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The scientific understanding of the driving factors behind
zoonotic and pandemic influenzas is hampered by complex
interactions between viruses, animal hosts and humans.
This complexity makes identifying influenza viruses of high
zoonotic or pandemic risk, before they emerge from animal
populations, extremely difficult and uncertain. As a first step
towards assessing zoonotic risk of influenza, we demonstrate a
risk assessment framework to assess the relative likelihood of
influenza A viruses, circulating in animal populations, making
the species jump into humans. The intention is that such a
risk assessment framework could assist decision-makers to
compare multiple influenza viruses for zoonotic potential and
hence to develop appropriate strain-specific control measures.
It also provides a first step towards showing proof of principle
for an eventual pandemic risk model. We show that the spatial
and temporal epidemiology is as important in assessing the risk
of an influenza A species jump as understanding the innate
molecular capability of the virus. We also demonstrate data
deficiencies that need to be addressed in order to consistently
combine both epidemiological and molecular virology data into
a risk assessment framework.

1. Introduction

The interaction between animals and humans is a major
source of emerging infectious diseases, some of which have
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the potential to cause human mortality, and some have and will cause global pandemics [1]. Zoonotic
pathogens with pandemic potential include influenza A viruses, which caused the 1918 Spanish flu and
2009 HIN1 swine flu pandemics [2,3]. Indeed, the latter caught the scientific community by surprise
as much attention had been focused on a pandemic originating from avian influenzas (Als) such as
highly pathogenic avian influenza (HPAI) H5N1. While there may still be potential for HPAI H5N1 to
evolve into a pandemic virus, it is more accurately a waterfowl and poultry disease, which through
widespread dissemination in poultry populations has managed to cause numerous human cases and
fatalities. This example shows that we are still a long way from being able to accurately assess and
distinguish between emerging, potentially zoonotic and potentially pandemic viruses. However, we
must develop risk assessment tools to assess zoonotic and pandemic potential—at suitably early stages
of emergence—if we are to efficiently allocate scarce resources on surveillance and controls.

Most pandemic pathogens originate in animals and are driven to emerge by ecological, behavioural
or socio-economic changes [1]. Broadly speaking, pandemic potential can be realized through three
distinct stages: first, the equilibrium of an animal disease is disturbed by ecological change (for example,
human encroachment on wildlife habitat) that increases the likelihood of a species jump from the original
animal host to another non-human wild species or livestock; second, local emergence in humans occurs
through either sporadic cases or self-limiting person-to-person spread before dying out; finally, sustained
person-to-person transmission occurs, enabling national or international spread of human disease and
eventually a pandemic [1].

There is still much ongoing debate over the driving factors behind the emergence of influenza
pandemics [3-5]; the science is hampered by complex environmental and evolutionary interactions
and feedback loops. While contributory factors such as climate, farming practices and viral genetic
reassortment have been postulated [3,5-7], their role in pandemic development remains unclear. Without
a better appreciation of the epidemiology of pandemic development, any pandemic risk model will be
subject to huge uncertainty. However, in order to work towards the goal of a tool that can be used to
assess the risk of emerging influenzas causing zoonotic infections and eventually a pandemic, we can
approach the task from first principles of disease transmission. We take the second stage of pandemic
evolution, livestock-human infection, as a more manageable proof of principle (owing to better defined
contact structures and relatively more data).

We therefore aim to address the problem of identifying which influenza strains are more likely to jump
the species barrier and cause zoonotic infections, a prerequisite for a pandemic. Here, we describe the
development of a risk assessment framework, based on general principles of disease transmission and
risk, to assist decision-makers in their ability to rank influenza viruses, currently circulating in livestock,
for their zoonotic potential. This will prioritize influenza strains potentially worthy of control measures.
The earlier on in the chain of events a potentially zoonotic strain can be identified, the longer the warning
and the more time available to prepare a vaccine or control the outbreak in animals. Our case studies
relate to Al (where we have most data).

Influenza A has a natural reservoir in wild aquatic birds [2]. Both the HPAI H5NT1 strain and the low-
pathogenic avian influenza (LPAI) H7N9 strain that emerged in China in 2013 have wild bird origins [8,9]
but are now found in domestic poultry. Human contact with infected poultry is believed to be the cause
of the majority of human infections [10]. We have chosen HPAI H5N1 and China H7NJ9 as representative
viruses that have reasonably good data available. We used associated molecular and epidemiological
data to derive a model from mathematical first principles that can be applied to any influenza organism
to assess the relative spatial risk of human infection. Essentially, we have built a prototype tool that
has breadth of coverage, both spatially and across influenza strains, whereas previously most risk
assessments and models have focused on detailed analysis of one single strain. We believe this makes our
model much more amenable to decision-making and the allocation of resources. A novel viral molecular
scoring system has also been incorporated into the model to characterize influenzas in their innate ability
to cause human infection. We chose the case studies on the basis of available data and their relevance to
sporadic, zoonotic infections, not pandemic potential (although both are still viewed with concern).

2. Methods

2.1. Model framework

We used standard disease transmission modelling principles [11] in order to assess the relative ability
of individual virus strains circulating in animal populations to cause human infection. In essence, in
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order for zoonotic transmission to occur, there must be infected animals within effective transmission
range of susceptible humans, where the number of contacts is proportional to the product of the number
of infected animals and susceptible animals. There is some efficiency of transmission, which will vary
according to the extent and intensity of contact between livestock and humans (e.g. commercial versus
backyard production) and the innate efficiency of the virus to cause human infection (dependent on
known or unknown genetic characteristics) [1,3,5]. These kinematics of infection imply two fundamental
properties that must be considered when assessing risk: the opportunity for exposure of humans to the
virus, and the capability of the virus to cause human infection. The former implies that any assessment of
risk must be spatially dependent; the latter requires the development of a novel algorithm to assess the
innate ability of a novel influenza virus to cause human infection, based on known genetic characteristics
(see the electronic supplementary material and [12]).

