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ABSTRACT  
 
Mosquito-borne pathogens pose major threats to both wildlife and human health and, largely as a 

result of unintentional human-aided dispersal of their vector species, their cumulative threat is on 

the rise. Anthropogenic climate change is expected to be an increasingly significant driver of 

mosquito dispersal and associated disease spread. The potential health implications of changes in 

the spatio–temporal distribution of mosquitoes highlight the importance of ongoing surveillance 

and, where necessary, vector control and other health-management measures. The World 

Association of Zoos and Aquariums initiative, Project MOSI, was established to help protect 

vulnerable wildlife species in zoological facilities from mosquito-transmitted pathogens by 

establishing a zoo-based network of fixed mosquito monitoring sites to assist wildlife health 

management and contribute data on mosquito spatio–temporal distribution changes. A pilot study 

for Project MOSI is described here, including project rationale and results that confirm the 

feasibility of conducting basic standardized year-round mosquito trapping and monitoring in a zoo 

environment. 

Key-words: attractants; climate change; monitoring; mosquitoes; Project MOSI; surveillance; 

spatio–temporal distribution; wildlife health; zoological networks. 

 

MOSQUITO-RELATED HEALTH ISSUES FOR ZOOS AND SIMILAR FACILITIES 

Mosquitoes are the principal vectors of a wide range of diseases, including human and avian 

malaria, dengue, West Nile encephalitis and filariasis (Becker et al., 2010; Kilpatrick & Randolph, 

2012; World Health Organization, 2013a). A range of species has been recorded as succumbing to 

mosquito-transmitted pathogens in zoos and theme parks. Documented cases include African 

black-footed penguins Spheniscus demersus with avian malaria (Grim et al., 2004) and eastern 

equine encephalitis virus (Tuttle et al., 2005), Great gray owls Strix nebulosa with Usutu virus 

(Weissenböck et al., 2002), Humbolt penguins Spheiniscus humboldti with heartworms Dirofilaria 

immitis (Sano et al., 2005), and a Polar bear Ursus maritimus (Dutton et al., 2009) and two Orcas 

Orcinus orca with West Nile virus infection (Jett & Ventre, 2013).  

 

Blood-feeding mosquitoes have the ability to track airborne  chemicals produced by the vertebrate 

host to locate them in order to have a blood meal, which is essential for viable egg production in 

most species (Dekker & Cardé, 2011). The combination  of odours varies amongst  species  and 

mosquitoes can be more or less attracted to them depending on their feeding preference, even if, 

at close range, proximity to the host is likely to be more important than species identity (Takken & 

Verhulst, 2013). Several mosquito species are true ‘generalists’ as far as host species preference 

is concerned.  

 

Understanding distribution, population abundance, activity periods and other behaviours of 

mosquito species helps optimize protection efforts for human, domestic-animal and wildlife 
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populations (Becker et al., 2010; World Health Organization, 2013a). Monitoring and surveillance 

are key to obtaining such information, and enabling appropriate vector and disease control 

measures to be taken (Adler et al., 2011; Tuten 2011a; Tuten et al., 2012; World Health 

Organization, 2012, 2013a), especially when increasing changes in environmental conditions 

(Barnosky et al., 2012; Hansen et al., 2013) are considered. 

 

MOSQUITO SPATIO–TEMPORAL CHANGES AND ASSOCIATED HEALTH ISSUES 

Human activities have long influenced the distribution of many mosquito species (Becker et al., 

2010). Historically, this has largely been the result ofhuman induced landscape  changes, and 

inadvertent transportation through the movement of goods and people (Kilpatrick & Randolph, 

2012). Some of these changes are positive others negative to mosquito population dynamics. More 

recently , some dendrophilic species (i.e. mosquitoes that lay their eggs in water-filled tree-holes), 

such as the Asian tiger mosquito Aedes albopictus and Anopheles plumbeus, are adapting or 

changing their behaviour to the human-built landscape by laying eggs not only in water-filled tree 

cavities but also in artificial small water containers and sewage systems in urban environments 

(Benedict et al., 2007; Schaffner et al., 2012). The unintentional assistance provided by human 

activities combined with the great adaptability of many mosquito species has enabled extensive 

colonization outside of their natural range areas. A. albopictus exemplifies how extensive such 

range expansions can be (Benedict et al., 2007; Roiz et al., 2011; Caminade et al., 2012). 

