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ABSTRACT 

This study investigated the post mortem molecular changes that articular cartilage undergoes 

following burial.  Fresh pig trotters were interred in 30cm deep graves at two distinct locations 

exhibiting dissimilar soil environments for up to 42 days.  Extracts of the metacarpophalangeal (MCP) 

and metatarsophalangeal (MTP) joint cartilage from trotters disinterred weekly over 6 weeks were 

analysed by Western blot against the monoclonal antibody 2-B-6 to assess aggrecan degradation.  In 

both soil conditions, aggrecan degradation by-products of decreasing molecular size and complexity 

were observed up to 21 days post mortem.  Degradation products were undetected after this time and 

coincided with MCP/MTP joint exposure to the soil environment.  These results show that cartilage 

proteoglycans undergo an ordered molecular breakdown, the analysis of which may have forensic 

applications.  This model may prove useful for use as a human model and for forensic investigations 

concerning crimes against animals and the mortality of endangered species. 

 

 

KEYWORDS: 

Aggrecan, Cartilage, Glycosaminoglycans, Porcine, Post Mortem Interval, Soil Environment 

 

 

 

 

 



Post	mortem	decay	of	the	cartilage	extracellular	matrix	
	
2	

	
 Articular cartilage is an avascular tissue rich in extracellular matrix (ECM) and with an 

exceptionally low cell density rendering it much more durable than most soft tissues (1).  In addition, 

the surrounding soft tissues (membranes, muscles, ligaments) and bone provide articular cartilage 

with protection from the external environment, making it a suitable candidate for taphonomic research 

(1).  The ECM of this tissue is highly hydrated and is formed of a complex network of collagens, 

proteoglycans and other non-collagenous proteins (2, 3) (Fig. 1) that are synthesized and maintained 

by a single cell type, the chondrocyte. 

 In mammals, two important and abundant structural components of hyaline articular cartilage 

are type II collagen and a large aggregating proteoglycan termed aggrecan.  Type II collagen 

comprises about 60% of the dry weight of the tissue and forms a dense and ordered network of fibrils 

that provide the tissue with tensile properties.  Aggrecan is the most abundant non-collagenous 

proteoglycan forming some 30% of the tissue by dry weight.  The porcine core protein consists of 

2,284 amino acid residues, of which a large extended section is richly decorated with negatively 

charged polysulphated glycosaminoglycans, mostly chondroitin sulphate (4, 5) which are responsible 

for the hydration of the tissue.  Aggrecan therefore provides the cartilage with its ability to withstand 

compressive forces.  Aggrecan is readily susceptible to degradation by proteolytic activity (7) which 

increases in degenerative conditions such as osteoarthritis (reviewed in (2)).  It has therefore been 

extensively studied as a molecular marker for degenerative conditions and numerous molecular tools 

exist for detailed analysis of cartilage degradation (8, 9).   In concert, these facts make cartilage a 

compelling candidate for use in forensic science. 

Forensic taphonomy is concerned with the ways in which different environments alter the 

integrity of corporeal remains, and vice versa.  These changes can be used as evidence in medicolegal 

contexts.  This subject involves simulated reconstructions of environmental conditions (such as 

geographical location, temperature, humidity, soil chemistry, organism activity) for the purposes of 

investigating the decomposition process (10). 

A longstanding aim of forensic taphonomists is to establish sound methodologies for 

estimating post mortem interval (PMI) (11).  Information regarding the amount of time that has 
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elapsed between physiological death and medicolegal examination (12) is crucial to criminal 

investigations and legal proceedings as it establishes a time frame for when the decedent died.  

Furthermore, it also provides a point of reference for law enforcement officers to consider against 

both suspect and witness testimonies. 