The most appropriate model framework was to modify the classical epidemiological risk equation
[13] which was then applied within a global spatial framework using standard geographic information
system (GIS) methodology. First, we assessed the global contact intensity as a global indicator for the
level of opportunity for exposure to humans from influenza viruses. The interactions between domestic
and livestock animals and people will be different across the globe, but an intuitive contributing factor
will be whether the animals are raised in a commercial or backyard production system. Therefore, an
appropriate equation for the contact intensity within a cell g, y(g), is

y(g) =Y w(j)C(g i), 2.1)

]

where we denote the number of animals of production type j (j = {commercial, backyard}) within cell g
by C(g,j) and the contact ratio with humans by w(j). It is important to note that this contact intensity is
independent of influenza-specific parameters and hence is broadly applicable to all zoonotic organisms
that depend on livestock-human interaction.

We assess risk by incorporating strain-specific information on the known location of livestock
outbreaks along with an assessment of the innate capability of the virus to cause human infection. We
therefore denote the risk of (one or more) human infections, given the presence of influenza strain i in
cell g at time f as

R(i,g,t)~ Z 1 _ o VOpGgHGY @) 2.2)

j={comm,back}

The transmission coefficient between chickens and humans is a summary term incorporating both
host-specific (B (7)) and virus-specific (V(i)) components. The true prevalence of virus strain i at time f,
p(i,g,t), was estimated by applying a spatial kernel to the number of outbreaks in a location within a
six month period before and during the first human cases of a zoonotic outbreak, adjusting for under-
reporting. That is, p(i,g, t) ~ (i, g, H)U(g), where 71(i, g, 1) is the normalized density estimator for cell g,
and U(g) is the relevant under-reporting factor for HPAI or LPAI dependent on the type of surveillance
conducted by a country (active or passive or both). The virus score, V(i), was determined using an
algorithm based on the genetic factors most associated with the chronology of viral infection (attachment,
replication, release).

The results of the model are intended to reflect the relative risk of human infection by comparing
(novel) influenzas circulating in livestock populations: as such there must be a baseline from which
to compare the relative risks. The normalization value is set as the maximum risk value achieved
throughout the globe, which will be the cell with the highest contact intensity and V(i) =1. All other
values are then normalized against this maximum risk value. Hence, the peak risk value of 2.57 x 10~
for H5N1 clade 1 reported in the results is approximately 1/3890th of the maximum risk value possible.

2.2. Parameter estimation

The model framework was parametrized for domestic chicken to human transmission only; the initial
intention was to include swine influenza as well, but data were lacking to be able to rigorously quantify
parameters for this livestock species. We demonstrated proof of concept by estimating the zoonotic
risk of HPAI H5N1 in southeast Asia in 2003-2004 and China H7N9 in 2013-2014 (i.e. at the time of
their emergence in humans), although, in theory, the model is applicable to any influenza A strain and
livestock species pairing.

Parameter estimates are given in table 1; key parameter estimates are also shown in figure 1. The
genetic characteristics and the associated virus scores for two HPAI H5N1 strains (clades 1 and 2) from
2003 to 2004 and four China H7N?9 profiles from 2013 are given in table 2.
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Table 1. Summary of parameter estimates.

notation description value—mean (first, 99th percentile)
6293 (0, 16883)

U (both) under-reporting factor for both active and passive surveillance 7.7(1.0,108.4)
of HPAl and LPAI

Commercial and backyard chicken population density at a resolution of 0.08 pixels (between 5 and
80km? depending on latitude) was supplied by the Food and Agriculture Organization of the United
Nations (FAO; figure 1). A full description of the density estimates is given in the accompanying
paper to the ongoing FAO Gridded Livestock of the World project [14]. Briefly, reported subnational
livestock statistics are collected and cleaned. Appropriate habitats for domestic chickens (commercial and
backyard) were identified by applying various GIS masks (e.g. excluding lakes and steep mountains as
suitable habitats). Livestock densities are then calculated by implementing spatially stratified, statistical
regression models that test a number of predictor environmental variables for relevance. The main
spatial dataset used in the statistical modelling is a Fourier-processed decadal time series of geophysical
variables derived from moderate resolution imaging spectroradiometer satellite data from 2001 to 2008.
The variables include two vegetation indices, land surface temperature and the band 3 middle-infrared,
which is used to assist in vegetation mapping. Predicted densities are then compared and adjusted
against livestock statistics to provide a final validation. All spatially dependent parameters used in the
model were resampled to match the commercially reared density dataset (at an approximate resolution
of 0.08°). Population densities were then split into commercial and backyard chicken production types
by use of gross domestic product per capita statistics [15].

The relative weighting of contact between chickens and humans (w;) will be different for commercial
and backyard chickens, where the former will be reared by relatively few people compared with
backyard chickens, which will be reared by hand by one or two people. We assume that the ratio
of chicken to humans for backyard chickens is 1:1 [16] and of the order of 10000:1 for commercial
production (assuming that commercial flock sizes are in the tens of thousands, and there would be a
small number of farm workers looking after each flock). We have placed some uncertainty around these
average contact ratios based on our own intuition (between 1:1 and 50:1 for backyard production and
between 1000: 1 and 25000 : 1 for commercial production). For the contact intensity model, where values
are normalized and hence the variation in contact ratios has no effect on the relative values, point values
of 1 x 107* and 1 were used for commercial and backyard contact ratios, respectively.

The epidemiological component of the transmission parameter (5(j)) was generated from published
real-world reports of Al outbreaks [17-27]. The normalized virus density, 71;, was estimated by applying a
spatial kernel estimator to extracted livestock species and location data of Al outbreaks from the Empres-
i animal disease information database maintained by FAO [28], which was merged with information
of genetic sequencing from OpenFluDB, a publicly available influenza-specialized database developed
by the Swiss Institute for Bioinformatics that contains genomic and protein influenza virus sequences
[29]. The under-reporting factors for active and passive surveillance of HPAI and LPAI were estimated
from several studies that have estimated the sensitivity of active and passive surveillance systems
(SSe) for individual countries. For example, the overall distribution for HPAI passive surveillance
was generated from resampling from individual distributions for Spain, New Zealand, Nigeria
and Denmark [30-32]. Further information on the derivation of parameter estimates, including the
transmission parameter, virus score and under-reporting factor, is given in the electronic supplementary
material and [12].
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Figure 2. Normalized contact intensity map for domestic chicken—human interaction across the globe. Red areas indicate the top 10%

of cells with regards to contact intensity, which represents approximately 92% of all global contacts.

