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ABSTRACT 

Marteilia sydneyi (Phylum Paramyxea, Class Marteiliidea, Order Marteiliida) (the causative 

agent of QX disease) is recognised as the most severe parasite to infect Saccostrea glomerata, the 

Sydney rock oyster, on the east coast of Australia. Despite its potential impact on industry (>95% 

mortality), research towards lessening these effects has been hindered by the lack of an experimental 

laboratory model of infection as a consequence of our incomplete understanding of the life cycle of 

this parasite. Here, we explored the presence of this parasite in hosts other than a bivalve mollusc 

from two study sites on the Hawkesbury River, New South Wales, Australia. We employed PCR-

based in situ hybridisation and sequence analysis of a portion of the first internal transcribed spacer 

(ITS1) of rDNA in an attempt to detect M. sydneyi DNA in 21 species of polychaete worm. Marteilia 

DNA was detected in 6% of 1247 samples examined by PCR; the analysis of all amplicons defined 

one distinct sequence type for ITS1, representing M. sydneyi. Of the polychaete operational 

taxonomic units test-positive in PCR, we examined 116 samples via in situ hybridisation DNA probe 

staining and identified M. sydneyi DNA in the epithelium of the intestine of two specimens of Nephtys 

australiensis. Two differing morphological forms were identified: a ‘primordial’ cell that contained a 

well-defined nucleus but had little differentiation in the cytoplasm, and a ‘plasmodial’ cell that 

showed an apparent syncytial structure. This finding represents the first known record of the 

identification of M. sydneyi being parasitic in an organism other than an oyster, and only the third 

record of any species of Marteilia identified from non-molluscan hosts. Future work aims at 

determining if N. australiensis and S. glomerata are the only hosts in the life cycle of this 

paramyxean, and the development of experimental models to aid the production of QX disease-

resistant oysters.  
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1. Introduction 

Since the mid-1970s, the protozoan Marteilia sydneyi (Phylum Paramyxea), the aetiological 

agent of QX disease, has been recognised as the most pathogenic parasite of the Sydney rock oyster 

(SRO), Saccostrea glomerata, particularly in estuaries of southern Queensland (Qld) and northern 

New South Wales (NSW), Australia (Adlard and Ernst, 1995). As a consequence of the significant 

impact the disease may have during outbreaks (i.e. ≥ 95% mortality; (Bezemer et al., 2006)), control 

measures typically require quarantining entire estuaries in order to restrict the movement of infected 

stock. In the absence of data on transmission and the causative elements that promote these outbreaks, 

this has been the most conservative course of action and, until recently, the only management tool 

available to protect the SRO industry. However, with reports indicating that M. sydneyi is present in 

most estuaries in which major SRO culture is undertaken (Adlard and Wesche, 2005), even though 

many have never suffered significant disease events, research has turned to investigating the 

contribution of oyster immuno-competence to disease inhibition (Bezemer et al., 2006; Butt and 

Raftos, 2008; Green et al., 2009; Dang et al., 2011), the production of QX disease-resistant oysters 

(Nell et al., 2000; Nell, 2001; Green et al., 2008) and disease resistance biomarkers (Simonian et al., 

2009).  

One major obstacle to furthering these avenues of research is the lack of a laboratory or 

experimental model of infection, a consequence of our incomplete understanding of the life cycle of 

this parasite. The best known component(s) of the M. sydneyi life cycle (as with the pathogenic 

Marteilia refringens from Ostrea edulis in Europe) involve the definitive host (Perkins and Wolf, 

1976). Similar to studies from Europe which postulate the existence of a complex life cycle for M. 

refringens (Berthe et al., 1998; Audemard et al., 2001, 2002; Berthe et al., 2004; Arzul et al., 2013; 

Boyer et al., 2013), the suggestion that the life cycle of M. sydneyi is indirect originated in the mid-

1980s when cross-infection experiments failed (Lester, 1986). Additionally, the discovery in vitro that 

spores of M. sydneyi have a limited viability in the marine environment (Wesche et al., 1999), 

implicated the existence of one or more intermediate host(s). Adlard and Lester (1996) postulated the 

existence of a direct correlation between the abundance of the major component of benthic organisms 

(i.e. polychaete worms) and the prevalence of QX disease during outbreaks, which spurred interest in 

investigating this group as possible alternate hosts. However, the use of classical laboratory 

techniques has inhibited the reliable and unambiguous identification of unknown morphological 

stages of M. sydneyi in alternate hosts (Kleeman and Adlard, 2000), indicating the clear need to 

undertake a systematic molecular investigation of a range of polychaetes in affected estuarine 

systems. 