At present, forensic examiners employ a variety of physical and chemical techniques, few of 

which rely on the use of micro molecular techniques (13-20).  Majority of the soft tissue methods 

used are restricted to bodies found above ground and are limited to providing acceptable PMIs that 

extend beyond the 48- and 100-hour margins.  The principles that govern observations of insect 

activity above ground (21-23) are often used for longer time frames (days to months) and are not 

applicable to bodies buried under ground.  New methodologies for long-term remains buried below 

ground involve use of a post mortem interval formula that takes burial accumulated degree days 

(BADD), extent and rate of soft and hard tissue decomposition, percentage of adipocere, temperature, 

and soil moisture into account (24), and odor mortis which involves the release of some 478 different 

volatile organic compounds (VOC) from decomposing bodies over time (25-27).  Numerous intrinsic 

and extrinsic factors, such as illness/disease, climate, geographical location, and burial environment, 

greatly affect the rate at which soft tissues decompose (28-31).  As a result, the above methodologies 

are often rendered ineffective for determining the PMIs that extend beyond 48 hours.  Research 

conducted by Ferreira and Cunha (32) exploring the practicality of using decomposition rates to 

establish PMI, concluded that it is impossible to achieve accurate PMIs for buried human remains.  

Therefore, it is of crucial importance that alternative approaches capable of accurately determining 

longer PMI intervals are explored. 

Until recently, the pathological properties of decaying hyaline cartilage remained a largely 

unexplored tool for forensic investigations.  In 2002, Lasczkowski et al. (33) examined the post 

mortem (PM) viability of chondrocytes using fluoroprobes and discovered a correlation between 

chondrocyte loss and PMI, where the percentage of viable chondrocytes decreased with increasing 

PMI.  In support of this finding, Rogers et al. (1) and ten Broek (34) have noted systematic changes in 

colour and robustness of PM cartilage with increasing time, where the tissue gradually becomes dark 
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pink in colour and thinner as PMI increases.  These studies highlight the cellular and macroscopic 

changes that porcine cartilage undergoes PM. 

The current study was a biochemical investigation of PM cartilage obtained from porcine (Sus 

scrofa) trotters interred in distinct soil environments for up to 6 weeks.  Separation and visualization 

of PM cartilage protein relies upon the sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) and Western blot techniques.  Our data demonstrate that the ordered degradation of 

aggrecan has the potential to be used as a forensic tool.  Porcine material was chosen as a model for 

human decomposition because its biogeochemistry is similar to that of humans (22, 35, 36).  The 

results presented demonstrate the changes that the extracellular matrix undergoes with increasing 

PMI. 

 

Material and Methods 

Study Sample and Burial Sites 

Dismembered adult porcine (Sus scrofa) trotters were collected from a local abattoir within an 

hour of slaughter.  The total number of trotters used in the experiments below is 19.  Control samples 

consisted of trotters collected from the forelimbs of 5 different subjects to minimise mechanical 

variation and determine whether individual wear-and-tear among species population would present 

variable results.  Post mortem samples came from a mixture of fore and hind limbs.  Interments were 

conducted at two distinct locations:  The University of Wolverhampton’s Crop Technology Unit at 

Compton Park (Wolverhampton, West Midlands, UK; SO888988), and the Grange Farm Bungalow 

(Hilton, Shropshire, UK; SO781949).  The site at Compton Park (soil environment 1 – SE1), is 

located at ground level and exhibits soil that is moist and nutrient rich.  The Hilton (soil environment 

2 – SE2) burial plot is situated at the top of a hill (approximately 66m above sea level) and contains 

nutrient deficient soil that does not retain moisture.  Soil at SE1 and SE2 burial plots were both 

characterized as sandy loam (as assessed by thermogravimetric, X-ray fluorescence and X-ray 

diffraction analyses) (37).  Several interments were conducted at different periods during the course of 

this three year study.  However, the results presented serve as an exemplar for samples subjected to 
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soil temperatures ranging from 9.0-18.0˚C (at 30cm below ground) and ambient air temperatures from 

8.0-28.0˚C.  The average amount of weekly precipitation for this 6-weeks experiment was 4.2mm.    