 

Anthropogenic climate change (IPCC, 2013) presents a wide range of direct and indirect health 

impact issues (World Health Organization, 2003, 2009; Patz et al., 2005; Confalonieri et al., 2007; 

Costello et al., 2009, 2011). The many indirect health issues include vector-borne disease impacts 

(Sutherst, 2004; Epstein & Mills, 2005; Kurane, 2010; Moore et al., 2012). Paull & Johnson (2013) 

summarize the complex physiological, range-shift, biotic-interaction and evolutionary challenges of 

predicting and attributing climate-driven changes to disease dynamics. However, a substantial 

body of publications and health-agency reports highlights the significance of climate change on 

vector-borne diseases (Kurane, 2010; Eastwood et al., 2011; Guis et al., 2012; Gallana et al., 

2013; World Health Organization, 2013b), including actual and projected  spatio–temporal changes 

to mosquito distribution  and associated disease issues (Patz et al., 2005; Confalonieri et al., 2007; 

Paaijmans et al., 2010; Garamszegi, 2011; Roiz et al., 2011; Hongoh et al., 2012; Loiseau et al., 

2012; Altizer et al., 2013; Fischer et al., 2013; Gallana et al., 2013; Hueffer et al., 2013; World 

Health Organization, 2013c).  

 

SURVELLIANCE POTENTIAL OF ZOO AND WILDLIFE-PARK NETWORKS 

Barbosa (2009) highlights the role that zoos and aquariums can play in researching the effects of 

climate change on animal health. Tuten (2011b) highlights the potential early warning role that 

zoos can provide for the management of mosquito-borne diseases in an era of global climate 
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change. In the context of mosquito research, many zoos have the potential to provide valuable  

mosquito-monitoring and research opportunities This is largely due to  the combination of novel 

species assemblages that zoos and similar facilities maintain, and the diverse range of 

microhabitats and shelters suitable for mosquito breeding and overwintering (Adler et al., 2011; 

Nelder, 2007; Tuten, 2011a; Tuten 2011b; Tuten et al., 2012). Such environments can attract and 

maintain a wide range of mosquitoes, allowing them to be detected and studied. Zoos and similar 

facilities often maintain a variety of species outside their natural range areas. Such circumstances 

can expose naïve or susceptible species to new pathogens, including pathogens native to the local 

area of the zoo (Adler et al., 2011; Tuten, 2011a; Tuten 2011b; Tuten et al., 2012). Most zoo 

animals are routinely monitored for signs of illness and new acquisitions are quarantined. However, 

as mosquitoes may not be excluded from quarantine animals it is feasible that diseases could be 

acquired by mosquitoes that have blood fed on already infected animals and carried to other hosts 

(Tuten 2011b). These considerations make zoos valuable health-surveillance sites (Nelder, 2007; 

Adler et al., 2011; Tuten 2011b; Tuten et al., 2012) for monitoring native mosquito activity and for 

detecting non-native mosquito introductions (Ejiri et al., 2011; Tuten, 2011a). The diverse range of 

species found in most zoos and their relatively close proximity to each other also make zoos 

valuable places to study the biting behaviour and feeding preferences of mosquitoes (Ejiri et al., 

2011; Tuten 2011b; Tuten et al., 2012). Indeed, there already is a considerable record of zoo-

focused mosquito study (e.g. Beier & Trpis,1981; Nolen, 2001; Derraik, 2004a,b; McGowan, 2004; 

Sano et al., 2005; Nelder, 2007; Adler et al., 2011; Ejiri et al., 2011; Tuten, 2011a; Tuten 2011b; 

Tuten et al., 2012). However, the potential of national, regional and global-level zoo networks to 

contribute to mosquito-monitoring efforts remains largely unutilized. 

 

There is potential for zoos to improve their animal health management and help identify spatio-

temporal distribution changes in mosquito species. To do this, zoos need to conduct basic 

mosquito monitoring in a standardized and collaborative manner, preferably in liaison with relevant 

public-health specialists, agencies and initiatives. The World Health Organization’s (WHO) Global 

Strategy for Dengue Prevention and Control 2012–2020 (World Health Organization, 2012), the 

WHO European surveillance and control of invasive mosquito vectors and re-emerging vector-

borne diseases initiative (World Health Organization, 2013a), and the European Network for 

Arthropod Vector Surveillance for Human Public Health (VBORNET) (Schaffner, 2012) are 

examples of current initiatives that zoo-based mosquito monitoring data could potentially be 

contributing to. 

