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Recent studies have provided an unprecedented view of the microbial communities colonizing
captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their
natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA
gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands.
Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the
Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was
most abundant. Putative bacterial pathogens were widespread and often abundant members of the
wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related)
factors examined, seasonal changes dominated in driving qualitative and quantitative differences in
the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial
community structure, potentially due to the transition from an insect- to a seed-based diet. This
involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum)
and Helicobacter. We also detected more subtle but statistically significant associations between the
gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric
nematodes. These results suggest that environmental factors have a major role in shaping temporal

variations in microbial community structure within natural populations.
The ISME Journal (2015) 9, 2423-2434; doi:10.1038/ismej.2015.53; published online 29 May 2015

Introduction

Mammals are home to trillions of microbes in their
gastrointestinal tract (the gut microbiota), which
impact multiple aspects of host health and disease
(Sommer and Backhed, 2013). Elucidating the
ecological and evolutionary processes that shape
host-associated microbial communities remains a
major outstanding goal (Costello et al., 2012).
Laboratory rodents are a valuable tool to dissect the
relative contributions of intrinsic and extrinsic
factors (Carmody et al., 2015); however, it remains
unclear whether these interactions can be general-
ized to mammals in their natural habitat. Recent
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studies have provided an initial view into the
ecological factors linked to inter-individual varia-
tions in the gut microbiotas of wild animals.
Comparative analyses suggest that diet is a major
environmental factor contributing to gut microbial
variation between mammalian species (Muegge
et al., 2011). Diet also shapes the gut microbiota
within a species, as evidenced by longitudinal
analyses of the black howler monkey gut micro-
biota (Amato et al., 2013, 2015) and dietary
perturbation experiments in wild-caught mice and
fish (Bolnick et al., 2014; Wang et al., 2014).
Biogeographic variation in the gut microbiota at
large spatial scales has also been reported in house
mice (Linnenbrink et al., 2013). Finally, host-
specific factors like co-colonization with enteric
parasites (Hayes et al., 2010; Keeney and Finlay,
2011) and host genetics (Benson et al., 2010;
Ochman et al., 2010; McKnite et al., 2012;
Goodrich et al., 2014) may also contribute to
inter-individual and temporal variations in gut
microbial community structure.


http://dx.doi.org/10.1038/ismej.2015.53
mailto:peter.turnbaugh@ucsf.edu
http://www.nature.com/ismej

The wild mouse gut microbiota changes seasonally
CF Maurice et al

2424

Yet, the relative strengths of these various factors,
and their interactions, remain unclear owing to the
lack of systematic analyses that monitor both
intrinsic and extrinsic factors in natural populations.
Such an analysis would require tractable systems
wherein host factors, environmental parameters and
temporal variations in the gut microbiota can be
monitored in situ. Here, we report findings from
such a study in well-characterized populations of
wood mice (Apodemus sylvaticus) in the United
Kingdom, which we monitored for 2 years. We
simultaneously measured multiple environmental
(season, location, population density) and host (age,
sex, reproductive status, parasite infection status)
parameters, and repeatedly sampled multiple indi-
viduals over time. Using these data, we examine the
relative importance of environmental and intrinsic
host factors in shaping gut microbial community
variation between and within-individuals over time.
We discovered a notable seasonal variation in gut
microbial community structure, which we propose is
caused by changes in host dietary intake. We also
found evidence for an impact of spatial structure
over a smaller scale than previously reported,
reproductive status and nematode colonization.
Together, our results provide an initial view of the
wild wood mouse gut microbiota and support the
hypothesis that environmental factors such as
changes in food availability and subsequent dietary
intake have a dominant role in shaping wild
mammal gut microbial communities.