 PCR-based techniques, employing suitable gene markers, coupled with diagnostic methods 

such as in-situ hybridisation (ISH), have been used to investigate parasitic life cycles (Fong et al., 

1993; Stokes et al., 1995). Previously, we have shown this approach is highly sensitive and specific 

for the accurate identification of Marteilia infections in oysters (Anderson et al., 1995; Kleeman and 
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Adlard, 2000; Kleeman et al., 2002a, b; Adlard and Worthington-Wilmer, 2003; Adlard and Wesche, 

2005). To date, PCR-only based approaches have revealed the presence of M. sydneyi nucleic acids in 

polychaetes collected in QX-endemic areas; however, whether the M. sydneyi DNA detected in these 

samples is derived from developing infections or the result of accidental ingestion of the pathogen 

during feeding remains to be explored. Thus, in the present investigation we examined a range of 

polychaetes in the Hawkesbury River, NSW, Australia, employing a combined PCR/ISH-based 

approach in an attempt to identify and characterise previously unknown life cycle stages of M. sydneyi 

and link these genetically with those detected previously in S. glomerata. 

 

2. Materials and methods 

2.1. Sample timing  

The current study employed an established PCR protocol (Kleeman and Adlard, 2000; Adlard 

and Worthington-Wilmer, 2003) to detect the presence of M. sydneyi DNA in benthic macrofauna. 

We anticipated that PCR-positive samples would fall into two categories; ‘false positives’ that were 

the product of incidental ingestion of spores which remain in the digestive tract of benthic fauna, and 

‘real positives’ that were the result of uptake and development of the parasite within ‘true’ alternate 

hosts. To minimise the likelihood of detecting false positives we sampled benthic organisms in 

November (late spring). We anticipated that sampling during this temporal window would mean that 

the majority of infected oysters had already shed spores and died and parasite development within an 

alternate host would be well advanced to allow infection of oysters during the following (mid-

summer) infection period (Bower et al., 1994). Consequently, the probability of detecting developing 

M. sydneyi stages in alternate hosts would be maximised. 

 

2.2. Sample collection on the Hawkesbury River, NSW 

The New South Wales Department of Primary Industries (NSW DPI), Australia provided a 

geographic map of the upper Hawkesbury River region. Two areas, Cobar (33°32’37”S 151°08’17”E) 

and Kimmerikong (33°32’51”S 151°09’10”E), associated with current and former oyster leases and 

unfarmed neighbouring areas, were selected for sampling (Fig. 1). Both areas were overlaid with a 

numbered grid; 150 computer generated random numbers were then plotted across each area and the 

latitude and longitude determined for these (data not shown). GPS points for each sampled site were 

relocated on the Hawkesbury River using a hand-held GPS unit (see Figs. 2A, B). Benthic samples 

were collected using a van Veen grab sampler between 7 - 20 November 2006 from 50 sites across 

Cobar (Fig. 2A) and 64 at Kimmerikong (Fig. 2B). One sample was taken at each site and only five 

samples were collected at one time to prevent deterioration of the macrobenthic fauna. Samples were 

placed in separate 5 L containers for transport and labelled with the site number (1 - 150 for Cobar 

and 151 - 300 for Kimmerikong samples) before each was reduced in volume by washing it through a 
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series of two stacked sieves (1 mm and 500 µm). ‘Semi-clean’ samples were then soaked for a further 

45 min, followed by a second wash (500 µm sieve) to remove loosened sediment. 