 

PROJECT MOSI 

Responding to the health issues and surveillance potential described above, in October 2010, the 

World Association of Zoos and Aquariums (WAZA) and the Institute for Zoo and Wildlife Research 

(IZW), Berlin, Germany, in concert with the Zoological Society of London (ZSL) and Imperial 



 

5 

College, UK, agreed to develop a permanent zoo-based mosquito-monitoring programme: Project 

MOSI (Mosquito Onset Surveillance Initiative). Focusing on the monitoring potential of the world’s 

zoo and wildlife-park networks, the core remit of this initiative is to help protect vulnerable wildlife 

species from mosquito-transmitted pathogens, through improved knowledge of mosquito-species 

composition, population abundance and seasonal activity at  the location of the monitoring traps.  

This information could, for example, help optimize prophylactic veterinary treatments and 

mosquito-control efforts (Silver, 2008; Becker et al., 2010; Tuten, 2011a; Kroeger et al., 2013) and 

also contribute data to relevant mosquito and public-health specialists, agencies and surveillance 

initiatives.  

 

PILOT-STUDY METHODS AND RESULTS  

The Project MOSI initiative was informed by a range of monitoring activities on the ZSL London 

Zoo site from 2005 onwards. In 2005, a single Mosquito Magnet trap was placed in the flamingo 

enclosure which, at that time, was also temporarily holding African black-footed penguins. The trap 

was set up in response to cases of avian malaria in the penguins, with the aim of investigating 

which mosquito species were present in the enclosure and possibly be involved in the transmission 

of this disease. The Mosquito Magnet was fitted with the standard mosquito attractant combination 

of CO2 (mimicking breath) and Octenol (a chemical preparation designed to mimic mammal 

sweat). Adult mosquitoes of Culex pipiens, Culiseta annulata and An. plumbeus were collected 

(see Box 1). 

 

In conjunction with the Mosquito Magnet trapping, a survey of potential mosquito larval sites in the 

grounds of ZSL London Zoo, and testing of different trapping  methods (e.g. resting boxes and 

gravid traps), was conducted during the summer of 2005. The main water bodies within the zoo 

site that were capable of harbouring mosquito larvae were mapped and monitored weekly from 

July to September 2005. Thirteen water bodies were found to contain mosquito larvae, with Culex 

pipiens being the predominant species and a small number of Culi. annulata also being found (Fig. 

1). No Anopheles plumbeus larvae were found in the ZSL London Zoo grounds, despite searching 

tree cavities filled with water, which constitute the main larval environment for this species. It was 

therefore suspected that trapped A. plumbeus adults originated from the surrounding Regent’s 

Park area of public parkland which provides better larval sites for this species. 

 

Twelve resting boxes were built in spring 2005 (following Crans, 1989) and tested over the 

summer. Only two boxes were regularly found with resting females inside and it was later 

discovered that these two boxes had been inadvertently located near natural resting places. These 

resting places were subsequently regularly monitored for gravid and blood-fed females, and the 

use of resting boxes was abandoned due to the lack of positive results. Tuten (2011b) reported 

similar results with resting boxes in a separate zoo survey initiative. In 2005 two gravid traps (Allan 
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& Kline, 2004) were deployed with a hay infusion as the attractant. This was effective in attracting 

gravid Culex pipiens but failed to attract gravid Culiseta annulata or Anopheles plumbeus (Fig. 2) 

even when the attractant infusion was modified in an attempt to match the needs of these species 

(water with bird faeces for Culiseta annulata and a leaf infusion for Anopheles plumbeus). Because 

resting gravid Culex pipiens can easily be collected in resting places on the Zoo premises and are 

regularly found in Biogents Mosquitaire traps (see below ) the use of gravid traps was 

discontinued. 

 

Year-round mosquito monitoring at the ZSL London Zoo site commenced in 2008 with three 

Mosquito Magnet traps fitted with the CO2 and Octenol attractants. One trap was located near a 

newly constructed penguin enclosure (Fig. 3). A Mosquito Magnet trap was also installed in the 

flamingo enclosure (Fig. 4) and in a mixed-bird species exhibit called the Snowdon Aviary (Fig. 5). 