Materials and methods

Sample collection

In 2010 and 2011, A. sylvaticus were trapped on six
grids in two mixed woodlands (Manor and Haddon
Wood; Supplementary Figure S1) on the Wirral
peninsula, UK. On each grid, two live traps baited
with grain and bedding material were placed every
10meters in a 70mx70m square, and trapped
monthly from May to November for three consecu-
tive nights in both years. In 2011, trapping was also
performed for two consecutive nights during one
additional week in each of the months August,
September, October and November, though no
treatments were given. Trapped animals were tagged
using subcutaneous passive integrated transponder
tags, so they could be individually identified upon
recapture. Fecal samples were collected from all
traps containing a single animal and stored in 10%
buffered formalin for identification of gut parasites
(Knowles et al., 2013). A sub-sample was also
collected for characterization of the gut microbiota,
which was frozen at —80°C within 8 h of collection.
To assess the potential effect of overnight tempera-
ture on gut microbial communities, we retrieved
temperature data for each sampling night from the
Hawarden Chester airport weather station near our
field sites between the hours of 6pm and 12pm the
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following day, the time from which mice could enter
traps to when we collected fecal samples.

Host phenotyping

Animals were aged as either juvenile, sub-adult or
adult according to pelage in the first instance, with
body mass used as a secondary trait where pelage
was inconclusive (juvenile <12g, sub-adult: 12—
16g, adult >16g). Body length, weight, sex and
reproductive status were recorded. Animals were
characterized as being either reproductively active
(descended or protruding testes for males, pregnant
or with a perforate vagina for females) or inactive. A
subset of the mice was given antiparasitic treatments,
including Ivermectin and Toltrazuril (2010), and
Ivermectin, Fipronil, Pyrantel pamoate, or two-drug
combinations (2011). We did not detect any sig-
nificant impact of treatment on the gut microbiota
(Table 1). Blood samples were tested for Bartonella
using a nested PCR assay (Knowles et al., 2013).

16 S rRNA gene sequencing and analysis

16 S ribosomal RNA (rRNA) gene sequencing was
performed on fecal samples collected from each trap
to characterize the distal gut microbiota (n=481
samples, 196 555+ 24 236 sequences per sample;
Supplementary Table S1). DNA was extracted using
the PowerSoil bacterial DNA extraction kit (MoBio,
Carlsbad, CA, USA), and the V4 region of the 16 S
rRNA gene was PCR-amplified in triplicate using
custom barcoded universal bacterial primers with
the following protocol: 94 °C for 3 min, 35 cycles of
94°C for 45 s, 50 °C for 30 s, and 72 °C for 90 s, with a
final extension at 72 °C for 10 min (Maurice et al.,
2013). Triplicates were pooled, confirmed by gel
electrophoresis, cleaned with the Ampure XP kit
(Agencourt, Danvers, MA, USA), quantified using the
Quant-iT Picogreen dsDNA Assay Kit (Invitrogen,
Carlsbad, CA, USA), and sequenced on the
Nlumina HiSeq platform. 16 S TRNA gene sequences
were analyzed using the QIIME software package
(Caporaso et al., 2010). All sequences were used for
the comparison of the relative abundance of bacterial
taxa. Operational taxonomic units were assigned at
97% similarity against the Greengenes database
(DeSantis et al., 2006), which we trimmed to span
only the 16 S TRNA region flanked by our sequencing
primers (positions 521-773). LefSe (Segata et al.,
2012a) was run on sub-sampled data sets, after
filtering out species-level phylotypes with <100
sequences or found in only one sample. Statistical
analysis of Bray—Curtis dissimilarities calculated
using the relative abundance of bacterial genera
was conducted using RStudio (ver. 0.98.1091) and
the adonis function in the R package ‘vegan’
(Oksanen et al., 2015). Only the first sample was
included for each mouse to avoid artifacts caused by
within animal comparisons. Significance values
were computed using 10 000 permutations.