   

Isolation and Storage of PM Cartilage Proteoglycans from Degraded Trotters for Western Blot 
Analysis  

 Dismembered trotters were interred as pairs in six distinct graves, with dimensions of 30.5cm 

x 20cm x 30.5cm (length x width x depth) at the SE1 and SE2 sites during the spring of 2011 (March 

to May).  Samples were left to decay belowground for designated periods of time.  Weekly, a pair of 

trotters was disinterred from a single grave and general observations about the physical state of their 

skin surface, internal soft tissue and joint exposure were recorded.  Skin surface was described as 

intact (uniform with no discontinuities along the surface) or broken (lacerations or tears exposing 

internal soft tissues/bones present) and thick (firm, providing a cushion around the bones) or thin 

(where bone could be felt directly under the skin once muscle and tendons liquefied and skin 

exhibited loss of elasticity) and fragile (easily broken or torn upon handling).  Joints were described as 

partially exposed if skin exhibited superficial tears but remained surrounded by the presence of soft 

tissue and enclosed by the synovial membrane, whereas joints whose synovial membrane were 

disrupted and exhibited penetration of soil into the cavity were described as completely exposed 

(Table 1). MCP/MTP joints were dissected with a surgical scalpel to excise cartilage samples (1, 34).   

Control samples were obtained from fresh trotters collected on the day of slaughter (0 days PM).  All 

cartilage samples were stored in airtight plastic vials (-20˚C) before lyophilisation (Edwards Modulyo 

EF4 Freeze Dryer). 

 

Extraction and Preparation of Proteoglycan Samples for Western Blot Analysis 

 Post mortem cartilage samples underwent proteoglycan extraction using the protocol of 

Dudhia et al. (38) in conjunction with 25mM EDTA and 1% v/v Protease Inhibitor Cocktail I 

(Calbiochem).  Proteins in the soluble fraction of the cartilage extracts were precipitated with 9.5 

volumes of ethanol containing 50mM sodium acetate solution at -80˚C before centrifugation at 13,000 
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rpm for 10 minutes at room temperature (Progen Genfuge 24D Microcentrifuge).  Supernatants were 

discarded and the precipitates washed twice in the ethanol solution before drying in a heating block at 

37˚C and resuspension in 50mM Tris, 60mM sodium acetate (Tris acetate buffer), pH 8.0.  Each 

protein sample (5µL) was digested with 0.05 units Chondroitinase ABC (Proteus vulgaris, Sigma-

Aldrich, UK), 0.01 units of Keratanase Pseudomonas sp. (Sigma-Aldrich, UK) in the presence of 

11.25µL Tris acetate buffer at room temperature for 3.5 hours.  Total protein in solution was 

determined by Bradford assays (39) using the modified protocol established by Zor and Selinger (40).  

 The enzyme treated cartilage (20µg protein in 10µl of 1X  loading buffer containing 5% [w/v] 

SDS and 4% [v/v] of 2-mercaptoethanol, the reducing agent) was subjected to SDS-polyacrylamide 

gel electrophoresis (41) using 9% (w/v) gels and transferred to polyvinylidene difluoride (PVDF) 

membranes (Millipore) (42).  Membrane blots were blocked overnight with a 10% skimmed milk and 

2% bovine serum albumen (BSA) solution prepared with distilled water.  Membranes were then 

incubated with a 1:500 dilution of monoclonal antibody (MAb) 2-B-6 (mdbioproducts, UK) for one 

hour, followed by incubation with horseradish peroxidase-linked anti-mouse IgG antibody (1:1000 

dilution, Cell Signaling Technology, UK) for one hour.  The presence of bound antibody was 

visualised by autoradiography using a horseradish peroxidase (HRP) chemiluminescence kit (EZ-

ECL; Geneflow, UK), Kodak Biomax MS Film, developer and fixer (Kodak GBX; Sigma-Aldrich, 

UK) (42). 