Table 2. Summary of virus score characteristics for HSN1 clade categories 1and 2, and four H7N9 profiles.

virus score,

V(i) (5th; 95th
strain percentile)
H5N1 clade 1

presence of stalk

receptor known reassortments deletion

preference mutations within virus in NA

0.27(0.21;0.33) a2,3

mutations none long stalk

2.3. Uncertainty analysis

There are a number of uncertain parameter estimates within the model B (j), w(commercial) and V(7).
For the uncertainty analysis the 25th, 50th, 75th and 99th percentile values of the product of 10000
random samples from each of these distributions are used as inputs into the rest of the risk equation
(equation (2.2)). The end result is a highly uncertain output for R(i,j, t), stretching over several orders
of magnitude from the 25th to 99th percentile. Most of the uncertainty range is attributable to the
transmission parameter B( ), which has a range over six (j, commercial) and three (j, backyard) orders

of magnitude (figure 1).

3. Results
3.1. Global contact intensity, (g)

By mapping contact intensity, we have identified the high-risk areas for any zoonotic infection that
relies on human interaction with domestic chickens (figure 2). This simple method, converting chicken
population density into contact intensity with humans, can be used to target surveillance for zoonotic

phylogenetic
relatedness of
HA to HA of
strains
circulating

in humans
different
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Figure 3. Exploded view of contact intensity map in southeast Asia region, overlaid with human isolations of HPAI H5N1in the 2003—2004
outbreak. Only records with longitude/latitude coordinates are included.

diseases in chickens and is also applicable to other livestock species. While high-opportunity areas for
Al spillover in southeast Asia and the Nile delta are well known, the quantification of contact intensity
highlights the considerable global heterogeneity of zoonotic risk: cells with contact intensity greater
than the 99th percentile contribute approximately 46% of all global contacts between domestic chickens
and people, whereas cells greater than the 90th percentile contribute approximately 92% of total global
contacts. Almost 90% of species jump opportunities reside within an area the same size as Switzerland.
As a clear example of the importance of contact alone (regardless of virus fitness to infect humans), cases
of HPAI H5N1 during the 2003-2004 outbreak in southeast Asia map remarkably closely to some of the
highest contact intensities in the region and the globe (figure 3).

3.2. Relative risk map

The second output from the model, the relative risk map, is critical to identifying emerging influenza
threats before spillover into humans occurs. It uniquely and quantitatively distinguishes between the
risks presented by individual virus strains. For the HPAI H5N1 outbreak in 2003-2004, it was possible
to characterize the risk of two virus strains (H5N1 clades 1 and 2) in southeast Asia. Human cases were
highly spatially clustered (figure 3). Both H5N1 clades were given relatively low virus scores (table 2
and electronic supplementary material), which indicates a low inherent ability to infect people. Clade 1
viruses scored slightly higher than clade 2 owing to the presence in a clade 1 isolate of potentially
significant mutations. Despite these low virus scores, the high rate of interaction between domestic
chickens and people in southeast Asia provided sufficient opportunity for significant bird-to-human
infections. The results of our model agree well with the interpretation of a recent prospective study of
HPAI H5N1, which suggests that the zoonotic risk of this subtype is much like any other Al strain; the
difference being that HPAI H5N1 is widely spread around the globe and hence has much more contact
with humans [33,34].

The overall risk map for clades 1 is shown in figure 4. A spatial kernel was used to estimate the density
of H5N1 clades 1 and 2 based on the location of outbreaks with known longitude/latitude coordinates.
There was large uncertainty in the results of the risk map (figure 5), but the most important output of the
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Figure 4. Example of relative risk map shows the relative spatial likelihood of one or more human infections for HPAI H5N1 clade 1, for
the six months prior to 20 May 2004 (99th percentile risk values shown for clarity). Relative risk on logyq scale. Black circles represent
outbreaks with known longitude and latitude coordinates.

framework, the relative ranking of viruses, should be reasonably well preserved, given that the majority
of uncertainty derived from the ‘generic’ virus transmission parameter.

Summary statistics for clades 1 and 2 are that the median peak normalized risks per cell for clades
1 and 2 were 1.12 x 1073 and 1.10 x 1074, respectively; average risks per cell at the 50th percentile for
clades 1 and 2 were 2.95 x 1077 and 5.01 x 1078, respectively. The important result of this normalized
risk ranking is the relative difference between the two clades. The impact of the spatial context of the two
clades’ distributions is apparent: the threefold difference in virus score between clade 1 and 2 (table 2) is
magnified by the spatial differences, resulting in average and peak risk values that are six and 10 times
higher, respectively, for clades 1 than 2. We should therefore expect that H5N1 clade 1 is more likely
to jump into humans than clade 2. Within the FAO Empres-i database [28], 288 human isolates were
recorded during 2003-2004 that we were also able to match to clade information available from the
human and animal influenza virus OpenFlu database [35]. Of these, 159 were classified as clade 1 and 74
as clade 2, thus suggesting than clade 1 isolates were more likely to cause human infection.

The second case study was the current China H7N9 outbreak. Most H7N9 isolates of animal
or environmental origin were isolated as a result of targeted surveillance of poultry markets after
human infections were identified. Hence, there is such a large bias towards the location of animal and
environmental isolations in the apparent spatial distribution for H7N9 that it is not prudent to run the full
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Figure 5. Uncertainty in zoonotic risk of H5NT clade 1represented by postage stamp maps. The majority of the variation in relative risk is
due to the epidemiological transmission parameter.

model for this low-pathogenic virus. We can, however, assume that the spatial distribution in chickens
was not negligible before human infection. The low pathogenicity of H7N9 demonstrates the challenges
in identifying zoonotic influenzas before the occurrence of human cases, and the need to conduct active,
risk-based surveillance for low-pathogenic strains [36].

It was nevertheless a worthwhile exercise to calculate the virus score for the H7N9 viruses isolated
from animals and poultry markets (see [37] for reference to many of the animal and environmental
isolates used in our analysis). H7N9 is a well-characterized amalgamation of H7 and N9 surface proteins
from wild birds, with internal proteins reassorted from HIN2 poultry viruses [9,38,39]. As previous
studies have also shown, we identified four different virus profiles for the H7N9 isolates (see electronic
supplementary material). All of these H7N9 profiles scored much higher than the H5N1 clades because
of their enhanced ability to bind to cells in the human upper respiratory tract, and the presence of
potentially significant mutations enabling more efficient human infection (table 2).