Trapped mosquitoes were collected once a week and morphologically identified to species level 

using appropriate keys (Snow, 1990). Results to date indicate that the local mosquito population 

consists mainly of Culex pipiens, Culiseta annulata and Anopheles plumbeus (Fig. 6). 

 

In 2010, Biogent Mosquitaire traps (Meeraus et al., 2008; Schmaedick et al., 2008; Becker et al., 

2010) were utilized in a standardized manner. These traps use a lactic-acid attractant (designed to 

mimic human sweat) and were developed specifically to attract the tiger mosquito Aedes 

albopictus. At ZSL London Zoo these traps attracted larger numbers of Culex pipiens relative to the 

CO2 and Octenol baited Mosquito Magnet traps. Culiseta annulata was also found in the 

Mosquitaire traps as were  a small number of Anopheles plumbeus (Figs 3, 4 and 5). 

 

In addition to capturing large numbers of C. pipiens, relative to the Magnet traps, in which none of 

the mosquitoes were gravid or blood fed, 80–90% of the Biogents Mosquitaire-trapped C. pipiens 

appeared to be gravid and some were  also blood-fed.   At least in the case of C. pipiens (the most 

common species found on the ZSL London Zoo site) the Biogents Mosquitaire traps proved the 

more effective monitoring option. These traps also are cheap and easy to run, and appear to fill the 

role of a gravid trap, at least for C. pipiens. Our results from  ZSL London Zoo  led to the Biogents 

Mosquitaire traps being adopted as the standard Project MOSI monitoring trap from 2010 onwards. 

 

In spring 2011, a new penguin enclosure was built on the site of the earlier penguin exhibit. This 

new exhibit held a much larger number of birds (up to 90 animals) and a wider range of species, 

including Humboldt penguin Spheniscus humboldti, African black foot penguin and a single 

Northern rockhopper penguin Eudyptes chrysocome moseleyi. According to Cummins et al. (2012) 

the biting rate of mosquitoes per host is higher for dispersed groups of hosts compared with more 

compact groups. Relative to the old enclosure, the new Penguin Beach exhibit displays more 

animals scattered over a larger area and perhaps this could attract more mosquitoes. In response, 
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additional Biogents Mosquitaire and Mosquito Magnet traps were installed between the penguin 

enclosure and the fence line of the Zoo (Plate 1). Following historic avian malaria cases in the 

penguins at the Zoo and fresh cases occurring in summer 2012, together with  C. pipiens  still 

being trapped in mid-November, an investigation of indoor and outdoor overwintering adults was 

carried out in January–February 2013.  

 

Overwintering C. pipiens females collected in and near animal enclosures at ZSL London Zoo are 

often found to be full of eggs and in January 2013 two resting females (in a bird enclosure) had 

had visible blood meals, indicating that they were still active at this time of the year. The 2012 

season trap catches confirmed C. pipiens winter activity in November 2012 and January 2013 but 

no C. pipiens were found in traps during December 2012 or over the previous winters (2008–

2011). The summer 2012 penguin-enclosure traps captured ten times as many C.pipiens relative 

to previous trapping summers while Culiseta annulata were captured in similar numbers as 

previously and Anopheles plumbeus in lower numbers than previous summers (Fig. 6). It remains 

to be determined (pending molecular analysis) whether these C. pipiens are of the pipiens or 

molestus morph, or a mixture of these (Fonseca et al., 2004).  

 

STATISTICAL ANALYSES 

For the 2005 breeding-site data numbers at each site were compared to what would be expected 

by chance (i.e. equivalent numbers at every site) using a likelihood test for goodness of fit (re). 

Tests for trends in numbers of individuals over years were made using both linear and quadratic 

regression. Because the numbers of traps varied between years the total number of captures was 

divided by the number of traps for each year. A chi-square contingency test was used for the 

comparison of attractants, treating individual mosquitoes as replicates. As the attractants are what 

was manipulated in this experiment it can be argued that the trap itself is the experimental unit and 

that several traps with each attractant would be required. This was not possible in the current study 

so the individual-based analysis is presented with the caveat that trap-level replication is required 

in the future for more robust assessment. All analyses were carried out using JMP Version 10  

(JMP®, Version 10. SAS Institute Inc., Cary, NC, 1989-2007). 
 

