used by the 

virus) demonstrates that aa sequence identity levels in individual viral proteins are related to the group 

of vectors used for transmission. This suggests that the sequences and therefore the functionality of the 

different proteins may help to determine the vectors that can be used by each virus. 

Some of the differences/heterogeneity in the genome segments and their order of migration, of the 

CBOs/PBO, MBOs and TBOs are caused by large variations in the relative size of the highly variable 

outer capsid protein OC1. This heterogeneity is due to acquired point mutations, insertions and deletions, 

as well as inter- and intra-genic recombination and gene duplications (concatemerization) over a long 

time periods [42,45]. 

In Culicoides-borne orbiviruses, OC1 is the second largest viral protein (VP2—Encoded by Seg-2:  

110–120 kDa), while in the mosquito-borne orbiviruses it is slightly smaller (~10% smaller)  

(VP3—encoded by Seg-3: 90–100 kDa) and is smallest in tick-borne orbiviruses (~50% smaller)  

(VP4 encoded by Seg-4: 62–66 kDa) [45]. There are sequence similarities that provide evidence of 

multiple gene duplications events in the outer capsid proteins of EHDV [42]. It is considered likely that 
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the large OC1 of the insect-borne orbiviruses is the result of a full length gene duplication 

(concatemerization) event of an ancestral TBO genome segment, followed by point mutations over time 

that have obscured the full extent of the repeated sequence. 

Assuming that the tick associated orbiviruses (TBOs and TO) are ancestors of all other orbiviruses, 

duplication events may have led to the evolution of larger viral genes and proteins in the other  

groups [13,45]. Concatemerization, which may be a common feature during orbivirus replication, but 

usually remains unfixed in the virus population [42], however gene duplication could provide an important 

mechanism by which sequence variation and coding capacity is created over time. Interestingly, the TBOs 

have smaller genomes (at least by 1 kb) and higher GC content than the insect-borne orbiviruses, but 

have larger NS4 proteins (more than 183 aa) compared to the insect-borne orbiviruses (less than 152 aa). 

Sequencing and phylogenetic analyses of virus genomes, provides a basis for classification, diagnosis 

and vaccine development and helps to identify recombinant/reassorted strains. This suggests that full 

genome sequencing will become an accepted standard for future molecular epidemiological studies. It 

will therefore be important to generate a full genome sequence database that includes representative 

members of all Orbivirus species. The full genome sequence reported here for reference strains of 

Chenuda virus, Chobar Gorge virus and Wad Medani virus, together with the earlier data for GIV and 

KEMV completes a genome data set for reference strains of the tick-borne Orbivirus species. This will 

not only help to identify novel tick-borne orbiviruses, but will also provide a useful tool for identification 

and study of other orbiviruses. 

Full genome sequences are now available for reference strains of twenty of the twenty-two Orbivirus 

species recognized by ICTV. These data have provided a basis for proposals to ICTV to recognize seven 

novel Orbivirus species, the development, and testing (in silico) of relevant diagnostic assays, and 

provide support for molecular epidemiology/evolutionary studies to enhance our understanding of 

orbivirus diseases in vertebrates. 

4. Materials and Methods 

4.1. Viruses 

The viruses used in this study EGY1954/01 (CNUV), NEP1970/01 (CGV) and SUD1952/01 (WMV) 

were obtained from the Orbivirus Reference Collection (ORC) at The Pirbright Institute. These viruses 

were originally taken from naturally infected animals by qualified veterinarians, as part of normal 

diagnostic testing procedures in the respective countries. CNUV and CGV were propagated in BHK-21 

cells (clone 13 obtained from European Collection of Animal cell Cultures (ECACC—84100501), while 

WMV was grown in BSR cells (a clone of BHK) [56] or BHK cells, in Dulbecco’s minimum essential 

medium (DMEM) supplemented with antibiotics (100 units/mL penicillin and 100 μg/mL streptomycin) 

and 2 mM glutamine. Infected cell cultures were incubated until they showed widespread (100%) 

cytopathic effects (CPE). Viruses were harvested, aliquoted and used for dsRNA extraction, or stored in 

the orbivirus reference collection (ORC) at −80 °C. 
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4.2. Preparation of Viral dsRNA 