4. Discussion

The inclusion of quantitative data regarding animal production, surveillance systems and geographical
location of viruses makes this prototype model the first truly global and risk-based assessment of the
zoonotic potential of influenza A viruses, and addresses many of the requirements thought necessary to
assess the transition from pre-emergence to local emergence, as recently defined by Morse et al. [1]. The
model developed here captures many of the crucial differences in the dynamics of zoonotic transmission
of HPAI H5N1 and LPAI H7N9. HPAI H5N1 is now considered endemic in poultry in several countries
(e.g. Egypt, China, Indonesia), but this has translated into a lower global incidence of human cases than
H7N9, which has only been isolated (so far) from a limited geographical area. This is consistent with
an H5NT1 virus that is much less efficient in causing human infection than H7N9. We highlight that
the two case study viruses, each at one time feared to be a potential precursor to a pandemic virus,
are characterized as essentially still avian influenzas, which have simply found new niches to exploit.
Other factors beyond the number of sporadic human cases are likely to be more predictive of potential
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pandemic potential. However, the results indicate that our method could be used to provide an initial
but robust tool for projecting which currently circulating animal influenzas pose a greater zoonotic risk,
and where.

The roles of wildlife and poultry markets, both indicated as risk factors for transmission to chickens
or humans respectively [40,41] are not explicitly included within the current model. Rather, the presence
of poultry markets is captured implicitly, as (i) higher human population density is closely linked to the
presence of poultry markets in southeast Asia [42,43] and (ii) chicken population density is positively
correlated with human population density [16]. Wild birds have been shown to be directly responsible
for a few human cases of HPAI H5N1, but the majority of both H5N1 and H7N9 cases in humans are
linked to contact with domestic poultry [10]. We therefore believe that this implicit approach is valid for
the broad framework developed here, which is designed to be a reasonably simple model that can be
deployed rapidly and globally.

The quantification of the inherent ability of different virus strains and subtypes to cause human
infection is a challenge, as molecular determinants of transmissibility, stability and host range are still not
fully understood. However, while further knowledge of the molecular biology of a virus will hopefully
in time help to distinguish viruses that are more or less likely to establish productive human infections,
knowledge of the epidemiological situation (e.g. the prevalence of a virus in animal populations and the
type of interactions between human and animals) is still vital in determining the risk of a future species
jump (or indeed pandemic). Therefore, we must align molecular virology data with livestock, physical
and environmental metadata to produce rigorous risk-based frameworks.

The combination of molecular data with spatial and geographical information has the potential to
yield unique insights into the evolution and epidemiology of pathogens such as influenza. Spatial,
meteorological and/or population data can be used to define ecological or zoonotic niches, for example
assessing the likely areas for zoonotic West Nile or Ebola virus transmission before or during introduction
of the virus [44-46]. The inclusion of molecular data, such as in this model, allows us to differentiate
at a much higher resolution than previously, while also allowing for potentially more insights by, for
example, associating phenotype or genotype with environmental factors, or tracing the environmental
drivers behind the emergence of a particular strain. However, such unique knowledge can be gained
only by the rigorous (public) collation and standardization of data from outbreaks, surveillance and
research, which is currently lacking, despite the recent development of international databases such as
GenBank [47].

Current surveillance activities for influenzas in animals are focused on facilitating trade, and there
are only a few programmes intended specifically to monitor potentially zoonotic influenzas, with these
few only for intensive swine production [36]. However, these efforts to identify pre-pandemic viruses
are also stymied by current non-standardized data collection practices during outbreaks or routine
surveillance [36]. Indeed, much of our efforts in assessing zoonotic risk during the development of this
model were placed in realigning the metadata (e.g. species affected, geographical location of outbreak)
with the genetic sequencing information we derived from OpenFlu and GenBank for H5N1 and H7N9
isolates. Despite improvements in centralizing data collection efforts since the HPAI H5N1 outbreak in
2004 onwards, we were only able to fully characterize 33% of relevant LPAI H7N9 isolates. This lack
of complete data forms a major impediment to progress in understanding the interactions between the
environmental and molecular factors that drive influenza transmission, as both characteristics of a virus
isolate are required to understand the epidemiology of a novel virus strain.

Large uncertainties in the data used for the current model were identified, especially in the efficiency
of virus transmission from chicken to human. We therefore recommend standardization of genetic and
metadata collation during outbreaks as a first priority—much more could be done to use data already
being collected to investigate the epidemiology of zoonotic influenzas if the infrastructure existed to
capture data in as complete and centralized form as possible. Further specific surveillance for zoonotic
influenzas would of course be helpful (and the current model suggests areas of the globe in which
to focus domestic chicken surveillance), but in the short term a better understanding of effective (i.e.
transmissive) interactions between chickens and people might be more achievable, and would provide
more reliable estimates of the model’s transmission parameters.

Previous risk assessments of zoonotic influenzas have tended to focus on identifying the molecular
characteristics of the strain, the presenting signs and/or the epidemiological risk factors after human
infections have occurred [48-50]. Most are qualitative and reactive, although there are more sophisticated
spatial analyses, for example trying to predict the likely locations of further human H7N9 cases based
on the occurrence of poultry markets [51]. While statistical correlation is a useful method for describing
spatial risk in the context of a specific organism, it does not readily assist (without large simplifying
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assumptions) when trying to identify and rank the risks of multiple strains, as decision-makers will
have to do in order to prioritize which strains are monitored and/or controlled. The same issue applies
to several theoretical models that have been developed describing the (spatial) spread of Al in poultry
and humans [52-55]; these models provide useful ways to assess (i) how spread may occur in different
circumstances and (ii) how spread may be mitigated under different control strategies, but are reasonably
complex and focus on one generic strain of influenza. In addition, many of these models remain largely
theoretical owing to a lack of precise parameter estimation for a number of reasonably obscure or
hard-to-measure parameters. We face similar problems of parameter estimation; however, our focus
on a relatively simple model that requires reasonably accessible parameters does somewhat mitigate
this common problem. This allows us to be reasonably confident in the results of the epidemiological
component of the model, although we still face difficulties with parameter estimation of the molecular
component of the model owing to a lack of knowledge about the genetic mechanisms that drive human
infection. However, the explicit consideration of different strains does allow our model to better realize
the aim of being used as a decision support tool that has breadth of coverage across variation in strain
and space.