FULL PROGRAMME IMPLEMENTATION AND MONITORING PROTOCOL  

Following the encouraging pilot-study results at ZSL London Zoo, the Project MOSI initiative has 

now been rolled out to Copenhagen Zoo, Denmark, and Artis Royal Zoo in Amsterdam, the 

Netherlands, and a number of additional institutions are also in the process of initiating the 

implementation of this project. The Project MOSI protocol has been established in order to ensure 

standardarsation of methods across participating institutions. This protocol is as follows: 

 

 Trap model: Biogent Mosquitaire. 
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 Attractant: Biogent Sweetscent (lactic acid). 

 Weekly collection of trapped mosquitoes. 

 Samples stored in a fridge at 4°C prior to identification.  

 Species identification (including collaborations with relevant specialists). 

 Blood-fed and gravid-specimen storage (where feasible) in −80°C freezer for potential future 

analyses of host species and pathogen carriage. 

 

DISCUSSION 

The Project MOSI pilot study confirmed the feasibility and relative ease of conducting a 

standardized, year-round mosquito monitoring programme in a zoo environment, provided the 

necessary mosquito-identification skills are available or can be accessed. The weekly trap 

specimen collection protocol also proved valuable in helping to optimize timing of prophylactic 

antimalarial treatments for the vulnerable penguins at ZSL London Zoo. In addition to providing 

data on the mosquito species complement and weekly activity levels at the ZSL London Zoo trap 

location, the adult mosquito trapping and resting surveys informed the need for mosquito-control 

efforts.  

 

The practical considerations associated with realising a zoo community-based monitoring initiative, 

such as Project MOSI, requires trapping and monitoring demands are  to be as straightforward, 

cost effective and easy to follow  as possible. In this regard the Biogents Mosquitaire traps have 

proved very successful as they are relatively inexpensive to purchase and run, and are easy to 

maintain.  

 

As expected, a longer time frame is necessary for identifying any significant spatio–temporal 

changes. Provided the year-round trapping protocol is adhered to (i.e. collection data continues to 

accumulate into the future), analysis of catch data over longer time periods  should always be 

possible. The apparent attraction of Ades albopictus, Culex pipiens and Culiseta annulata to 

feathers of, some or all, of the ZSL London Zoo penguin species (see Box 2, Fig. 7) suggests that 

the potential mosquito-attractant properties of penguin, and other bird, feathers merits further 

study.  

 

At ZSL London Zoo, the identification of specimens proved to be straightforward thanks to the 

available mosquito-identification skills and reference material (Snow 1990). However, as 

addressed  in  Adler (2011) and Tuten 2011b ensuring sufficient entomological skills are available 

for identifying such specimen material is the greatest practical challenge for many zoos. Institutions 

with the relevant ‘in house’ entomological skills, or with the ability to access such skills (e.g. by 

collaborating with museums, health facilities or mosquito control districts as demonstrated in Tuten 

2011b) are obviously best placed to participate in such monitoring initiatives (Tuten, 2011b)The 
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identification challenge can also be addressed by several participating institutions sharing an 

identification specialist, as is the situation with ZSL London Zoo, Artis Royal Zoo and Copenhagen 

Zoo. The advantages of developing specimen-identification capacity can extend beyond 

mosquitoes to a wide range of arthropods important to medicine or veterinary medicine with 

associated health-management benefits (Adler et al., 2011; Nelder, 2007). 

 

The development priorities for Project MOSI are to increase the number of participating institutions 

across zoo and wildlife-park networks, and to liaise with a wider range of specialists, agencies and 

surveillance initiatives. The limitations of the Project MOSI monitoring initiative are acknowledged. 

The relatively basic level of monitoring involved (i.e. a single trap maintained year round) is 

insufficient for a participating zoo to establish anything approaching comprehensive site-level 

mosquito profiles. Such a task would necessitate much greater monitoring and research effort 

(Tuten 2011b). The rationale for the less demanding monitoring remit of the Project MOSI initiative 

is a practical trade-off between what is technically desirable and what is realistically achievable in 

terms of implementing an ongoing coordinated zoo-based monitoring programme. The monitoring 

demands on participating institutions need to be sufficiently modest to encourage initial 

engagement and ongoing commitment. It is hoped that participation will, over time, further 

encourage zoos to undertake more robust site monitoring and research initiatives.  