 

 

 

Results 

  Analysis of Fresh Cartilage Samples. 

A determination of individual variation among cartilage samples may be a factor in producing 

significantly variable results.  Hence, within 3-4 hours of slaughter, a series of five forelimbs were 

randomly selected from five pigs and dissected for control cartilage samples.  Protein was isolated and 

probed via Western blots with MAb 2-B-6 (section 2.2) (Fig. 2).  This demonstrated that not only did 

2-B-6 cross-react with porcine cartilage extracts, but also that there was a consistent and comparable 
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immune-reactive polypeptide distribution between samples.  The band pattern for the samples further 

demonstrated uniformity with no significant variability observed within the samples.  Samples 1-5 

each yielded high molecular weight bands greater than 175kDa which is indicative of the intact core 

protein of aggrecan after deglycosylation.  Additional smaller but fainter fragments (100 – 150kDa), 

were observed in later PM periods.  A prominent band of approximately 27KDa was also observed, 

although the identity of this band is not clear. 

 

Post Mortem Degradation 

 For a period of six weeks, a pair of trotters was disinterred from the SE1 and SE2 burial plots 

at corresponding PM intervals on a weekly basis.  Observations of the physical condition of PM 

trotters prior to and during dissection were noted (Table 1).  With increasing PMI, skin became 

thinner and the integrity of muscles and tendons gradually diminished.  These changes were most 

notable at 30 Days PM, by which time the skin had become extremely delicate and susceptible to 

tearing upon manipulation, or was already broken around the joint areas at the time of disinterment.  

The muscles and tendons felt softer than PM trotters disinterred 7-21 days PM and showed some signs 

of liquefaction.   

Cartilage samples were excised from the MCP/MTP joints for comparative analyses across 

PM weeks and burial location.  The PM samples were processed in the same manner as the control 

samples to reveal aggrecan polypeptides.  Western blots for PM samples disinterred from SE1 (Fig. 

3a) and SE2 (Fig. 3b) also identified the presence of high molecular weight bands larger than 175kDa 

and the presence of low molecular weight bands at approximately 28kDa for up to 21 Days PM.  For 

cartilage samples extracted 30-42 Days PM, there was an absence of immune-reactive bands.  

Absence of bands in samples disinterred between 30-42 Days PM coincided with observations of 

extreme soft tissue degradation that resulted in the exposure of joints to the surrounding soil 

environment.  For PM samples collected from SE1 (Fig. 3a) and SE2 (Fig. 3b), high molecular weight 

(>200kDa) bands representative of intact aggrecan were observed but interestingly, in the SE2 

samples there was an increasing heterogeneity of size with time, as observed by the presence of 
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fragments between 80 – 200kDa at 14 and 21 days.  At 30 Days PM and beyond, both high and low 

molecular weight bands were absent.   

 

 

Discussion 

This investigation is the first to explore the biochemistry of PM cartilage and its potential 

forensic applications.  The data reported illustrates the general trends observed for weekly samples 

collected March-May (2011) over the course of 42 days.  They are representative of results obtained 

from numerous sample sets disinterred throughout the year and reveal a temporal PM degradation of 

aggrecan.  With increasing time, the presence of aggrecan becomes undetectable for samples 

disinterred more than 3 weeks PM. 

The observed changes among the protein bands with increasing PMI could be attributed to the 

experimental conditions because cartilage excised from fresh trotters showed a consistent and uniform 

banding pattern.  Although semi-quantitative, the 200kDa band was more intense than in the 

experimental samples suggesting a lesser amount of intact aggrecan with growing PMI. 