5. Conclusion

Anticipating the spillover of influenza viruses from animals into people is a daunting task; anticipating
the development of a pandemic influenza is more daunting still. Our efforts serve to mark the first
truly quantitative attempt to characterize the global risk of a species jump into humans, one of the
defining moments of the pathway from an innocuous pathogen of wildlife to pandemic virus. Even
taking this broad, reasonably simple model of the human spillover stage (arguably the best understood
of the three stages as outlined by Morse ef al. [1]) demands almost all readily available data on chicken
populations and Al surveillance. It is therefore clear we are some way from being able to assess pandemic
risk in a similar fashion, as even more known and unknown factors would need to be considered and
parametrized. However, the exercise of developing and using such a model assists the progression of
scientific knowledge by identifying data gaps and inconsistencies in data collection practices, as well as
challenging perceived wisdoms.

To be able to successfully apply our model to zoonoses prevention and control, the epidemiological
and molecular inputs need to be immediately accessible. In addition, a risk assessment framework
should be transferrable between viral strains, livestock species and geographical areas, and flexible
enough to respond to new information. The generic risk assessment framework we have developed,
focusing on local emergence of livestock-human transmission, simplifies and systematizes the current
extent of our knowledge around such spillover events, and remains applicable to many livestock/virus
species combinations. It also provides immediate information to disease control professionals on the
global risk of influenza transmission. The model has been tested using domestic chicken and two
well-known Als, and will be further trialled within FAO’s own risk assessment systems.

Data accessibility. The model was developed in R v. 3.0 (R: a language and environment for statistical computing; R
Foundation for Statistical Computing, software available for download at http://www.R-project.org/). Additional
packages used included Logit, BigMemory, Sp, RGDAL and spatial. The IP of the R code is currently held by EFSA;
the code is available for use upon agreement by EFSA and the FLURISK project team partners. The population
density data for commercial and backyard chickens was produced by the FAO, using preliminary datasets. GIS
datasets of the final global population densities will be available on the Livestock GeoWiki as they are completed
(http:/ /www.livestock.geo-wiki.org). The country surveillance types are listed in ‘Country surveillance types.csv’.
The records used to define the spatial distributions of HPAI H5N1 clades 1 and 2 are freely available and were
downloaded from FAO’s Empres-i website, at http://empres-i.fao.org [56]. We were able to match isolates from the
Empres-i database to genetic sequencing information in GenBank for a limited number of H5N1 clade 1 and 2 isolates;
these are listed, along with the characterization of the virus scores, in the supplementary file ‘FLURISK H5NT1 virus
analysis.xls’. A similar process was conducted for the H7N9 isolates; see "H7N9 linkages.xIsx’. It can be seen from
these datasets that incomplete or unvalidated data collection means we are unable to match all isolates. The GIS .tif
files associated with figures 4 and 5 are provided in the ‘Results.zip’, which also includes a .tif file of the spatial risk
result for H5N1 clade 2 (50th percentile result). We also provide the first, 25th, 75th and 99th percentile results for
H5NI1 clade 1 as an example of the uncertainty generated through the analysis.

Authors’ contributions. A.H., T.D. and RK. developed and parametrized the risk assessment framework. O.M., A H., A.F.
and W.H. identified and characterized the case study virus strains using genetic information obtained from OpenFLU
and GenBank. A.H., LK, K.S,, S.v.D., M.d.N. and K.S. provided critical review and discussion. The project manager
was M.d.N., the Work Package leader was A.H. and overall management of the Work Package was provided by K.S.
Competing interests. No authors have competing interests.

110617 s uado 205y BioBuysiqndizaposjeorsos:


http://www.R-project.org/
http://www.livestock.geo-wiki.org
http://empres-i.fao.org

Funding. The FLURISK project was funded by the European Food Safety Authority (EFSA).

Acknowledgements. We thank the FLURISK project leader Ilaria Capua and project team, including A. Breed, B. Wieland,
G. Dauphin, K. Harris and M. Koopmans, for critical discussions and support. The FLURISK project was supported
by the European Food Safety Authority (EFSA). The sole responsibility of this paper lies with the authors, and EFSA
shall not be considered responsible for any use that may be made of the information contained herein. The production
of the global commercial and backyard chicken population density data was supported by the Food and Agricultural
Organization of the United Nations, the USAID-funded EPT+ programme and the CGIAR Climate Change and
Farming Systems (CCAFS) programme. We acknowledge the authors, originating and submitting laboratories of the
sequences from both the GISAID’s EpiFlu® and the Swiss Institute of Bioinformatics OpenFlu databases on which

the case study virus scores were based.

References

Morse SS, Mazet JAK, Woolhouse M, Parrish (R,
Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin
WI, Daszak P. 2012 Zoonoses 3: prediction and
prevention of the next pandemic zoonosis. Lancet
380, 1956—1965. (d0i:10.1016/50140-6736(12)
61684-5)

Horimoto T, Kawaoka Y. 2001 Pandemic threat
posed by avian influenza A viruses. Clin. Microbiol.
Rev. 14,129-149. (doi:10.1128/CMR.14.1.129-149.
2001)

Morens DM, Taubenberger JK. 2011 Pandemic
influenza: certain uncertainties. Rev. Med. Virol. 21,
262-284. (d0i:10.1002/rmv.689)

Christman MC, Kedwaii A, Xu J, Donis RO, Lu G. 2011
Pandemic (HIN1) 2009 virus revisited: an evolut-
ionary retrospective. Infect. Genet. Evol. 11, 803-811.
(doi:10.1016/j.meegid.2011.02.021)
Taubenberger JK, Kash JC. 2011 Insights on influenza
pathogenesis from the grave. Virus Res. 162, 2-7.
(doi:10.1016/j.virusres.2011.09.003)

Morens DM. 2013 Pandemic H5N1: receding risk or
coming catastrophe? Clin. Infect. Dis. 56, 1213-1215.
(doi:10.1093/cid/cit051)