‘Clean’ samples were poured into Petri dishes and allowed to settle for 10 - 15 min before 

being scanned using a stereomicroscope. Polychaetes were removed from the sample using 

featherweight forceps and stored in hemagglutination trays in river water. Polychaetes were classified 

into operational taxonomic units (OTUs) (family; putative species) for each site. Such an approach to 

classification was felt appropriate because Australia has some of the highest diversity of polychaetes 

in soft sediments and a large number of taxa remain to be described (Beesley et al., 2000). Numbers 

of each OTU from each site were recorded before individual site OTUs were combined and half the 

specimens transferred to microcentrifuge tubes containing 95% ethanol (for DNA analysis) and half to 

10% formalin (to represent an OTU or for ISH) (both at room temperate; RT). Specimens for ISH 

were changed from formalin to ethanol after 1 - 2 weeks. Formalin-fixed OTU specimens were 

photographed using a Nikon Digital Sight camera (DS-5M) attached to a stereomicroscope located at 

the Queensland Museum, Brisbane, Australia. Voucher specimens for all polychaete OTUs have been 

retained in the research collection at the Queensland Museum. 

 

2.3. Genomic DNA extraction and PCR-coupled sequencing 

Genomic DNA (gDNA) was extracted from single polychaete specimens using a DNeasy
®
 

Blood and Tissue Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. The 

PCR protocol employed here essentially followed that reported by Kleeman and Adlard (2000) and 

Adlard and Worthington-Wilmer (2003). In brief, 195 nucleotides of the first internal transcribed 

spacer (ITS1) of rDNA were amplified using the primers LEG1 (forward: 5’–

CGATCTGTGTAGTCGGATTCCGA–3’) and PRO2 (reverse: 5’–

TCAAGGGACATCCAACGGTC–3’) (Kleeman and Adlard, 2000). PCR was carried out in a volume 

of 25 µl containing 2.5 µl of 10× HotMaster™ Taq buffer (Qiagen) with 25 mM magnesium chloride 

(MgCl2), 200 µM of each dNTP, 50 pmol of each primer, 1.25 µl of DMSO (5.0% final 

concentration) and 0.75 U of HotStarTaq DNA polymerase (Qiagen) utilising a cycling protocol that 

consisted of 95 °C for 10 min (initial denaturation), followed by 35 cycles of 95 °C for 30 s 

(denaturation), 55 °C for 30 s (annealing) and 65 °C for 30 s (extension), with a final extension at 65 

°C for 5 min. 

Following PCR, all amplicons were run on a 1% TBE (0.89 M Tris base, 0.89 M boric acid, 

0.5 M EDTA buffer; Sigma Aldrich, USA) agarose gel; amplicons indicated to be of the appropriate 

size (i.e. 195 nucleotides) and representing each distinct OTU from Cobar and Kimmerikong were 

purified using the QIAquick
®
 PCR Purification Kit (Qiagen), according to the manufacturer’s 

instructions. Sequencing reactions for each purified amplicon were performed in 10 µl volumes 

containing 0.3 µl of BigDye Terminator (BDT) ready reaction mix (BigDye® Terminator v.3.1 

chemistry, Applied Biosystems, USA), 2.0 µl of 5× BDT dilution buffer, 50 pmol of each primer 
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(separate reactions were performed for each sample using the forward or reverse primer), and 1 - 3 ng 

of purified PCR product, employing a protocol that consisted of one cycle of 96 °C for 1 min, 

followed by 25 cycles of 96 °C for 10 s, 50 °C for 5 s, 60 °C for 4 min, and a final holding 

temperature of 4 °C. Products were precipitated in 2.0 µl of 125 mM EDTA, 2.0 µl of 3 M sodium 

acetate (pH 4.6) and 50 µl of 100% ethanol, and the pellets dried at 37 °C for 30 min. Samples were 

then subjected to automated sequencing at the Australian Genome Research Facility, Brisbane, 

Australia. Sequence quality was verified by comparison with corresponding electropherograms using 

the software BioEdit (Hall, 1999). 

The taxonomic identity of each sequence was determined by Basic Local Alignment Search 

Tool analyses (BLAST
®
: http://blast.ncbi.nlm.nih.gov/Blast.cgi). In each case, matches were sought 

to published M. sydneyi sequence data available in GenBank represented by the accession numbers 

AF159248 (Kleeman and Adlard, 2000) and AY504628 - AY504632 (Kleeman et al., 2004). 

Sequences generated in the present investigation were aligned using the program ClustalX (Thompson 

et al., 1997) and the resultant alignments were adjusted manually using the BioEdit software. 

