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Abstract

Endothelial colony-forming cells (ECFCs) are obtained from the culture of human peripheral blood mononuclear cell
(hPBMNC) fractions and are characterised by high proliferative and pro-vasculogenic potential, which makes them of great
interest for cell therapy. Here, we describe the detection of protease-activated receptor (PAR) 1 and 2 amongst the surface
proteins expressed in ECFCs. Both receptors are functionally coupled to extracellular signal-regulated kinase (ERK) 1 and 2,
which become activated and phosphorylated in response to selective PAR1- or PAR2-activating peptides. Specific
stimulation of PAR1, but not PAR2, significantly inhibits capillary-like tube formation by ECFCs in vitro, suggesting that
tubulogenesis is negatively regulated by proteases able to stimulate PAR1 (e.g. thrombin). The activation of ERKs is not
involved in the regulation of tubulogenesis in vitro, as suggested by use of the MEK inhibitor PD98059 and by the fact that
PAR2 stimulation activates ERKs without affecting capillary tube formation. Both qPCR and immunoblotting showed a
significant downregulation of vascular endothelial growth factor 2 (VEGFR2) in response to PAR1 stimulation. Moreover, the
addition of VEGF (50–100 ng/ml) but not basic Fibroblast Growth Factor (FGF) (25–100 ng/ml) rescued tube formation by
ECFCs treated with PAR1-activating peptide. Therefore, we propose that reduction of VEGF responsiveness resulting from
down-regulation of VEGFR2 is underlying the anti-tubulogenic effect of PAR1 activation. Although the role of PAR2 remains
elusive, this study sheds new light on the regulation of the vasculogenic activity of ECFCs and suggests a potential link
between adult vasculogenesis and the coagulation cascade.
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Introduction

ECFCs are the most recently identified subtype of endothelial

progenitor cells (or EPCs) that originate from unidentified

precursors co-isolated with human peripheral blood mononuclear

cells (hPBMNCs) [1]. Because of their high proliferative and pro-

vasculogenic potential [2], ECFCs are prime candidates for the

development of cell therapies aiming to revascularise damaged

tissues and stimulate tissue regeneration [3]. There is, therefore, a

great deal of interest in understanding the regulatory mechanisms

underlying the pro-vasculogenic activity of ECFCs.

Several aspects of the cell physiology of ECFCs remain to be

elucidated. In particular, it is of pivotal importance to understand

how ECFCs mediate vasculogenesis, which in contrast to

angiogenesis is the formation of blood vessels de novo (i.e. not by

branching from existing vasculature) and plays a critical role in

repairing damaged tissues [4]. In common with mature endothe-

lial cells and other subtypes of EPCs, vascular endothelial growth

factor (VEGF) appears to play a critical role in stimulating the

vasculogenic activity of ECFCs, which is commonly assessed

in vitro by measuring capillary-like tube formation on Matrigel

[5]. In addition to VEGF, several other paracrine factors have

been suggested as potential stimulators of the vasculogenic activity

of ECFCs, including transforming growth factor b (TGFb) [6],

erythropoietin [7], prostacyclin [8], osteoprotegerin [9] and

Dickkopfs 1 (DKK1) [10].

Here, we have investigated the expression and function of PARs

in ECFCs. PARs are irreversibly activated by cleavage of their

extracellular domain by extracellular proteases, which include

thrombin [11], trypsin [12], tryptase [13] and coagulation factors

VIIa and Xa [14]. The cleavage by proteases unmasks a ‘peptide

agonist’ domain of the extracellular domain of the receptors.

When unmasked, the ‘peptide agonist’ domain acts as a tethered

ligand, interacting in an intramolecular manner with the

extracellular portion of the receptor, which induces receptor

activation and its coupling with intracellular signaling pathways

[15]. PAR activity is critical for vascular homeostasis and central

to coagulation and haemostasis [16].

Previous reports of the expression of a member of the PAR

family in different EPC subtypes prompted investigation of the

expression of this family of receptors in ECFCs [17–19]. Our
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interest in PAR expression and function in ECFCs derives from

the fact that local accumulation of active proteases following

stimulation of the coagulation cascade by tissue damage might

play a relevant role in the regulation of ECFCs at the site of

vascular injury.