Table 1 Environmental and host factors associated with microbial community structure and membership in linear mixed models
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indicates significance level for each term in the minimal model following FDR-adjustment (red: g<0.001; orange: 0.001<g<0.01; yellow: 0.01 <g<0.05; blank cells g>0.05. Grey cells

Each model (response variable) is shown in a single row, with predictor variables in columns. Numbers indicate FDR-adjusted P-values (that is, g-values; see Methods), and shading
indicate significant g-values for effects tested after removing interactions involving the component terms from the minimal model.
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Parasite diagnosis

Gastrointestinal parasites (nematodes, cestodes and
Eimeria protozoa) were detected using the salt
flotation technique (Pritchard and Kruse, 1982).
Saturated salt solution was added to formalin-
preserved fecal samples, such that eggs and oocysts
in each sample could be concentrated on a coverslip,
and scanned for parasite detection at x 10 magnifica-
tion. x 40 magnification was used for parasite identi-
fication. Coccidia (parasites belonging to the genus
Eimeria) were identified using unsporulated oocyst
morphology (Nowell and Higgs, 1989), and helminths
using egg morphology. For each parasite species, the
number of eggs or oocysts per gram of feces was
calculated for each sample. When multiple samples
were present for an individual within a 3-day
trapping period, the arithmetic mean egg/oocyst
count was taken across these days. The dominant
parasites detected were nematodes (largely Heligmo-
somoides polygyrus) and coccidia, and thus our
analyses focus on these two parasite groups.

Linear mixed models

We performed linear mixed models using the lme4
package in R v.3.0.1 (Bates et al., 2014). We controlled
for repeated sampling of individual mice by including
individual ID as a random intercept term. Model
assumptions were checked by examining the distribu-
tion of residuals and plotting fitted values against
residuals; response variables were square root or log-
transformed where necessary to ensure model
assumptions were met. For models of individual
genera, only samples with non-zero abundance were
included. In all starting models, the same set of
predictors was included: external overnight tempera-
ture, grid, month, year, age, sex, nematode infection
status, Eimeria infection status, drug treatment and
reproductive status. Several interaction terms were
included: year by month; reproductive status by sex;
and parasite infection variables by treatment. Only
samples for which full metadata on all the above
metrics were available were included (Supplementary
Table S2). All models were initially simplified
by backwards-stepwise elimination of terms with
P-value >0.10, beginning with interactions, and the
final minimal model included only terms with
P-value <0.05. Adjusted P-values (g-values) were
calculated based on the 'Graphically Sharpened' false
discovery rate method (Pike, 2011).

Spatial structuring of microbial communities

As wood mice are territorial and have home ranges
smaller than our trapping grids (Godsall et al., 2014),
fine-scale spatial variation in microhabitat and food
availability could influence gut microbial ecology,
both within and across our trapping grids. To test for
biogeographic effects at this scale, we examined
spatial autocorrelation in the gut microbiota
according to mouse capture location. Spatial
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autocorrelations were measured using the Moran's I
statistic (Moran, 1950). Only the first sample was
included for each mouse to avoid artifacts caused
by within animal comparisons. Genera found in
>10 samples (or mice) were analyzed, along with
the first principal coordinates from our Bray—Curtis,
unweighted UniFrac and weighted UniFrac ana-
lyses. We used a binary spatial weights matrix, with
spatial neighborhoods defined as being 0-50m
apart. Data from Manor and Haddon woods were
analyzed both together and separately. To control
for temporal trends, we restricted our analysis to
samples collected between August and November
and analyzed the 2 years separately. Spatial weight
matrices were row-standardized. The significance of
Moran's I values was assessed with permutation tests,
coded using a Markov chain Monte Carlo algorithm.
For each P-value, 10 chains of length 1 000 000 were
run, each starting from a random initial permutation.
These settings were judged to give good chain
convergence based on examination of running mean
plots. We used the software packages GeoDa and
PySAL (https://geodacenter.asu.edu). Batch scripts/
code are available on request.