 

2.4. Labelling of the ISH DNA probe and ISH 

The DNA probe generated for ISH in the present investigation utilised the primers CS2 (5’–

GCAAGTCTGGTGCCAGCAGC–3’) and SAS1 (5’–TTCGGGTGGTCTTGAAAGGC–3’), which 

incorporate the 18S rRNA region reported as ‘Smart 2’, the most specific DNA probe employed to 

detect M. refringens in infected European flat oysters (O. edulis) and naturally infected mussels 

(Mytilus edulis and Mytilus galloprovincialis) (Le Roux et al., 1999). Despite its specificity to M. 

refringens, Kleeman et al. (2002a) determined that this probe provided greater resolution for the 

detection of all stages of M. sydneyi compared with a species-specific ITS1 probe (Kleeman and 

Adlard, 2000). The probe was synthesised by incorporating digoxigenin-11-dUTP (DIG) during PCR 

and employing a PCR DIG Probe Synthesis Kit (Roche Diagnostics Australia Pty. Ltd.), following the 

manufacturer’s instructions. Incorporation of DIG was signalled by an increase in molecular mass as 

indicated on a 1% TBE agarose gel. Labelled PCR products were purified utilising the High Pure PCR 

Product Purification Kit (Roche Diagnostics), as per the manufacturer’s instructions. 

Formalin-fixed specimens were embedded in paraffin. Longitudinal sections were cut at a 

thickness of 6 µm, floated onto silane slides (2% (3-aminopropyl)triethoxysilane in acetone) and 

baked overnight (ON) at 62 °C. Tissue was deparaffinized in Histo-Clear II (100%, 2 × 10 min 

washes) and the solvent removed with ethanol. Air-dried sections were permeabilised with 100 µg/ml 

of proteinase K in 1× TE buffer (10× solution; 100 mM Tris-Cl (pH 8.0), 10 mM EDTA (pH 8.0)) at 

37 °C/30 min in a humid chamber, before each section was dehydrated in a 1 min wash of 95% 

ethanol then 100% ethanol, and air-dried. Samples were then prehybridised with 500 µl of 

hybridisation buffer (3× SSC, 50% formamide, 1× Denhardt’s solution, 0.5 mg ml-1 heat denatured 

herring sperm DNA and 5% dextran sulphate) at 42 °C for 60 min (20× SSC; 3 M sodium chloride, 
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0.3 M sodium citrate, pH 7.0). The prehybridisation buffer was then replaced with 55 µl of diluted 

DIG-labelled probe in hybridisation buffer (5 µl in 50 µl, respectively), cover-slipped and placed on a 

heating block at 95 °C for 5 min. Slides were cooled on ice for 5 min before ON hybridisation at 42 

°C in a humid chamber. Post hybridisation included 2× 5 min washes in 2× SSC (RT), 1 × 10 min 

wash in 0.4× SSC at 42 °C, and equilibration in maleic acid buffer (100 mM maleic acid, 150 mM 

sodium chloride, pH 7.5) for 1 min at  room temperature (RT). DIG-labelled probe detection included 

blocking sections with 200 µl of blocking buffer (maleic acid buffer, 1% blocking reagent) for 30 min 

at RT followed by incubation for 60 min at 37 °C in a humid chamber with 200 µl of dilute anti-

digoxigenin-alkaline phosphatase (AP) conjugated antibody (1:500 in blocking buffer). Unbound 

antibody was removed with 2× 1 min washes in maleic acid buffer and slides were equilibrated in 

detection buffer (100 mM Tris-HCl, 100 mM sodium chloride, 50 mM MgCl2, pH 9.5) for 5 min. 

BCIP/NBT (5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium) was diluted in detection 

buffer (20 µl in 1 ml, respectively) and 200 µl of the colour solution added to the tissue and incubated 

in the dark for 4 h at RT. The reaction was stopped by washing tissue in 1× TE buffer for15 min at 

RT. Slides were washed with DNase/RNase free H2O, stained in Bismarck Brown Y (9% solution) for 

1 min followed by dehydration in 95% and 100% ethanol and mounted in Depex (Adlard and Wesche, 

2005). 