In this study, we first identified PAR1 and PAR2 amongst the

surface markers expressed by peripheral blood ECFCs. Subse-

quently, we investigated the effect of PAR1 and/or PAR2

activation on cell signalling and functional responses using

selective activating peptides mimicking the tethered ligand

sequences [20]. Taken together, we describe a novel PAR1-

dependent mechanism of inhibition of ECFC-dependent tubulo-

genesis.

Experimental Procedures

Cell culture
Peripheral blood was obtained by venepuncture from the

median cubital vein of healthy drug-free volunteers. Participants

were informed about procedure and purpose of blood collection.

They expressed their consent in written form. Written consent

forms for all participants are kept within the Department of

Pharmacy and Pharmacology at the University of Bath and the

Figure 1. Characterization of the physiological and biochemical phenotype of ECFCs. A typical colony appearing between day 14 and 21
of culture is presented in (A). Immunoblotting for the endothelial markers von Willebrand Factor (VWF), VEGFR2 and CD31, for the platelet marker
integrin aIIb and for extracellular signal-regulated kinases 1 and 2 are shown in (B) (from top to bottom). ECFC lysates are compared to lysates from
PBMNCs at the time of isolation (day 0) and 14 days after isolation (day 14). In (C), ECFCs were pre-incubated with 10 mg/ml DiI-Ac-LDL (4 hours, 37uC,
5%CO2) before staining with 40 mg/ml FITC-UEA and 1 mg/ml 49,6-diamidino-2-phenylindole (DAPI). Images were taken by confocal
immunofluorescence using a Zeiss 510 LSM confocal microscope equipped with a 40X oil-immersion lens. The results displayed are representative
of three independent experiments and show the independent channels (FITC, DiI and DAPI from left to right) and the superimposed picture (far
right). In (D) and (E), expression and localization of VE-cadherin and VWF were assessed by immunostaining using specific antibodies combined with
Alexa Fluor 488 Rabbit Anti-Mouse (green) and Alexa Fluor 546 Donkey Anti-Goat IgG (red) secondary antibodies (1:200). 49,6-diamidino-2-
phenylindole (blue) (1:100) was used to localize cell nuclei. The results are representative of three independent experiments.
doi:10.1371/journal.pone.0109375.g001

Anti-Tubulogenic Activity of PAR1

PLOS ONE | www.plosone.org 2 October 2014 | Volume 9 | Issue 10 | e109375



Local Ethics Committee of the University of Bath has approved

the consent procedure and the venepuncture protocol. The cell

isolation procedure has been described previously [2]. ECFCs

were obtained from the peripheral blood mononuclear cell

(PBMNC) fraction of whole human blood, which was separated

by density gradient centrifugation method using Histopaque

(1.07760.001 g/ml, Sigma, Poole, UK). PBMNCs were isolated

from one donor (i.e. no blood pooling) and seeded at a density of

26105 cells/cm2 on collagen-coated dishes in complete medium

(i.e. EBM-2 medium plus EGM-2 Bullet Kit supplements, Lonza,

Walkersville, US) containing 12% fetal bovine serum (FBS). Cell

culture medium was replaced every 2 days to maintain adequate

nutrients levels and remove unattached cells. Colonies appeared

between with 14–21 days of culture and were separately expanded.

Cell passaging and seeding ahead of experiments was performed

by cell detachment using Accutase (Life Technologies, Carlsbad,

US). Cells were characterised by FITC-labelled Ulex europaeus

agglutinin (UEA) staining, acetylated LDL intake was performed

as previously described [21] and immunofluorescence staining for

vascular endothelial (VE)-cadherin or von Willebrand Factor

(VWF) up to passage 8. Experiments were performed on cells

between passages 4 and 6 and were repeated with cells from at

least 3 independent isolations (i.e. 3 different donors).