Results

The wild mouse gut harbors abundant Lactobacilli and
putative enteric pathogens

Consistent with results in captive and wild
mammals (Ley et al, 2008a), wild wood mice
were colonized by 10 bacterial phyla: Firmicutes
(52.1+£1.0% 16 S TRNA gene sequences; mean +s.d.),
Bacteroidetes (37.0+0.9%), Proteobacteria (8.2 +0.5%),
Actinobacteria (1.1+0.2%), Tenericutes (0.9+0.1%),
Deferribacteres (0.4 +0.1%), Cyanobacteria (0.3 +0.03%),
Verrucomicrobia (0.03 +0.03%), Fusobacteria (0.01 +
0.01%) and TM7 (0.004 +0.0004%) (Figure 1a). Within
the Firmicutes, the dominant bacterial order was the
Lactobacillales (genus: Lactobacillus) (Figure 1b,
Supplementary Figure S2). We also observed
multiple o-, e- and y-proteobacterial genera that
include potential bacterial pathogens: for example,
Bartonella, Helicobacter, Pseudomonas, Rickettsiella
and Yersinia (Figure 1b, Supplementary Figure S2,
Supplementary Table S3). All nine of the mice with
detectable fecal Bartonella also tested positive in
time-matched blood samples, leading to a significant
association between blood and fecal detection of this
genus (P-value<0.05, y*-test). Many of these genera
were widespread, most notably Helicobacter (97.9%
of samples), Pseudomonas (73.2%) and Yersinia
(44.5%). The same was true for intestinal parasites
(Supplementary Table S4), including H. polygyrus
(40%) and Eimeria hungaryensis (29.3%).

Marked seasonal variation in microbial community
structure

Analysis of Bray—Curtis dissimilarity among samples
revealed a clear seasonal pattern differentiating
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samples collected in the spring/early summer
(May through July) and those collected in late
summer/fall (August through November) (Figure 2a,
Supplementary Figure S3; P-value <0.001, PERMA-
NOVA of Bray—Curtis distances). The observed
seasonal shift in the microbiota coincides with the
expected timing of an annual transition to a seed-
based diet from a more insect-based diet (Watts,
1968), and may therefore be driven by a seasonal
shift in food availability and diet. Consistent with
this hypothesis, the mean microbial community
structure for each month was significantly correlated
between the 2 years (Figure 2b; R*=79%,
P-value <0.01). The association between season and
microbial community structure was significant in
both years when considered independently,
although the difference was more marked in 2010
(pseudo F-value=31.2 (2010) versus 9.9 (2011),
P-value<0.001 for both years; PERMANOVA test).
Statistical analysis with the LefSe software package
revealed taxonomic groups ranging from the phylum
to genus level that were consistently associated with
season in both years (Supplementary Table S5).
Lactobacillus was found at a significantly higher
abundance in the spring of both years, whereas
Alistipes and Helicobacter were consistently
enriched in the fall (Figure 2c).

Analysis of mice captured multiple times within a
year confirmed that these microbial changes
occurred within individuals and were not simply
due to mouse population turnover (that is, seasonal
changes in the types of individual captured).
We observed within individual shifts in microbiota
structure in both years of the study that followed the
overall population trend (Supplementary Figure S4).
This was reflected by a strong positive correla-
tion between month-to-month differences in the
mean population-wide value for Bray—Curtis prin-
cipal coordinates 1 and 2 (excluding repeat cap-
tured individuals) and the mean within-individual
change in these metrics (PC1 R*=65%; PC2
R?*=56%; both P-value<0.05, linear regression;
Figures 3a and b). Analysis of 25 mice captured
in both seasons confirmed that in nearly all
cases there was a consistent direction of
change (Figure 3c; P-value<0.0001, Wilcoxon
rank-sum test).

Limited spatial heterogeneity in community structure

Although microbial community structure differed
significantly between the two woodlands (P-value
<0.001, PERMANOVA of Bray—Curtis dissimilari-
ties), this effect was noticeably weaker than that of
season: pseudo F-value=35.3 (season) versus 4.6
(wood) when considering both years. Consistent
with this weak effect, LefSe analysis only identified
two nested taxa that were significantly enriched in
Manor Wood: the Clostridia class and the Clostri-
diales order (LDA>2, P-value<0.05). We did not
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Figure 1 Taxonomic analysis of the wild mouse gut microbiota.