 

3. Results 

3.1. Polychaetes, PCR and ISH 

We provisionally classified 21 species of polychaete in 13 families from more than 2700 

specimens collected from Cobar (16 OTUs from 12 families) and Kimmerikong (20 OTUs from 12 

families) (Table 1). The total combined numbers of each OTU were typically similar between sample 

areas (except for Lumbrineridae sp. 1 and Magelonidae sp. 1) although differences amongst the 

numbers of each OTU varied considerably; combined totals for individual OTUs from both sample 

areas ranged from one specimen to 1875 specimens (Table 1). In addition, more than 95% of the total 

polychaete abundance sampled here consisted of members from just six of the 12 families collected, 

namely Lumbrineridae, Magelonidae, Nephtyidae, Sabellidae, Spionidae and Trichobranchidae. 

PCR-based screening for M. sydneyi DNA was conducted on 1247 samples from Cobar (n = 

545/1186; 46%) and Kimmerikong (702/1566; 45%). This approach identified a proportion of each 

Cirratulidae sp. 1 (20%), Lumbrineridae sp. 1 (11.3%), Magelonidae sp. 1 (33.3%), Nephtyidae sp. 1 

(19.2%), Sabellidae sp. 1 (17.9%) and Trichobranchidae sp. 1 (2.2%) as test-positive at Cobar and 

Kimmerikong, while Spionidae sp. 1 (10.0%) and 2 (30.7%) were test-positive at Kimmerikong only 

(Table 1). Subsequent comparisons amongst all ITS1 amplicons generated in this study, together with 

information available in GenBank, inferred the presence of M. sydneyi DNA (data not shown; contact 

primary author for sequence alignment) in these eight OTUs. There were no nucleotide differences 

among generated M. sydneyi ITS1 sequences from different polychaete OTUs, different collection 
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areas or nucleotide sequence data available in GenBank (i.e. AF159248 (Kleeman and Adlard, 2000) 

and AY504628 - AY504632 (Kleeman et al., 2004)). 

Of the PCR-positive polychaete OTUs, we were able to embed specimens of Cirratulidae sp. 

1 (n = 7 worms examined in total), Lumbrineridae sp. 1 (n = 22), Magelonidae sp. 1 (n = 20), 

Nephtyidae sp. 1 (n = 50) and Sabellidae sp. 1 (n = 17) for ISH analysis. Of 116 samples tested, only 

two specimens of Nephtyidae sp. 1 from Cobar (8.3% of 24 specimens) were confirmed as positive 

for M. sydneyi DNA by ISH while no sections from 26 specimens tested from Kimmerikong were 

test-positive by ISH. Dr P. Hutchings, of the Australian Museum, Sydney, Australia 

(http://australianmuseum.net.au/) identified this nephtyid as Nephtys australiensis. Marteilia sydneyi 

DNA identified via in situ DNA probe staining was located in the epithelium of the intestine of N. 

australiensis (see Fig. 3). Two differing morphological forms were identified: a ‘primordial’ cell that 

contained a well-defined nucleus but had little differentiation in the cytoplasm, and a ‘plasmodial’ cell 

that showed an apparent syncytial structure. These morphological types measured 30 × 10 µm in 

dimension and were associated with, or adhered to, the membrane of polychaete epithelial cells (Fig. 

3). 

 

4. Discussion 

The results presented here represent the first known record of the identification of M. sydneyi 

being parasitic in an organism other than an oyster and only the third record of any species of 

Marteilia identified from non-molluscan hosts collected from coastal systems. The presence of a 

member of the phylum Paramyxea in a polychaete worm is perhaps unsurprising. Paramyxa paradoxa 

and Paramyxa nephtys have both been reported from the gut epithelium of the polychaetes 

Poecilochaetus serpens (Poecilochaetidae) and Nephtys caeca (Nephtyidae), respectively (Desportes, 

1981; Larsson and Køie, 2005), although neither has been connected via their life cycle to a bivalve 

mollusc. Nonetheless, the presence of polychaetes in the life cycle of these two species strengthens 

the proposal that polychaetes may regularly act as hosts for paramyxean parasites. Additionally, a 

recent investigation in the Diana lagoon, in the northeast of Corsica, France, indicated the presence of 

M. refringens DNA in polychaete larvae in zooplankton samples (Arzul et al., 2013). Given this 

possibility, it is intriguing that two copepods are commonly implicated in the life cycle of M. 