Morens DM, Taubenberger JK, Fauci AS. 2013
Pandemic influenza viruses: hoping for the road not
taken. N. Engl. J. Med. 368, 2345-2348. (doi:10.1056/
NEJMp1307009)

Sims LD, Domenech J, Benigno C, Kahn S, Kamata A,
Lubroth J, Martin V, Roeder P. 2005 Origin and
evolution of highly pathogenic H5NT avian
influenza in Asia. Vet. Rec. 157,159-164.
(doi:10.1136/vr.157.6.159)

Liu D et al. 2013 Origin and diversity of novel avian
influenza A H7N9 viruses causing human infection:
phylogenetic, structural, and coalescent analyses.
Lancet 381,1926-1932. (di:10.1016/50140-
6736(13)60938-1)

. van Kerkhove MD, Mumford E, Mounts AW, Bresee

J,Ly'S, Bridges CB, Otte J. 2011 Highly pathogenic
avian influenza (H5N1): pathways of exposure at the
animal—human interface, a systematic review. PLoS
ONE 6, €14582. (d0i:10.1371/journal.pone.001

4582)

. Anderson RM, May RM 1991 Infectious diseases of

humans: dynamics and control. New York, NY:
Oxford University Press.

. De Nardi M et al. 2013 Development of a risk

assessment methodological framework for
potentially pandemic influenza strains (FLURISK).
(CFP/EFSA/AHAW/2011/01). See http://www.
efsa.europa.eu/en/supporting/pub/571e.htm.

. Rothman KJ, Greenland S. 2008 Modern epide-

miology, 8th edn. Philadelphia, PA: Lippincott
Williams & Wilkins.

20.

2.

2.

3.

24.

25.

26.

21.

. Robinson TP et al. 2014 Mapping the global

distribution of livestock. PLoS ONE 9, e96084.
(doi:10.1371/journal.pone.0096084)

. Gilbert M et al. 2015 Income disparities and the

global distribution of intensively farmed chicken
and pigs. PLoS ONE 10, e0133381.
(doi:10.1371/journal.pone.0133381)

. Robinson TP, Franceschini G, Wint W. 2007 The Food

and Agriculture Organization’s gridded livestock of
the world. Vet. Ital. 43, 745-751.

. Koopmans M et al. 2004 Transmission of H7N7 avian

influenza A virus to human beings during a large
outbreak in commercial poultry farms in the
Netherlands. Lancet 363, 587-593. (doi:10.1016/
S0140-6736(04)15589-X)

. RIVM. 2004 Avian flu epidemic in 2003: public

health consequences. See http://www.rivm.nl/
bibliotheek/rapporten/630940004.pdf.

. Tweed SA et al. 2004 Human illness from avian

influenza H7N3, British Columbia. Emerg. Infect. Dis.
10, 2196-2199. (doi:10.3201/eid1012.040961)
Inter-American Institute for Cooperation on
Agriculture. 2005 Canada'’s experiences with avian
influenza (Al): a compilation of documents on Al
and the response of the Canadian Government and
poultry sector to the 2004 Al outbreak in British
Columbia. See http://www.iicacan.org/Publications
9%20and%20Documents/Avian%20Influenza%
202006.pdf.

Ogata T et al. 2008 Human H5N2 avian influenza
infection in Japan and the factors associated with
high H5N2-neutralizing antibody titer. J. Epidemiol.
18,160-166. (doi:10.2188/jea.)E2007446)

Nguyen Van Tam JS et al. 2006 Outbreak of low
pathogenicity H7N3 avian influenza in UK, including
associated case of human conjunctivitis.
Eurosurveillance 1, 2952.

Chotpitayasunondh T et al. 2005 Human disease
from influenza A (H5N1), Thailand, 2004. Emerg.
Infect. Dis. 11, 201-209. (doi:10.3201/eid1102.041061)
Tiensin T et al. 2005 Highly pathogenic avian
influenza H5N1, Thailand, 2004. Emerg. Infect. Dis.
11,1664-1672. (d0i:10.3201/eid1111.050608)

Olsen SJ, Laosiritaworn Y, Pattanasin S, Prapasiri P,
Dowell SF. 2005 Poultry-handling practices during
avian influenza outbreak, Thailand. Emerg. Infect.
Dis. 11,1601-1603. (doi:10.3201/eid1110.041267)
Kandeel A et al. 2010 Zoonotic transmission of avian
influenza virus (H5N1), Egypt, 2006—-2009. Emerg.
Infect. Dis. 16, 1101-1107. (doi:10.3201/eid1607.
091695)

El-Zanaty F, Way A. 2008 Egypt demographic and
health survey. See http://www.measuredhs.com/
pubs/pdf/FR220/FR220.pdf.

28.

29.

30.

31

32.

3.

34.

35.

36.

37.

38.

39.

Food and Agriculture Organization of the United
Nations. 2014 EMPRES-i: global animal disease
information system. See http://empres-i.fao.
org/eipws3g/#h=0 (accessed 18 October 2014).
Swiss Institute for Bioinformatics. 2014 OpenFlu
database. See http://openflu.vital-it.ch/browse.php
(accessed 18 October 2014).

Alba A, Casal J, Napp S, Martin PAJ. 2010
Assessment of different surveillance systems for
avian influenza in commercial poultry in Catalonia
(North-Eastern Spain). Prev. Vet. Med. 97,107-118.
(doi:10.1016/j.prevetmed.2010.09.002)

Lockhart CY. 2008 Surveillance for diseases of
poultry with specic reference to avian influenza.
Thesis. See http://www.massey.ac.nz/massey/fms/
Colleges/College%200f%20Sciences/E% picenter/
docs/CarylLockhartPhD.pdf?0062EDTF1ASEC6CF3
ADDBAECO3C14FFC.