The appearance/visibility of protein bands for samples disinterred from SE1 and SE2 

illustrates that MAb 2-B-6 reacts with chondroitinase digested aggrecan motif.  This motif is common 

to higher mammals, such as porcine and humans (43).  In addition, porcine and human (43) aggrecans 

also share highly similar amino acid sequences.   These combined features make this experiment an 

acceptable model for studying human PM samples.  Moreover, the similarities in amino acid sequence 

between porcine and human aggrecan present opportunities for the analytical tools used in this 

experiment to be further expanded with use of different antibodies recognising specific cleavage sites 

along the core protein.  This study opens an avenue for further refinement of PMI obtained using 

cartilage samples and lends more evidence that porcine is an acceptable model for humans.   

An absence of protein bands detected by MAb 2-B-6 in Western blots of cartilage extracts 

collected from trotters disinterred 30, 36 and 42 days PM suggests a complete disintegration of the 

core protein into fragments too small to be resolved in 9% gels.  This observation corresponds with a 
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decline in the physical state of the trotters whereby joint exposure occurred when soft tissue 

surrounding the joint deteriorated, leaving the joint membrane or the synovium exposed to the 

external environment.  Trotters exhumed at these intervals possessed significantly thinner skin, 

muscles and tendons on the verge of liquefying or completely liquefied, and bones that showed signs 

of disarticulation at the epiphyseal-diaphysis junction of the metacarpal/metatarsal and phalangeal 

joints.  Joints disinterred from SE1 showed the most pronounced change which most likely was due to 

the moist soil at this burial site accelerating soft tissue decomposition.  This was one week earlier than 

the Hilton site where the soil was classified as extremely dry and nutrient deficient (lacking sufficient 

humus).  Deterioration of the soft tissues surrounding these joints may have facilitated the direct 

access of soil microbes to cartilage and microbial metabolic activity in accelerating the degradation of 

aggrecan (44).   

Protein bands with molecular weights greater than 175kDa were observed among the Western 

blots for control and PM samples.  These bands are characteristic of deglycosylated PGs whose 

protein core has a molecular weight of approximately 230kDa (45-47) and fall within the expected 

range for viewing structural and catabolic neoepitopes of aggrecan probed with MAb 2-B-6 (48).  

Kashiwagi et al. (49) examined the proteolytic effects of altered forms of the ADAMTS-4 enzyme on 

aggrecan degradation, using MAb 2-B-6, and illustrated the appearance of lower molecular weight 

fragments when subjected to prolonged incubation times with the enzyme (48).  These low molecular 

weight fragments most likely represent small quantities of degrading aggrecan that are known to 

accumulate in cartilage with increasing age (2). 

The catabolism of proteins relies on enzymes that have the ability to split apart the peptide 

bonds of a protein by incorporating water between the adjoining amino acids that form the protein.  A 

moist environment would facilitate the fragmentation of aggrecan into lower molecular weight 

fragments by maintaining the water levels necessary for proteolysis, whereas trotters buried in soil 

environments that are dry, may result in the leeching-out of bodily fluids and nutrients (50).  

Moreover, changes in soil moisture content are associated with fluctuations in the microbial biomass, 

whereby increased water content results in proliferation of microbial activity (11, 50).  Furthermore, 
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water allows soil microbes and/or their proteolytic secretions to be better transported deeper into the 

soft tissues of decomposing remains.   

Despite the distinct locations the biochemical degradation pattern of aggrecan pursuant to 

death is remarkably similar.  Initially the autolysis of cartilage might be expected to occur with great 

variability as a result of various environmental factors influencing the rate of soft tissue 

decomposition.  However, the situational (ground-level versus hill-top) and environmental (moist and 

nutrient-rich versus dry and lacking nutrients) differences that existed between the SE1 and SE2 

burial plots appeared to have little influence on the decay of the cartilage.  The basis of cartilage 

degradation from a PM standpoint is that the sizeable proteoglycan aggregate dissociates and degrades 

in an orderly manner, whereby intact aggrecan gradually fragments into lower molecular weight by-

products until the time when the joint is exposed to the external environment; the degradation bands 

observed in the intact joints is owed to the slow activity of proteolytic enzymes that accumulate in the 