Pie charts represent the relative abundance of bacterial (a) phyla and

(b) orders (n=481 samples). The 10 most abundant phyla and orders are shown (phyla with a mean abundance <0.001% are not included;
the remaining orders are represented by the ‘other’ slice). Taxa are colored based on phylum. Sequences within the Cyanobacteria phylum
could be attributed to chloroplasts (order Streptophyta), non-photosynthetic bacteria related to Cyanobacteria that are common in the
mammalian gut (order YS2) (Di Rienzi et al., 2013), and algae (order Chlorophyta, family Trebouxiophyceae). We did not detect any
consistent seasonal changes in the abundance or prevalence of these three groups.

detect any taxa that were significantly enriched in
Haddon Wood.

To quantify the spatial structure of the wild mouse
gut microbiota in more detail, we evaluated spatial
autocorrelation at the genus level and using commu-
nity dissimilarity metrics (see Methods). In 2010, we
detected significant spatial autocorrelation for the
Bray—Curtis and unweighted UniFrac metrics
(Figure 4; g-value<0.01). However, these patterns
were weaker and only present for unweighted
UniFrac in 2011, and were absent in all cases when
we only considered samples from Haddon or Manor
wood. Similarly, analyses of bacterial genera failed
to detect significant spatial autocorrelation for 117
of the 117 tested groups during either year
(g-value<0.01). Moreover, the maximum Moran's I
value for this distance class was 0.138, further
indicating nonexistent or weak spatial associations.
Together, these analyses suggest that although the
overall pattern of microbial community structure
was distinct between Haddon and Manor Wood,
there was no evidence for finer spatial structure

within woods or between individual bacterial

genera.

Multivariate modeling reveals associations with both
host and environmental factors

We next used linear mixed models (see Methods) to
tease apart the relative influence of multiple
environmental and host factors, and to determine
their effects in isolation of confounding factors. We
constructed six models for community dissimilarity
metrics (principal coordinates 1 and 2 for Bray—
Curtis, unweighted UniFrac and weighted UniFrac)
as well as separate models for the 10 most abundant
bacterial genera (Table 1). Overall, these analyses
suggest that the wood mouse gut microbiota is
primarily shaped by environmental factors, with
significant evidence for both temporal (see ‘Year’ and
‘Month’ columns) and spatial structuring (see ‘Grid’
column). These temporal trends could not simply be
explained by seasonal variation in temperature
(Supplementary Figure S5), as they were unaltered
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Figure 2 Seasonal variations in the wild mouse gut microbiota. (a) The first principle coordinate from a Bray—Curtis-based analysis of
microbial community structure over time. Trend lines were generated by fitting a polynomial function to values from each year (GraphPad
Prism version 6.0). Values are mean +s.e.m. (n=14-80 samples per group). Values from June and July were combined in 2011 owing to
limited available samples in July (n=2). (b) Association between average monthly microbial community structures between years. Values
are mean (thick black line) and 95% CI (thin grey lines) from a linear regression. (c) The relative abundance of bacterial genera in spring
and fall of both years. Values are mean +s.e.m. (n=24-123 samples per group; the first sample from each mouse was included). Asterisks
represent significant differences (P-value <0.05, Wilcoxon rank-sum test).

by inclusion of overnight temperature as a covariate
(Table 1). For all community dissimilarity metrics
examined and most individual genera, our minimal
models included a significant year by month inter-
action term, indicating seasonal differences that
varied somewhat across the 2 years investigated. If
these interaction terms were dissolved into their
component terms, strong main effects of month
were observed in nearly all models, with effects
of year also common though generally weaker.
Consistent with our prior analysis of spatial auto-
correlation, there was a strong association between
the community dissimilarity metrics and trapping
grid with weaker associations at the genus level. We
also detected associations between some metrics and
local population density at the time of capture
(Table 1).