Christensen J, Stryhn H, Vallieres A, El-Allaki F. 2011
A scenario tree model for the Canadian notifiable
avian influenza surveillance system and its
application to estimation of probability of
freedom and sample size determination. Prev. Vet.
Med. 99,161-175. (doi:10.1016/j.prevetmed.2011.
01.005)

Morens DM, Taubenberger JK. 2015 How low is the
risk of influenza A(H5N1) infection? J. Infect. Dis.
211, 1364-1366. (di:10.1093/infdis/jiu530)

Gomaa MR et al. 2015 Avian influenza A(H5N1) and
A(HIN2) seroprevalence and risk factors for
infection among Egyptians: a prospective,
controlled seroepidemiological study. J. Infect. Dis.
211,1399-1407. (d0i:10.1093/infdis/jiu529)

Swiss Institute for Bioinformatics. 2014 Human and
animal influenza database. See http://openflu.
vital-it.ch/browse.php (accessed 18 October

2014).

Von Dobschuetz S, De Nardi M, Harris KA, Munoz 0,
Breed AC, Wieland B, Dauphin G, Lubroth J, Stérk
KDC. 2014 Influenza surveillance in animals: what is
our capacity to detect emerging influenza viruses
with zoonotic potential? Epidemiol. Infect. 143,
2187-2204. (doi:10.1017/50950268814002106)
Meng Z, Han R, Hu Y, Yuan Z, Jiang S, Zhang X, Xu J.
2014 Possible pandemic threat from new
reassortment of influenza A(H7N9) virus in China.
Furosurveillance 19, 20699. (doi:10.2807/
1560-7917.E52014.19.6.20699)

Cui L et al. 2014 Dynamic reassortments and genetic
heterogeneity of the human-infecting influenza A
(H7N9) virus. Nat. Commun. 5, 3142. (doi:10.1038/
ncomms4142)

LiuJ, Xiao H, Wu Y, Liu D, Qi X, Shi Y, Gao GF. 2014
H7N9: a low pathogenic avian influenza A virus

£2105L:7 s uado 205y BuoBuysiigndAsanosjeossos:


http://dx.doi.org/doi:10.1016/S0140-6736(12)61684-5
http://dx.doi.org/doi:10.1016/S0140-6736(12)61684-5
http://dx.doi.org/doi:10.1128/CMR.14.1.129-149.2001
http://dx.doi.org/doi:10.1128/CMR.14.1.129-149.2001
http://dx.doi.org/doi:10.1002/rmv.689
http://dx.doi.org/doi:10.1016/j.meegid.2011.02.021
http://dx.doi.org/doi:10.1016/j.virusres.2011.09.003
http://dx.doi.org/doi:10.1093/cid/cit051
http://dx.doi.org/doi:10.1056/NEJMp1307009
http://dx.doi.org/doi:10.1056/NEJMp1307009
http://dx.doi.org/doi:10.1136/vr.157.6.159
http://dx.doi.org/doi:10.1016/S0140-6736(13)60938-1
http://dx.doi.org/doi:10.1016/S0140-6736(13)60938-1
http://dx.doi.org/doi:10.1371/journal.pone.0014582
http://dx.doi.org/doi:10.1371/journal.pone.0014582
http://www.efsa.europa.eu/en/supporting/pub/571e.htm
http://www.efsa.europa.eu/en/supporting/pub/571e.htm
http://dx.doi.org/doi:10.1371/journal.pone.0096084
http://dx.doi.org/doi:10.1371/journal.pone.0133381
http://dx.doi.org/doi:10.1016/S0140-6736(04)15589-X
http://dx.doi.org/doi:10.1016/S0140-6736(04)15589-X
http://www.rivm.nl/bibliotheek/rapporten/630940004.pdf
http://www.rivm.nl/bibliotheek/rapporten/630940004.pdf
http://dx.doi.org/doi:10.3201/eid1012.040961
http://www.iicacan.org/Publications%20and%20Documents/Avian%20Influenza%202006.pdf
http://www.iicacan.org/Publications%20and%20Documents/Avian%20Influenza%202006.pdf
http://www.iicacan.org/Publications%20and%20Documents/Avian%20Influenza%202006.pdf
http://dx.doi.org/doi:10.2188/jea.JE2007446
http://dx.doi.org/doi:10.3201/eid1102.041061
http://dx.doi.org/doi:10.3201/eid1111.050608
http://dx.doi.org/doi:10.3201/eid1110.041267
http://dx.doi.org/doi:10.3201/eid1607.091695
http://dx.doi.org/doi:10.3201/eid1607.091695
http://www.measuredhs.com/pubs/pdf/FR220/FR220.pdf
http://www.measuredhs.com/pubs/pdf/FR220/FR220.pdf
http://empres-i.fao.org/eipws3g/#h=0
http://empres-i.fao.org/eipws3g/#h=0
http://openflu.vital-it.ch/browse.php
http://dx.doi.org/doi:10.1016/j.prevetmed.2010.09.002
http://www.massey.ac.nz/massey/fms/Colleges/College%20of%20Sciences/E% picenter/docs/CarylLockhartPhD.pdf?0062ED1F1A8EC6CF3ADDBAEC03C14FFC
http://www.massey.ac.nz/massey/fms/Colleges/College%20of%20Sciences/E% picenter/docs/CarylLockhartPhD.pdf?0062ED1F1A8EC6CF3ADDBAEC03C14FFC
http://www.massey.ac.nz/massey/fms/Colleges/College%20of%20Sciences/E% picenter/docs/CarylLockhartPhD.pdf?0062ED1F1A8EC6CF3ADDBAEC03C14FFC
http://www.massey.ac.nz/massey/fms/Colleges/College%20of%20Sciences/E% picenter/docs/CarylLockhartPhD.pdf?0062ED1F1A8EC6CF3ADDBAEC03C14FFC
http://dx.doi.org/doi:10.1016/j.prevetmed.2011.01.005
http://dx.doi.org/doi:10.1016/j.prevetmed.2011.01.005
http://dx.doi.org/doi:10.1093/infdis/jiu530
http://dx.doi.org/doi:10.1093/infdis/jiu529
http://openflu.vital-it.ch/browse.php
http://openflu.vital-it.ch/browse.php
http://dx.doi.org/doi:10.1017/S0950268814002106
http://dx.doi.org/doi:10.2807/1560-7917.ES2014.19.6.20699
http://dx.doi.org/doi:10.2807/1560-7917.ES2014.19.6.20699
http://dx.doi.org/doi:10.1038/ncomms4142
http://dx.doi.org/doi:10.1038/ncomms4142

40.

4.

4.