RT-PCR and qPCR
For RT-PCR, total RNA was extracted from ECFCs and

PBMNCs using TRIzol Plus RNA Purification Kit (Life Tech-

nologies, Carlsbad, US). The cDNA was obtained using ImProm-

II Promega Reverse Transcription System (PROMEGA Corpo-

ration, Madison, US) and was selectively amplified by traditional

reverse transcriptase polymerase chain reaction (RT-PCR) as

previously described [21] (PAR1: 59-AATCAGGAG-

GACGTTTGTG and 59-CTGTGGTGTATCCCATGCAG;

PAR2: 59-TGAAGATGGTCTGCTTCACG and 59-

TCTGCATCTGTCCTCACTGG; PAR3: 59-AAAAGCATC-

CACAGGGTCAC and 59-GAAAGCCCTCATCTTTGCAG;

PAR4: 59-GCACGTA GGCACCATAGAGG and 59-

TGTATGGCTCAGTGCTGCTG; b-Actin 59-CAAT-

GAGCTGA GAGTAGCCC and 59-GGGTGTTGAAGGTCT-

CAAAC). Total RNA prepared with TRI Reagent (Life Tech-

nologies, Carlsbad, US) from human lung fibroblasts, human

myofibroblasts, ECFCs, human glomerular endothelial cells and

epithelial Human Kidney 2 cells (HK2) was donated by Miss

Cristina Beltrami and Dr Donald Fraser (Department of

Nephrology, University of Cardiff, UK). The cDNA was

generated using High Capacity cDNA Reverse Transcription

Kit (Life Technologies, Carlsbad, US). qPCR was performed on a

ViiA7 Real-Time PCR System (Life Technologies, Carlsbad, US).

Figure 2. ECFCs express PAR1 and PAR2. (A and B) RNA extracts from fibroblasts, myofibroblasts, ECFCs, glomerular endothelial cells, and
epithelial HK2 cells PAR1 and PAR2 expression were analyzed by qPCR using specific primers as described in the Methods section. Relative
expressions were calculated according to the 22DDCt method and normalized to GAPDH. These data are expressed as mean 6 standard error of the
means (SEM) from three independent experiments. The expression of PAR1 (C) and PAR2 (D) was also examined in platelets or HUVECS (for PAR1 and
PAR2 respectively), PBMNCs at days 0 and 14 and in ECFCs (from left to right) by immnunoblotting using selective antibodies (N19). An actin-specific
antibody was also utilized to detect the expression of a housekeeping gene in the different lysates. Notably the cells analyzed here display
significantly different phenotypes and the actin levels appear different despite equal protein loading for different lanes. The results are representative
of three independent experiments.
doi:10.1371/journal.pone.0109375.g002
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PAR1, PAR2 and GAPDH reaction products were quantified by

Power SYBR Green PCR Master Mix (Life Technologies,

Carlsbad, US) with 300 nM gene-specific primers (PAR1: 59-

GTATCCCATGCAGTCCCTCTCC and 59-GTAATGCG-

CAATCAGGAGGACG; PAR2: 59-TCT GCATCTGTCCT-

CACTGG and 59-TGAAGATGGTCTGCTTCACG; GAPDH:

59-AGCCGCATC TTCTTTTGCGT and 59-TGACGAACAT-

GGGGGCATCA; VEGFR2: 59CCAGTGTCATTTC CGAT-

CACTTT and 59-GGCCCAATAATCAGAGTGGCA; VEGFA:

59-AGGGTCTCGAT TGGATGGCA and 59-AGGGCAGAAT-

CATCACGAAGT; CXCR4: 59-CCCACAATGCCAG TTAA-

GAAGA and 59-ACTACACCGAGGAAATGGGCT; SDF-1: 59-

ATTCTCAACACT CCAAACTGTGC and 59-ACTTTAG-

CTTCGGGTCAATGC; IL8: 59-AACCCTCTGCACCCAGT-

TTTC and 59-ACTG AGAGTGATTGAGAGTGGAC). The

amplification of a single PCR product was confirmed by melting

curve analysis. Gene-specific mRNA levels were estimated by the

22DDCt analysis and normalized against GAPDH levels to obtain

relative changes in gene expression, as previously described [22].