To a lesser extent than extrinsic factors like season
and year, host factors such as reproductive status
and sex were associated with microbial community
structure, sometimes in the form of an interaction
between these two terms (Table 1). For example,
the abundance of Lactobacillus was higher in
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reproductively active than non-active females, but
did not depend on reproductive status for males
(Figure 5a). We also detected associations between
the gut microbiota and intestinal parasites. In
particular, nematode infections were inversely asso-
ciated with the abundance of the most abundant
Lachnospiraceae genus and positively associated
with the genus Escherichia (Figure 5b). However,
no significant associations between coccidia infec-
tion or anti-parasite treatment and the gut microbiota
were found, possibly due to the transient nature of
the intervention (monthly treatment intervals; see
Methods). Age-related differences were rare, with
Alistipes the only 1 of the 10 most abundant bacterial
genera associated with host age, showing an increase
across the age groups from juvenile to adult
(Table 1).

To illustrate how much variation in Bray—Curtis
principal coordinates 1 and 2 was explained by
environmental factors like month and year, compared
with host-related factors, we calculated marginal R*
statistics from our linear mixed models (Nakagawa and
Schielzeth, 2013). These are equivalent to classic R*
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(black lines), with the exception of three animals (grey lines).

statistics for linear models, indicating the percentage of
variation explained by a given set of predictor variables
(fixed effects). For both Bray—Curtis PC1 and PC2,
month (that is, seasonal differences) explained a
much larger proportion of variance than year
(Supplementary Table S6). Inclusion of year when
month was already present in the model provided
little additional explanatory power (PC1: R*cramiqm)
=43.9% with month only versus 48.7% with month
and year; PC2: R®*ciamim=10.1% with month only
versus 10.5% with month and year). Furthermore,
allowing the seasonal effect to vary among years (by
inclusion of a month x year interaction term) yielded
limited additional explanatory power for PC1
(R%immm =52% versus 49% variance explained),
with a twofold increase in variance explained for PC2
(R®*crammm =19.5% versus 10% variance explained).

Thus, seasonal differences in the gut microbiota
appear to dominate the differences between years
and are largely consistent across years, in agreement
with our earlier analyses (Figure 2). Host-related
factors (age, sex, reproductive status), enteric para-
site infections and host density explained some
additional variance (12% more for PC1 and 8%
more for PC2 than models with only month and year
terms), though their contribution was again smaller
than the strong seasonal effects, particularly for PC1
(Supplementary Table S6). Individual identity
explained 18% of the variation in Bray—Curtis PC1

even after including all other factors. We confirmed
these trends by analyzing the entire Bray—Curtis
dissimilarity matrix according to season, host
sex, and wood (see Methods). Although all three
factors showed a significant effect, seasonal effects
explained more variation (R*>=13.3%, P-value<107*)
than either host sex (R*=0.8%, P-value<0.05) or
spatial structure (R*=0.8%, P-value <0.05).

Discussion

At the phylum level, the wild mouse gut microbiota
is comparable to that of other mammals (including
humans) with two major groups, the Firmicutes and
Bacteroidetes, accounting for ~90% of the 16 S
rRNA gene sequencing reads (Ley et al., 2008a;
Muegge et al., 2011). We also detected high levels of
the Lactobacillus genus (phylum: Firmicutes; order:
Lactobacillales) constituting up to one-third of the
community, similar to other omnivorous mammals,
such as bears, squirrels and lemurs (Supplementary
Figure S6). These results confirm that to a large
degree the mammalian gut microbiota assembles in a
reproducible fashion regardless of the host species
(Ley et al., 2008a; Muegge et al., 2011), reflective of
the restricted set of microorganisms that have
adapted to life in the gastrointestinal tract (Ley
et al., 2008b).
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Figure 4 Spatial distribution of microbial community structure. Each circle represents the physical location of a given mouse at the time
of sampling in Manor or Haddon Wood, which are subdivided into two and four trapping grids, respectively. Shading is proportional to
the percentile along unweighted UniFrac principal coordinate 1 (an indication of overall microbial community membership). Between
August and November in 2010 there was a slight but significant difference in community composition between Haddon and Manor woods.
However, this difference was absent in August to November 2011. Within woods, no significant spatial structuring of communities was
observed in either year.