3.

infecting humans. Curr. Opin. Virol. 5, 91-97.
(doi:10.1016/j.coviro.2014.03.001)

Ahmed SSU, Ersboll AK, Biswas PK, Christensen JP,
Hannan ASMA, Toft N. 2012 Ecological determinants
of highly pathogenic avian influenza (H5N1)
outbreaks in Bangladesh. PLoS ONE 7, €33938.
(doi:10.1371/journal.pone.0033938)

Zhou L et al. 2009 Risk factors for human illness with
avian influenza A (H5N1) virus infection in China.

J. Infect. Dis. 199, 1726-1734. (d0i:10.1086/599206)
Loth L, Gilbert M, Osmani MG, Kalam AM, Xiao X.
2010 Risk factors and clusters of highly pathogenic
avian influenza H5N1 outbreaks in Bangladesh. Prev.
Vet. Med. 96,104—113. (doi:10.1016/j.prevetmed.
2010.05.013)

Paul M et al. 2010 Anthropogenic factors and the
risk of highly pathogenic avian influenza H5N1:
prospects from a spatial-based model. Vet. Res. 41,
28. (doi:10.1051/vetres/2009076)

. Bessell PR, Robinson RA, Golding N, Searle KR,

Handel IG, Boden LA, Purse BV, Bronsvoort BMdC. In
press. Quantifying the risk of introduction of West
Nile virus into Great Britain by migrating passerine
birds. Transbound. Emerg. Dis. (doi:10.1111/tbed.
12310)

4.

46.

47.

48.

49.

50.

Tachiiri K, Klinkenberg B, Mak S, Kazmi J. 2006
Predicting outbreaks: a spatial risk assessment

of West Nile virus in British Columbia. Int. J.

Health Geagr. 5, 21. (doi:10.1186/1476-

072X-5-21)

Pigott DM et al. 2014 Mapping the zoonotic niche of
Ebola virus disease in Africa. Elife 3, e04395.
(doi:10.7554/eLife.04395)

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi
I, Lipman DJ, Ostell J, Sayers EW. 2013 GenBank.
Nucleic Acids Res. 41, D32—42. (doi:10.1093/nar/
gks981)

Lai KY, Ng GWY, Wong KF, Hung IFN, Hong JKF,
Cheng FF, Chan JKC. 2013 Human H7N9 avian
influenza virus infection: a review and pandemic
risk assessment. Emerg. Microbes Infect. 2, e48.
(doi:10.1038/emi.2013.48)

Jian SW, Liu DP, Chang FY. 2014 Risk assessment of
human infection with avian influenza A (H7N9)
virus in Taiwan. J. Formosan Med. Assoc. 113,
397-399. (d0i:10.1016/j.jfma.2014.02.001)
Taubenberger JK, Morens DM. 2009 Pandemic
influenza—including a risk assessment of H5N1.
Revue Scientifique Et Technique-Office International
Des Epizooties 28,187-202.

51.

52.

53.

54.

55.

56.

Qiu J, Li RD, Xu XJ, Hong XC, Xia X, Yu CH. 2014
Spatiotemporal pattern and risk factors of the
reported novel avian-origin influenza A(H7N9)
cases in China. Prev. Vet. Med. 115, 229-237.
(doi:10.1016/j.prevetmed.2014.03.030)

Arino J, Jordan R, van den Driessche P. 2007
Quarantine in a multispecies epidemic model with
spatial dynamics. Math. Biosci. 206, 118—130.
(doi:10.1016/j.mbs.2005.09.002)

Iwami S, Takeuchi Y, Liu X. 2007 Avian—human
influenza epidemic model. Math. Biosci. 207, 1-25.
(doi:10.1016/j.mbs.2006.08.001)

Kim KI, Lin Z, Zhang L. 2010 Avian-human influenza
epidemic model with diffusion. Nonlinear Anal. Real
World Appl. 11, 313-322. (doi:10.1016/j.nonrwa.
2008.11.015)

Kim T, Hang W, Zhang A, Sen S, Ramanthan M. 2010
Multi-agent modeling of the South Korean avian
influenza epidemic. BMC Infect. Dis. 10, 236.
(doi:10.1186/1471-2334-10-236)

Claes F et al. 2014 The EMPRES-i genetic module: a
novel tool linking epidemiological outbreak
information and genetic characteristics of influenza
viruses. Database 6, bau008. (doi:10.1093/data
base/bau008)

£1105L:7 s uado 205y BuoBuysiiqndizaposieforsos:


http://dx.doi.org/doi:10.1016/j.coviro.2014.03.001
http://dx.doi.org/doi:10.1371/journal.pone.0033938
http://dx.doi.org/doi:10.1086/599206
http://dx.doi.org/doi:10.1016/j.prevetmed.2010.05.013
http://dx.doi.org/doi:10.1016/j.prevetmed.2010.05.013
http://dx.doi.org/doi:10.1051/vetres/2009076
http://dx.doi.org/doi:10.1111/tbed.12310
http://dx.doi.org/doi:10.1111/tbed.12310
http://dx.doi.org/doi:10.1186/1476-072X-5-21
http://dx.doi.org/doi:10.1186/1476-072X-5-21
http://dx.doi.org/doi:10.7554/eLife.04395
http://dx.doi.org/doi:10.1093/nar/gks981
http://dx.doi.org/doi:10.1093/nar/gks981
http://dx.doi.org/doi:10.1038/emi.2013.48
http://dx.doi.org/doi:10.1016/j.jfma.2014.02.001
http://dx.doi.org/doi:10.1016/j.prevetmed.2014.03.030
http://dx.doi.org/doi:10.1016/j.mbs.2005.09.002
http://dx.doi.org/doi:10.1016/j.mbs.2006.08.001
http://dx.doi.org/doi:10.1016/j.nonrwa.2008.11.015
http://dx.doi.org/doi:10.1016/j.nonrwa.2008.11.015
http://dx.doi.org/doi:10.1186/1471-2334-10-236
http://dx.doi.org/doi:10.1093/database/bau008
http://dx.doi.org/doi:10.1093/database/bau008

	Introduction
	Methods
	Model framework
	Parameter estimation
	Uncertainty analysis

	Results
	Global contact intensity, (g)
	Relative risk map

	Discussion
	Conclusion
	References