Guanidinium isothiocyanate extraction procedure described by Attoui et al. [57] was used to extract 

intact genomic dsRNA from CNUV, CGV and WMV infected cell cultures. Briefly, the infected cell 

pellet was lysed in 1 mL of TRIZOL® reagent (Invitrogen), mixed with 0.2 volume of chloroform 

vortexing and the mixture was incubated on ice for 10 min. Total RNA present in supernatant was 

separated from cellular debris and DNA by centrifuging at 10,000× g for 10 min at 4 °C. Removed single 

stranded RNA (ssRNA) by 2M LiCl precipitation at 4 °C overnight, followed by centrifugation at 

10,000× g for 5 min. Equal volume of isopropanol and 750 mM ammonium acetate was added to 

supernatant and then viral dsRNA was allowed to precipitate for a minimum of 2 h at −20°C. The dsRNA 

was pelleted by centrifugation at 10,000× g for 10 min, washed with 70% ethanol, air dried and dissolved 

in nuclease free water (NFW). The RNA was either used immediately or stored at −20°C. 

4.3. Reverse Transcription of dsRNA and PCR Amplification of cDNAs  

The genome segments of CNUV, CGV and WMV were reverse-transcribed using a ‘full-length 

amplification of cDNA’ (FLAC) technique described by Maan et al. [44]. Briefly, a 35 base self-priming 

oligonucleotide ‘anchor-primer’, with a phosphorylated 5' terminus, was ligated to the 3' ends of the 

viral dsRNAs using the T4 RNA ligase, followed by reverse transcription using RT system (Promega). 

The resulting cDNAs were amplified using complementary primers to the anchor primer and the 

amplicons were analyzed by 1% agarose gel electrophoresis. For cloning purposes, a high fidelity KOD 

polymerase enzyme (Novagen) was used in the PCR. 

4.4. Cloning and Sequencing of cDNAs  

Purified amplicons of CNUV, CGV and WMV were cloned into the ‘pCR®-Blunt’ vector supplied 

with the Zero Blunt® PCR Cloning Kit (Invitrogen). Recombinant plasmid vectors containing inserts 

were transformed into One Shot® TOP10 competent cells, supplied with the cloning kit. Clones 

containing relevant inserts were identified by colony PCR using M13 universal primers. Plasmids were 

extracted from the clones identified using the QIAprep Spin MiniPrep Kit (Qiagen). The plasmids and 

PCR products were sequenced using an automated ABI 3730 DNA sequencer (Applied Biosystems). 

4.5. Sequence Analysis and Phylogenetic Tree Construction  

‘Raw’ ABI sequence data were assembled into ‘contigs’ using the SeqManII sequence analysis 

package (DNAstar version 5.0). The ORFs of CNUV, CGV and WMV were identified and translated 

into aa sequences for further analysis using EditSeq (DNAstar version 5.0). The putative function  

of each protein was identified by BlastX comparisons to homologous orbivirus (BTV) proteins in 

GenBank [58]. Multiple alignments of consensus sequences were performed using ClustalX (Version 

2.0) [59], Clustal Omega [60] and MAFFT [61] to ensure proper alignment. Aligned protein sequences 

were back translated to nucleotide sequences using DAMBE [62]) or RevTrans 1.4 server available 

online [63] for further nucleotide analysis. The best fit amino acid (aa) and nucleotide (nt) models  

for Maximum likelihood (ML) analysis were determined using ProtTest 3.0 and jModeltest,  

respectively [64,65]. The models were also determined using MEGA 5 software. The consensus or 
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simplest model given by Akaike information criterion (AIC) and Bayesian Information Criterion (BIC) 

was selected for ML tree construction. The nt model GTR (I+G) with 1000 bootstraps was used for 

construction of Seg-1 phylogenetic tree. The aa model rtREV (I+G+F) was used for ML phylogenetic 

construction of all orbivirus proteins except for OC1 and NS3 for which WAG (I+G+F) and JTT (I+G+F) 

models, respectively, were used. All phylogenetic trees constructions and pairwise distance calculations 

using p-distance parameter were performed using MEGA 5 [66,67]. GenBank nucleotide accession 

numbers for the sequences used for analysis and phylogenetic studies are listed in the Table S1 

(supplementary data). 
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