ECM.  This finding lends further support to previous studies conducted by Lasczkowski et al. (33) 

who observed a relationship between chondrocyte viability and PMI in controlled environments and 

Rogers et al.’s (1) report which underscored the systematic changes in colour and robustness that 

cartilage underdoes, as well as loss of nucleic material, with increasing time.  Furthermore, the 

biochemistry of degrading cartilage exhibits little to no variation for samples collected from differing 

soil environments at the same time of year.  This consistency among the data sets may be accredited 

to the protection that cartilage is afforded from the immediate environment as a result of its situation 

in relation to the surrounding soft tissues, and the low cell density of the tissue. 

Unlike previous studies that have explored the cellular degradation of PM cartilage in 

manipulated or controlled settings (32, 51, 52), this study was conducted in both laboratory and field 

environments where dismembered trotters buried in soil plots were left exposed to the natural 

elements for various lengths of time, undisturbed by animal activity.  Although the intention of this 

study was to explore the long-term biochemical properties of PM cartilage in forensic contexts, the 

results do not consider how variations in soil depth or different soil chemistry affect cartilage 

degradation.  Likewise, human remains are found in a variety of different contexts where bodies may 
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be found aboveground where the ambient temperatures tend to be warmer or in large bodies of cool 

water, and are usually fully intact.  Further research on the PM degradation of cartilage should 

consider how these factors affect the biochemistry of the avascular tissue.  Moreover, use of MAb 2-

B-6 serves to highlight only 87% of the PG core protein surface area and does not account for the 

entire structure of aggrecan that includes the HA backbone to which PG monomers are attached by 

way of link proteins (47).  Other antibodies specific to these areas should also be explored in order to 

achieve a complete picture of the PM degradation that aggrecan undergoes for further realization of 

this tissue’s relevance to forensic investigations.   

 

Conclusions 

The molecular breakdown of cartilage PGs has the potential to be used as a reliable indicator 

of PMI irrespective of differing soil environments for up to 3 weeks post mortem at soil temperatures 

ranging from 9.0-18.0˚C (buried at a depth of 30cm) and ambient temperatures between 8.0-28.0˚C.  

This finding extends the potential method for PMI determination well beyond 48-hours.  Because the 

structural similarities of PGs derived from porcine and human subjects are very identical, the results 

obtained herein could serve as a model for the PM degradation of human cartilage and thereby 

validate the practicality of using PM cartilage in forensic investigations.  Although porcine specimens 

are used as analogues for human decomposition in forensic research because it is readily accessible, 

examination of human cartilage would be ideal as it is necessary to validate the usefulness and 

applicability of these findings to cases involving human remains.  Future work would involve 

application of the methodologies described in this article to human samples collected at roughly the 

same PM interval.  Finally, the results obtained may also prove useful for forensic investigations 

concerning crimes against animals which involve the illegal trade and mortality of endangered species 

or detection of food crimes (53).   
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FIG. 1  Simplified schematic representation of cartilage components and their 
interactions.   
Cartilage is comprised of an extracellular matrix which is synthesised and maintained by the 
chondrocytes, the cellular matrix component.  Its major components include aggrecan, 
proteoglycan, and smaller proteoglycans (biglycan, decorin, fibromodulin); numerous 
collagens (predominantly type II); and a series of non-proteoglycans such as cartilage 
oligomeric matrix protein (COMP) and link protein.  The territorial region of the extracellular 
matrix is characterised as proteoglycan-rich and is situated directly outside the chondrocytes, 
whereas the interterritorial region is located between the territorial matrices. Aggrecan, the 
structure providing cartilage with its elasticity and ability to resist compressive forces, 
contains a protein that is indirectly attached to a hyaluronic acid backbone by way of link 
protein.  This core protein also consists of CS side chains.  Modified and reprinted with 
permission from Dudhia [2].  Copyright 2005 Cellular and Molecular Life Sciences. 