 

How best to standardize for geographic area and species density/compliment is an important 

protocol requirement as is an ongoing review of additional trap types and attractant options for 

improved site-level monitoring ability. Optimizing trap-location potential for protecting particularly 

vulnerable species is another priority. The relative value of including temperature and other 

environmental data associated with mosquito-trap collection data, against the increased burden 

this would place on participating institutions, needs to be investigated. McNamara (2007) has 

highlighted the potential of the zoo community’s Zoological Information System (ZIMS) for 

providing valuable bio-surveillance animal-health data. Adding such location -trapping data onto 

ZIMS could further enhance the database’s bio-surveillance potential. 

 

Whilst acknowledging that direct comparisons cannot be made, the UK moth-trapping programme 

initiative of the Rothamsted Insect Survey (Harrington & Woiwod, 2007) demonstrates  how 

valuable a permanent network of standardized monitoring traps can be for improving knowledge 

about species abundance, distribution and changes over time (Conrad et al., 2004). Another, more 

recent, example is the UK surveillance network for Culicoides midges’ which also utilises a network 

of single trap sites (M. England, Pirbright Institute, personal communication). The health issues 

associated with mosquitoes make the case for zoos increasing their attention and monitoring effort 

on these insects all the more compelling. 
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CONCLUSIONS 

The health-related considerations of disease-vector mosquito species, combined with the need to 

better understand the exacerbating influence of increasing environmental change on these 

species, are a compelling rationale for zoos and wildlife parks to monitor and, where necessary, 

manage mosquito related health threats on their sites. The collective potential of these global 

zoological networks for assisting wildlife health management and conservation planning (Redford 

et al., 2012) is considerable especially with sufficient collaborations with relevant entomological 

specialists, surveillance initiatives (e.g. ECDC, 2009, 2010; World Health Organization, 2012, 

2013a) such as the European Network for Arthropod Vector Surveillance for Human Public Health 

(VBORNET: http://vbornet.eu) and the British Mosquito Recording Scheme 

(http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Mosquitoes/MosquitoRecordingSch

eme/).  

 

An important additional consideration for zoos is their tremendous public-engagement ability and 

associated potential for raising public awareness of the significance of vector-borne diseases and 

the importance of effective surveillance and control initiatives. 

 

Despite its acknowledged limitations, the Project MOSI initiative provides a realistic opportunity for 

zoos and similar facilities to improve their current engagement with mosquito monitoring and 

associated health management and research and to start realising the collective potential of the 

international zoo networks.  
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PRODUCTS MENTIONED IN THE TEXT 

Biogents Mosquitaire: mosquito traps, manufactured by Biogents AG, Weißenburgstrasse 22, 

93055 Regensburg, Germany.  

JMP: statistical discovery software, manufactured by SAS, Cary, NC 27513, USA. 

Mosquito Magnet®: mosquito traps, manufactured by Woodstream Corp., 69 North Locust Street, 

Lititz, PA 17543, USA. 

Octenol Biting Insect Attractant: attractant for use with Mosquito Magnet, manufactured by 

Woodstream Corporation, Lititz, PA 17543, USA. 

Sweetscent: lactic-acid attractant, manufactured by Biogents AG, Weißenburgstrasse 22, 93055 

Regensburg, Germany.  

http://vbornet.eu/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Mosquitoes/MosquitoRecordingScheme/
http://www.hpa.org.uk/Topics/InfectiousDiseases/InfectionsAZ/Mosquitoes/MosquitoRecordingScheme/
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Figure and table legends: 

Objective 

1. Utilize the global zoo network to establish permanent mosquito monitoring trap sites. 

2. Help clarify local mosquito species composition, abundance and activity profiles at the trap 

locations. 

3. Help monitor changes in species composition, abundance and activity profiles at the trap locations. 

4. Where feasible, preserve trapped blood-fed mosquito specimens for potential host-species 

clarification and disease investigations. 

5. Assist evaluation and management of mosquito-transmitted pathogen threats in the zoo 

environment. 

6. Inform development of mosquito attractants. 

 

Table 1. The principle objectives of Project MOSI (Mosquito Onset Surveillance Initiative). 