refringens (Audemard et al., 2002; Arzul et al., 2013; Boyer et al., 2013), another highly pathogenic 

parasite of oysters. Employing similar methods to those utilised here, life cycle investigations of M. 

refringens have focused on the identification of previously unknown morphological stages developing 

within Paracartia grani and more recently Paracartia latisetosa (Audemard et al., 2002; Carrasco et 

al., 2007, 2008; Arzul et al., 2013; Boyer et al., 2013). To date, M. refringens has been identified in CI 

- CV copepodid stages of P. grani, adult females of P. grani and P. latisetosa (CIII is the earliest 

stage of P. grani in which M. refringens has been detected by ISH; parasitic stages have been detected 

in the alimentary canal, digestive epithelium and germinal site; (Boyer et al., 2013)), CV males of P. 
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grani and in eggs following egg production experiments (Audemard et al., 2002; Arzul et al., 2013; 

Boyer et al., 2013). In addition, M. refringens has also been successfully transmitted from infected 

oysters (O. edulis) to P. grani where parasite development was detected (Arzul et al., 2013), but 

conversely, these experiments have so far failed to infect oysters from infected copepods (Carrasco et 

al., 2007). Audemard et al. (2001) hypothesised that either a period of maturation in the environment 

is required or that a second intermediate host is necessary. However, Carrasco et al. (2007) 

emphasised that difficulties, either in collecting sufficient infected hosts or producing them through 

laboratory infections, severely limits the experimental capacity to establish the true nature of 

infection. 

Using our combined molecular approach, we confirmed two M. sydneyi infections by ISH-

probe staining, which were situated in the epithelium of the intestine of N. australiensis. While PCR 

detection of M. sydneyi DNA in polychaetes was relatively common, with a prevalence of 6.2% and 

5.8% from Cobar and Kimmerikong, respectively, it is difficult to quantify what proportion of these 

represent developing stages of M. sydneyi in natural polychaete hosts. Equally, it is unlikely that the 

two N. australiensis identified with ISH-probes as containing developing parasitic infections were the 

only ‘real’ positives in this study. Given that the simple but overriding objective here was to 

unambiguously identify developing stages of M. sydneyi in an alternate host(s), such a goal required a 

methodology that reduced sample size and detection sensitivity at each stage of the investigation. 

First, polychaetes had to be identified to OTUs, which were each approximately equally divided for 

PCR or ISH analyses, effectively reducing the sample size for each OTU by 50%. PCR amplification 

using highly sensitive, specific and optimised protocols offers the minimum loss of detection possible. 

Nonetheless, amplification of parasite DNA can be swamped by overwhelming amounts of host DNA 

leading to false negatives (Kleeman and Adlard, 2000). Conversely, the presence of M. sydneyi DNA 

in the intestinal lumen of worms as a result of incidental ingestion of parasite spores while feeding 

potentially overestimates parasite prevalence in alternate hosts (what we refer to as ‘false positives’). 

The last level of reduced detection occurs during processing for ISH. Detection was maximised by 

optimising the duration of formalin fixation and by using DNA probes designed to anneal in the small 

subunit region of rRNA (rather than the ITS region) to maximise the ISH staining signal (Kleeman et 

al., 2002a). However, this technique relies on histological sectioning which, of necessity, sub-samples 

the target tissue. Where the distribution (and intensity of infection) of a parasite in the tissues of its 

host is unknown, sub-sampling may or may not affect levels of detection. Consequently, it is perhaps 

more surprising that we detected ‘true’ positives in polychaetes at all, rather than the small number 

that we actually identified.  

Use of N. australiensis as an alternate host in the life cycle of M. sydneyi leads us to consider 

at least three possible scenarios before assessing the implications of this study. The first is that N. 

australiensis is the only alternate host required for the completion of the life cycle of M. sydneyi; the 

second, N. australiensis is one of a number of benthic species that can act as an alternate host for the 
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completion of a two-host life cycle of M. sydneyi, and finally, N. australiensis and S. glomerata are 

only two hosts in the three-or-more host life cycle of M. sydneyi. If scenario three is correct it is 

unlikely that any benefit(s) of continued research towards developing a laboratory model of infection 

would outweigh the cost of doing so. However, if scenarios one or two prove correct then the 

development of an experimental model is facilitated by the outcome of this project. The first phase of 

future studies, as an extension to the current investigation, would involve the growth of a parasite-free 

culture of N. australiensis to allow in vivo confirmation of infection by the introduction of mature 

spores of M. sydneyi in controlled experiments. This would parallel experiments reported by 