Figure 5 The gut microbiota is associated with intestinal helminth infection and reproductive state. (a) Values represent the relative
abundance of Lactobacillus according to host sex and reproductive status. (b) Nematode infection is positively associated with Escherichia
and negatively associated with an unclassified genus within the Lachnospiraceae family. All samples with non-zero abundance were
included. Values are mean +s.e.m. (n=92-205 samples per group).
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In contrast to ‘specific pathogen free’ laboratory
mice, we detected widespread colonization by
bacterial taxa that contain enteric pathogens, includ-
ing Helicobacter and other Proteobacteria. However,
given the resolution of our sequencing methods and
the limited studies of wild mouse pathogens we
cannot exclude the fact that these are commensal
strains. Despite this important caveat, our results are
consistent with previous reports, indicating that wild
house mice can be reservoirs of diverse Helicobacter
strains capable of infecting humans and other
vertebrates (O'Rourke et al., 2001; Parker et al.,
2009; Wasimuddin et al., 2012). We observed that
Helicobacter abundance increased in late summer/
fall, when Lactobacillus levels are low. This might
suggest that Lactobacillus confers protection against
infection as has been demonstrated in laboratory
mice (Kabir et al., 1997; Pena et al., 2005; Medellin-
Pena and Griffiths, 2009; Eaton et al., 2011).
Alternatively, immune status (that is, IL-22 defi-
ciency) has been linked to the abundance of
Lactobacillus (Zenewicz et al., 2013), potentially
suggesting that these seasonal changes might be in
part driven by the host response to bacterial infection.
Additional studies will be necessary to determine how
the immune system of these mice tolerates long-term
enteric pathogen colonization and to characterize the
reciprocal interactions between these enteric patho-
gens and the commensal gut microbiota.

The wild mouse gut microbiota underwent a
consistent seasonal shift in both years, with a
decrease in Lactobacillus and concomitant increases
in Alistipes, Helicobacter and the Lachnospiraceae
family (phylum: Firmicutes). A possible explanation
is that mid-summer represents a transition from a
diet rich in insects to a diet primarily composed of
seeds (Watts, 1968), coincident with the annual seed
fall, which usually starts in late July in UK wood-
lands (Gurnell, 1993). Thus, we propose that seaso-
nal patterns in dietary intake drive variations in the
gut microbial community structure of wild wood
mice. Differences in the timing, extent and tree
species composition of seed fall, which can vary
markedly between years (Gurnell, 1993), may
explain the observed variation between years in the
magnitude of the seasonal microbiota transition
observed. Notably, a recent study of rural human
subjects from South Dakota revealed differences in
the gut microbiota in summer relative to winter
(Davenport et al., 2014), suggesting that seasonal
reconfigurations may be a conserved feature of host-
associated microbial communities.

If diet is indeed the dominant factor it still remains
unclear what specific components of the diet might
drive the observed changes to gut microbial commu-
nity structure. The elevated levels of Alistipes in
the fall may be reflective of increased bile acid levels
triggered by an increased consumption of fat,
as seen in a recent human dietary intervention
study (David et al., 2014). Members of the Lachnos-
piraceae family, including Eubacterium rectale and

The wild mouse gut microbiota changes seasonally
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Roseburia, have been linked to the fermentation of
dietary plant polysaccharides in human studies
(David et al., 2014; Duncan et al., 2007), and were
also enriched in the fall coinciding with the
increased access to plant seeds. Similarly, the source
and/or dietary trigger of Lactobacillus (often a minor
member of the mammalian distal gut microbiota)
also remains unclear. Lactobacillus is often found in
fermented foods (Wolfe et al., 2014), raising the
possibility that their elevated abundance early in the
year may be driven by its cultivation in wood mouse
food stores over winter.