The World Association of Zoos and Aquariums, and the Institute for Zoo and Wildlife 

Research (IZW), Berlin, Germany, in concert with the Zoological Society of London (ZSL) 

and Imperial College, UK, collaborated to develop a permanent international mosquito-

monitoring programme to help protect zoo animals from mosquito-transmitted pathogens  

and contribute data on  mosquito spatio-temporal  distribution  change. 

 

 

 

Fig. 1. Number of larvae from each species of mosquito found at each breeding site (see 

text) during a survey carried out at ZSL London Zoo, UK, in summer 2005. The distribution 

of Culex pipiens across enclosures deviates from what would be expected by chance 

(Χ2=1069·14, P < 0·0001). Median is 31, 25%ile is 18, 75%ile is 85. The solid line is at the 

median and dashed lines at the 25th and 75th%iles on the graph. 
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Fig. 2. Three species of adult mosquito were collected during a survey carried out at ZSL 

London Zoo, UK, in summer 2005 using four different trapping methods.  

 

Fig. 3. Total number of adult mosquitoes of each species captured each year (2008–2013) in 

the penguin enclosure at ZSL London Zoo, UK. Two types of trap were used: MM. Mosquito 

Magnet; BM. Biogents Mosquitaire. Sometimes the two traps were running concurrently 

(MM + BM). None of the species show a significant linear or quadratic trend over time. Culex 

pipiens is closest to showing an increasing trend.  
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Fig. 4. Total number of adult mosquitoes of each species captured each year (2008–2011) in 

the flamingo-pond trap location at ZSL London Zoo, UK: MM. Mosquito Magnet trap. None of 

the species show a significant linear or quadratic trend over time. 

 

 

Fig 5. Total number of adult mosquitoes of each species captured each year (2008–2013) in 

the Snowden Aviary trap location. Two types of trap were used: MM. Mosquito Magnet; BM. 

Biogents Mosquitaire. Sometimes the two traps were running concurrently (MM + BM). 

Culex pipiens shows a significant line (R2 = 0·77, P = 0·022) and quadratic (R2 = 0·99, P = 

0·0008) increasing trend over years. Neither of the other species show any significant 

trends over time. Note that the significant increasing trend in C. pipiens only occurs in 2011, 

2012 and 2013, and is not influenced by the change in trap type. The data are linear for 2011, 

2012 and 2013: R2 = 0·99, P = 0·0091).  
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Fig. 6. Number of mosquito adults of each species captured each year (2008–2013) at ZSL 

London Zoo, UK. Culex pipiens shows a significant linear (R2 = 0·66, P = 0·049) and quadratic 

(R2 = 0·87, P = 0·022) increasing trend over years. None of the other species show a trend 

over time. 

 

 

 

Fig. 7. Percentage breakdown of each mosquito species found at each participating 

institutions during 2012 for Project MOSI. Data from Milan relate to resting adults collected 

in the grounds of the Department of Veterinary Science and Public Health, University of 

Milan, Italy. Data from Genoa refers to Biogents Mosquitaire traps set up in a private garden 

in Genoa, Italy, as described in Box 2.  
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Box 1. Mosquito species collected during the Project MOSI pilot study . 
 
Asian tiger mosquito Aedes albopictus 
This forest-living, dendrophilic species (i.e. a mosquito that lays its eggs in water-filled tree-holes) 
has been inadvertently spread around the world (largely via the used-tyre and tropical-plant trades) 
and is now established in many cities outside of its natural range, where elevated temperatures, 
humidity and artificial water pools have enabled it to thrive (Pluskota et al., 2008; Roiz et al., 2011). 
This species can transmit a number of pathogens of public-health importance, including West Nile 
virus, yellow fever virus, St Louis Encephalitis virus, dengue fever virus (Fontenille & Toto, 2001) 
and chikungunya fever virus. An outbreak of chikungunya fever (a disease originally endemic to 
East Africa) in Italy demonstrates that the introduction of mosquito vectors, such as the Asian tiger 
mosquito, can eventually be followed by their associated pathogens (Angelini et al., 2007; Bonilauri 
et al., 2008). 
 