Audemard et al. (2002) from flat oysters in France. The next phase would then involve the infection 

of parasite-free oysters with parasitic stages derived from M. sydneyi-infected polychaetes. It is this 

phase of laboratory model development that has so far been unsuccessful in the attempted 

experimental infections of O. edulis from infected copepods in France (Audemard et al., 2002; 

Carrasco et al., 2007, 2008) and has led them to hypothesise that a third host, or period of maturation, 

is required in the life cycle of M. refringens.  

One factor that will need detailed consideration if future infection experiments are to proceed 

is the host oysters themselves; oyster genetics and/or their level of immuno-competence will 

determine whether infective stages of M. sydneyi originating from polychaetes will establish. Studies 

on the mechanism of resistance developed through the SRO selective breeding program conducted by 

the NSW DPI (see Nell and Perkins (2006)) implicates one form of the defensive enzyme, 

phenyloxidase, as being negatively selected in resistant lines (Bezemer et al., 2006). Furthermore, 

resistant lines have now been shown to have higher phagocytic and phenyloxidase activity, a greater 

number of circulating haemocytes, and a higher percentage of granulocytes than wild-type oysters 

(Butt and Raftos, 2008; Kuchel et al., 2010; Dang et al., 2011). Consequently, compelling evidence 

exists that oyster genetics directly impact on their susceptibility to infection with M. sydneyi. Another 

confounding issue to future experiments is the link between environmental stressors and immuno-

suppression. Butt and Raftos (2007) suggested that the presence of a transient environmental stressor 

in the Hawkesbury River in 2004 - 2005 may have affected phenyloxidase activity and, in turn, 

increased the susceptibility of oysters to infection. Such a scenario would explain the appearance of 

severe mortalities in an estuary that had previously been unaffected by QX disease. As such, any 

attempts to either confirm or further develop in vitro life cycle studies of M. sydneyi should involve 

experimental oysters of known genetic susceptibility and be undertaken with sufficient replicates to 

allow for experimental assessment of environmental stressors. 

 In conclusion, polychaete worms dominate the benthic fauna associated with sediment near 

oyster leases in the upper region of the Hawkesbury River. A single species, N. australiensis, was 

confirmed to harbour developing stages of M. sydneyi in the epithelium of the intestine of two 

individuals. Importantly, by detecting these previously unidentified and differing morphological 

parasitic forms of M. sydneyi, this study represents a breakthrough in QX disease research and may 
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correspond to the identification of the only two hosts required in the life cycle of this parasite. Such a 

contention would require confirmation through experimental infection of N. australiensis from 

infected oysters followed by back-cross infections from infected polychaetes to known uninfected 

oysters. Importantly, results from this study provide an unprecedented opportunity to (i) develop an in 

vivo laboratory model of infection to enhance and expedite the existing selective breeding program 

for disease resistance and (ii) to identify the principal effectors and the presence/existence of 

synergistic effects on outbreak events and the subsequent severity of this disease. Consequently, the 

immediate benefits of this study are directly connected to the commercial oyster industry and 

associated management sectors. The results presented here should clarify industry members’ 

understanding of disease interactions in the aquatic environment and will be of broader interest to the 

global aquatic animal health community through the novel identification of alternate hosts required 

for disease transmission. 
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Figure legends  

 

Fig. 1. The location of two areas (i.e. Cobar (red) and Kimmerikong (blue)) in the upper Hawkesbury 

River, Sydney, Australia, associated with current and former oyster leases and unfarmed neighbouring 

areas, selected for benthic sampling in 2006. Base map provided by New South Wales Department of 

Primary Industries, Australia.  

 

Fig. 2. Random GPS points (red circles) plotted across two sampling areas in the upper Hawkesbury 

River, Sydney, Australia. (A) Fifty points (blue squares) were located across the Cobar sampling site; 

and (B) 64 points were sampled across the Kimmerikong site. Base map provided by New South 

Wales Department of Primary Industries, Australia.   