Alternatively, seasonal changes in mouse physiology,
including torpor and reduced food consumption
during winter, could also have a role in the observed
seasonal trends. Indeed, seasonal restructuring of the
gut microbiota has recently been observed in ground
squirrels under controlled laboratory conditions
(Carey et al., 2013). These shifts coincided with
hibernation, suggesting they are driven by a shift
from dietary to host-derived substrates. We detected
similar patterns in wild rodents, including a
decrease in the relative abundance of Lactobacillus
and an increase in Alistipes from spring/early
summer to late summer/fall. Although wood mice
do not hibernate, they are subject to daily torpor in
conditions of low temperature and food restriction.
Thus, it is possible that the seasonal microbial shifts
seen here may be driven by the transition to a state of
intermittent torpor.

What are the potential consequences of the
observed seasonal shifts in gut microbial community
structure? Recent human intervention studies have
shown rapid and reproducible changes in microbial
community structure and function upon consump-
tion of an animal- versus plant-based diet (David
et al., 2014). These results, considered together with
the current findings from wild wood mice, make it
tempting to speculate that the mammalian gut
microbiota may provide a rapid way to optimize
caloric intake given volatile shifts in the availability
of different foods. Microbial communities that could
rapidly shift their metabolic activity in response to
changes in host dietary intake could have enhanced
dietary flexibility, likely increasing the fitness of the
host and its microbial consortia.

We also found significant but weak evidence for
spatial structure, unlike the more robust associa-
tions with geographic region found in recent studies
of house mice (Linnenbrink et al., 2013), wild
primates (Degnan et al, 2012) and humans
(Yatsunenko et al., 2012). The significant spatial
structure that we did find was evident only in
community-wide metrics when comparing between
woods. Individual bacterial genera showed no
spatial structure, and no spatial structuring was
evident within woods at either the community or
individual genus levels. These results emphasize
that the gut microbiota of these wild mouse
populations is primarily shaped by factors that are
not spatially structured at the scales that
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we considered. These results suggest that either
(i) microbial dispersal occurs efficiently over dis-
tances far greater than the host range evaluated here
and/or (ii) the observed bacterial taxa are long-term
and stable residents of the wild wood mouse gut
microbiota. Strain-level analyses of the gut micro-
biota (Segata et al., 2012b; Faith et al., 2013) could
help determine whether there are finer differences
between woods, or among areas within each wood.
Furthermore, surveying wild mice across more
distant sites could provide additional insight into
broader biogeographical patterns.

Our linear mixed models revealed significant
associations with reproductive status and intestinal
parasites. Consistent with these findings, recent
studies indicate that the human gut microbiota is
altered during pregnancy (Koren et al., 2012), and
studies in laboratory mice have shown that infec-
tion by the nematode Trichuris muris depends on
the gut microbiota (Hayes et al., 2010). The
associations between intestinal nematodes and the
bacterial genera Escherichia (positive) and Lach-
nospiraceae (negative) support recent studies in
humans and animal models (Walk et al., 2010;
Rausch et al., 2013), though we did not find the
specific association between H. polygyrus and
relative Lactobacillus abundance, as recently
reported in laboratory mice (Reynolds et al,
2014). Whether the associations found result from
an altered immune response of the host or from
direct interactions between the intestinal parasites and
the gut microbiota remains to be elucidated. Determin-
ing the causal direction and underlying mechanisms of
these interactions will require more extensive long-
itudinal analyses of wild mice before and after
helminthic infection, as well as controlled studies
using captured and/or captive mice.

In conclusion, despite the common use of labora-
tory mice to study the environmental and host
factors that shape host-associated microbial commu-
nities, we still know very little about their natural
state. Our results provide an initial view of the wild-
wood mouse gut microbiota, emphasizing not only
commonalities between mammals, but also the
importance of considering temporal variations in
nutritional status, enteric pathogens, reproductive
status and parasite burden in setting the stage for
host-microbial interactions. Follow-up observational
and interventional studies of wild mice, paired with
an in-depth analysis of dietary intake, are necessary
to test the hypothesis that the observed seasonal
trends are due to changes in diet, and could provide
a complementary and tractable approach towards
better understanding the causes and consequences of
inter-individual variations in the mammalian gut
microbiota.
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