Anopheles plumbeus 
Widely distributed throughout Europe, the northern Caucasus, Middle East south to Iran and Iraq, 
and North Africa, this dendrophilic species has adapted to breed in a range of artificial sites and, as 
a consequence, has greatly increased in numbers and area over the last few decades with 
incursion into urban and suburban areas (Dekoninck et al., 2011). As a result of its aggressive 
biting behavior and locally increased abundance, this mosquito has become a significant nuisance 
and a potential health threat (Schaffner et al., 2012). For example, in Germany two cases of 
autochthonous (i.e. locally caught) Plasmodium falciparum malaria have recently occurred, 
apparently as a result of transmission by indigenous Anopheles plumbeus (Krüger et al., 2001). 
 
Culiseta annulata 
Extending into North Africa, Asia Minor and south-west Asia (Becker et al., 2010), this species can 
thrive in a variety of natural and artificial water conditions, especially nitrogen-rich waters. Females 
will feed indoors and outdoors on a variety of hosts, including humans and birds (Snow, 1990). 
Adults overwinter in natural shelters but also human dwellings such as cellars and also domestic-
animal buildings where they can be very annoying when their hibernation is interrupted by rising 
temperatures or humidity (Becker et al., 2010). Culiseta annulata can   transmit myxomatosis and 
avian malaria (Gustevich et al., 1974), and is also a potential vector of Tahyna virus (Ribeiro et al., 
1988). 
 
Culex pipiens complex 
One of the most widely distributed mosquitoes, Culex (Culex) pipiens is part of the C. pipiens 
complex, which is a group of morphologically and evolutionarily closely related mosquitoes with a 
long association with humans (Vinogradova, 2000). They play important roles in the transmission 
of several human pathogens including West Nile virus (Epstein & Causey, 2005), St Louis 
encephalitis virus and lymphatic filarial worms (Reisen et al., 1992; Bogh et al., 1998; Turell et al., 
2005; Gomes et al., 2012). They also act as vectors of wildlife pathogens, such as avian malaria 
Plasmodium spp (Woodworth et al., 2005) and West Nile virus (Mereu Piras et al., 2012). 
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Box 2. Study into penguin feathers versus standard trap attractants. 
 
Observation that most of the mosquitoes trapped at ZSL London Zoo, UK, were collected in traps 
located by the penguin enclosure raised questions as to what was attracting mosquitoes to that 
area. Several mosquito species are attracted by bird hosts for which the main attractant seems to 
be the preen-gland secretion that birds spread on their feathers to render them waterproof (Allan et 
al., 2006). Harvesting preen-gland extract from penguins would pose ethical issues so moulted 
feathers were used to investigate whether penguin feathers acted as an attractant for Culex 
pipiens and other mosquito species. 
 
For this trial, two Biogents Mosquitaire traps were established in a private garden in Genoa, 
northwest Italy, in September 2011. This location was chosen because of the absence of live 
penguins in the area and also to remove the multiple-trap attraction factor that may also account 
for the greater attraction of the penguin enclosure area relative to the other trap locations at ZSL 
London Zoo. Genoa was also chosen for this trial because it has a mosquito population that is 
active over a greater part of the year than in the UK and in greater abundance, thus providing 
better opportunities for such a comparison trial. Another reason for selecting Genoa was that since 
1990 Genoa has been colonized by the Asian tiger mosquito Aedes albopictus, making this 
location an interesting prediction model for expected colonization by nonnative species to other 
European countries. 
 
One of the two Mosquitaire traps was baited with the standard lactic-acid attractant (Sweetscent), 
which has been especially developed to attract Aedes albopictus, while the other trap was baited 
with penguin feathers (placed in a net container of comparable size to the lactic-acid attractant and 
positioned where the normal attractant would usually be located). Surprisingly the two traps 
attracted a similar number of Culex pipiens and Aedes albopictus even though Aedes albopictus is 
known to show a preference for mammals over birds and the Sweetscent lactic-acid attractant was 
specifically designed to attract this species. Even more surprisingly, penguin feathers maintained 
their attractiveness (if at a decreasing degree) over the following months without being replaced or 
supplemented with fresh feathers (while the Sweetscent attractant was replaced every 2 months). 
 
Without a third empty trap with no attractant acting as a control, any interpretation of the results is 
only speculative. However, the potential significance of such novel attractants merits further 
investigation. Preen-gland compounds found in penguins have been described (Jacob, 1976) and 
the secretions of each penguin species has a different chemical composition. Further study may 
prove useful for improving mosquito-control efforts by determining which of the chemical 
compounds are capable of attracting mosquitoes and how they may vary for different mosquito 
species. 
 
 