 

 

 

 

 



 

FIG. 2  Immunoblot of a 10% SDS-polyacrylamide gel illustrating control cartilage samples 
(0 Days PM). Columns from left to right represent control samples 1-5 collected from a 
forelimb of 5 different pigs within hours of slaughter.  Cartilage extracts were treated with 
chondroitinase ABC to digest the chondroitin sulphate chains of aggrecan to enable entry of 
the aggrecan core protein into the gel medium and immunodetection with MAb 2-B-6 
antibodies.  Separation of polypeptides by SDS-PAGE was followed by transfer to a PVDF 
membrane (Western blot) and immunodecoration with MAb 2-B-6 which recognises the 
chondroitin-4-sulphate (C-4-S) and dermatan sulphate (DS) (chondroitin-0-sulphate)  stubs 
that remain after digestion with Chondroitinase ABC, thereby enabling visualization of the 
protein core situated between the G2 and G3 domain of aggrecan.  Control samples (0 Days 
PM) labeled 1-5 were loaded in adjacent wells (20µg/10µL) of a 9% gel and separated by 
SDS-PAGE and Western blot as previously described, followed by secondary anti-mouse 
antibody conjugated with horse-radish peroxidase and visualised by chemiluminescence. 
 
 
 
 
 
 
 
 



 
FIG. 3  Western blots of post mortem degraded proteoglycan extracted from cartilage 
samples at weekly intervals from a) SE1 and b) SE2 burial plots.  Cartilage samples were 
collected from trotters disinterred at 7, 14, 21, 30, 36 and 42 days PM.  Extracted protein 
samples were digested with chondroitinase ABC prior to electrophoresis in 10% gels and 
immunoblots probed with MAb 2B6.  Proteoglycan extracts contain 20µg of protein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 1 
  Observations for the physical properties of post mortem trotters disinterred prior to cartilage extraction.  

    
Site PM Sample    Skin Surface   Joint Exposure   Internal Soft Tissue 

 0 Days 
 

Intact - Thick 
 

No exposure  Solid Tissues 

Compton 7 Days  Intact - Thick  No exposure  Solid tissues 

 

14 Days 
  Intact - Thick   

No exposure   Solid tissues 

 

21 Days 
  Intact - Beginning to 

thin 
  

No exposure   Solid tissues - Softening; Darkened 
muscles 

 

30 Days  
  Broken - Notably 

thinner and fragile 
  Exposured - Slightly; 

synovial membrane 
ruptured 

  Liquefying- Some solid muscles but 
tissues liquefying 

 

36 Days   Broken - Significantly 
thinner, little 
remaining  

  Exposed - Partially; still 
surrounded by soft tissue  

  Liquefied - muscles completely 
putrefied, tendons much softer 

  42 Days 
  Completely degraded - 

Internal soft tissues 
and bones exposed 

  
Exposed - Completely     Liquefied - Completely; extremely 

thinned tendons remain 

 
0 Days 

 
Intact - Thick 

 
No exposure  Solid Tissues 

Hilton 7 Days  Intact - Thick  No exposure  Solid tissues 

 

14 Days 
  Intact - Thick   

No exposure   Solid tissues 

 

21 Days 
  Intact - Beginning to 

thin and slightly dry 
  

No exposure   Solid tissues - Softening; Darkened 
muscles 

 

30 Days  
  

Broken - Small breaks 
in skin around carpal 
joints; thinner and 
slightly drier 

  
No exposure   Liquefying- Mostly solid muscles but 

tissues beginning to liquefy 

 

36 Days 
  

Broken - Larger breaks 
around carpals; 
increasingly thinner 
and drier 

  
Exposed - Partially   Liquefied - Some solid muscles 

among putrefying soft tisses, tendons 
much softer 

 

42 Days 
  

Near Completely 
degraded - very thin; 
internal tissues and 
bones exposed 

  Exposed - Completely     Liquefied - Completely; tendons 
almost completely liquefied 