 

Fig. 3. Photomicrographs of tissue sections from the polychaete worm, Nephtys australiensis, stained 

with (A - D) in-situ hybridisation (ISH) DNA probe specific for Marteilia spp. and (E – F) H & E, 

from the same histological preparation. (A – D) ISH staining of two distinct parasite 

morphologies/stages in the intestinal epithelium of N. australiensis; (E) both parasite morphologies 

stained with H & E; (F) high magnification of ‘primary’ and ‘plasmodial’ morphologies of Marteilia 

sp. IL, intestinal lumen. 
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Table 1. The total numbers of each polychaete operational taxonomic unit (OTU) sampled at Cobar 

and Kimmerikong, New South Wales, Australia together with the numbers of animals that were PCR 

test-positive for Marteilia sydneyi DNA (number of PCR test-positive samples/total number tested; 

percentage). 

 
Polychaeta OTU Putative species  Cobar Kimmerikong Totals 

Capitellidae sp. 1  0 1 (0/0; 0.0) 1 (0/0; 0.0) 

Capitellidae sp. 2  2 (0/0; 0.0) 3 (0/0; 0.0) 5 (0/0; 0.0) 

Cirratulidae sp. 1  10 (2/7; 28.6) 26 (3/18; 16.7) 36 (5/25; 20.0) 

Lumbrineridae sp. 1 Augeneria verdis 108 (4/36; 1.0) 244 (9/79; 11.4) 352 (13/115; 11.3) 

Lumbrineridae sp. 2  1 (0/1; 0.0) 6 (0/4; 0.0) 7 (0/5; 0.0) 

Lumbrineridae sp. 3  14 (0/7; 0.0) 20 (0/7; 0.0) 34 (0/14; 0.0) 

Magelonidae sp. 1 Magelona sp. 6 (3/4; 75.0) 76 (9/32; 28.1) 82 (12/36; 33.3) 

Nephtyidae sp. 1 Nephtys australiensis 86 (10/40; 25.0) 85 (5/38; 13.2) 171 (15/78; 19.2) 

Nephtyidae sp. 2 Nephtys inornata 0 1 (0/1; 0.0) 1 (0/1; 0.0) 

Opheliidae sp. 1 Armandia intermedia 11 (0/6; 0.0) 26 (0/12; 0.0) 37 (0/18; 0.0) 

Phyllodocidae sp. 1 Paranaitis inflata 0 2 (0/1; 0.0) 2 (0/1; 0.0) 

Polynoidae sp. 1  1 (0/0; 0.0) 0 1 (0/0; 0.0) 

Sabellidae sp. 1 Jasminiera sp. 13 (3/7; 43.0) 40 (2/21; 9.5) 53 (5/28; 17.9) 

Sabellidae sp. 2 Laonome triangularis 0 1  (0/0; 0.0) 1 (0/0; 0.0) 

Scalibregmatidae sp. 1 Scalibregma inflatum 1 (0/0; 0.0) 1  (0/0; 0.0) 2 (0/0; 0.0) 

Spionidae sp. 1  17 (0/7; 0.0) 9 (1/3; 33.3) 26 (1/10; 10.0) 

Spionidae sp. 2  14 (0/6; 0.0) 12 (4/7; 57.1) 26 (4/13; 30.7) 

Spionidae sp. 3  14 (0/0; 0.0) 3  (0/0; 0.0) 17 (0/0; 0.0) 

Spionidae sp. 4  0 1  (0/0; 0.0) 1 (0/0; 0.0) 

Terebelidae sp. 1 Polycirrus rosea 3 (0/1; 0.0) 19 (0/10; 0.0) 22 (0/11; 0.0) 

Trichobranchidae sp. 1 Terebellides stroemii 885 (12/423; 2.8) 990 (8/469; 1.7) 1875 (20/892; 2.2) 

  1186 (35/545; 6.4) 1566 (41/702; 5.8) 2752 (76/1247; 6.0) 
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Highlights 

• An intermediate host is described in the life cycle of Marteilia sydneyi 

• A polychaete worm had life stages of M. sydneyi in the epithelium of the intestine 

• An opportunity may now exist to develop an in vivo laboratory model of infection 

• Results have direct downstream application for a selective breeding program for disease 

resistant oysters   

• Identification of principal synergistic effectors causing outbreaks is now possible 

 

 