PAR stimulation
Selective activation of PAR1 or PAR2 was achieved by treating

the cells with synthetic agonist peptides displaying the sequence of

the endogenous agonist peptide of the targeted receptor [20]

These were used at a final concentration of 50 mM for different

incubation times depending on the type of assay. The sequence of

the activating peptides is the following: H-Thr-Phe-Leu-Leu-Arg-

NH2 for PAR1, 2-Furoyl-Leu-Ile-Gly-Arg-Leu-Orn-NH2 for

PAR2 and 2-Furoyl-Orn-Leu-Arg-Gly-Ile-Leu-NH2 for the

scrambled control.

Immunoblotting
ECFCs were lysed in radioimmunoprecipitation assay (RIPA)

buffer in the presence of protease and protein phosphatase

inhibitors (Sigma, Poole UK). Extracts from platelets and human

umbilical vein endothelial cell (HUVECs) were utilized as controls

and obtained in a similar manner. Proteins were separated by

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) and immunolabelled as previously described [23].

Antibodies for PAR1 and PAR2 (N19) were from Santa Cruz

Biotechnology (Santa Cruz, US). Phospho- ERK1/2, ERK1/2,

CD31 and VEGFR2 antibodies were from Cell Signaling

Technology (Danvers, US). The antibodies for integrin IIb and

VWF were from Enzo Life Sciences (Farmingdale, US) and Dako

(Glostrup, Denmark), respectively. Densitometric analyses were

performed using ImageJ 1.46r (Wayne Rasband, National Institute

of Health, US).

Immunofluorescence
ECFCs were grown on cover slips to 60–70% confluence and

fixed/permeabilized in ice-cold methanol for 10 min. Following

fixation, cells were washed in PBS and blocked with 1% bovine

serum albumin (BSA) for 30 min. Subsequently, the slides were

incubated with anti-PAR1, anti-PAR2, VE-cadherin (Santa Cruz

Biotechnology, Santa Cruz US) or VWF primary antibody (Dako,

Glostrup, Denmark) (1:50) for 1 h at room temperature. After

three washing steps, slides were then incubated with Alexa Fluor

488 Rabbit Anti-Mouse and Alexa Fluor 546 Donkey Anti-Goat

IgG (1:200) (Life Technologies, Carlsbad, US) for 1 h and 49,6-

diamidino-2-phenylindole (DAPI, Sigma-Aldrich, Poole UK)

(1:100). Incubation with secondary antibodies and DAPI alone

was used as a negative control. Cells were mounted in Vectashield

HardSet Mounting Medium (Vector Laboratories, Peterborough

UK) and examined on a LSM 510 META confocal microscope

(Carl Zeiss AG, Jena, Germany).

In vitro capillary-like tube formation assay
Growth Factor Reduced Matrigel (BD Biosciences, Oxford UK)

was utilized to provide extracellular matrix for cell culture. 65 ml of

Matrigel were added to each well of a 96-well plate and incubated

at 37uC for 30 minutes. 10,000 cells/well were then added in

100 ml of tube formation assay buffer (i.e. EBM-2 medium

containing 2% FBS). Cells were cultured at 37uC/5%CO2 in

the presence of 50 mM PAR1- and/or PAR2-activating peptide

Figure 3. Immunolocalisation of PAR1 and PAR2. ECFCs were cultured to 60–70% confluence and fixed with methanol as described in
Methods. Expression and localization of PAR1 and PAR2 were assessed by immunostaining using specific antibodies combined with Alexa Fluor 488
Rabbit Anti-Mouse (green) and Alexa Fluor 546 Donkey Anti-Goat IgG (red) secondary antibodies (1:200). 49,6-diamidino-2-phenylindole (blue) (1:100)
was used to localize cell nuclei. The superimposition of the three channels is shown in the far rightpanels, with yellow indicating co-localizing staining
for the two receptors. The images are representative of three independent experiments.
doi:10.1371/journal.pone.0109375.g003
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and/or 25–100 ng/ml VEGFa165 (R&D systems, Minneapolis

US) or basic Fibroblast Growth Factor (FGF) (R&D systems,

Minneapolis US) with or without pharmacological treatments

(50 mM PD98059, Sigma-Aldrich, Poole UK) and phase contrast

images were captured 4 hours after treatment using a EVOS FL

microscope with an UPlan FL N 4X/0.13 objective. Experiments

were repeated a minimum of three times and the vasculogenic

response was measured as total number of tubes normalized to

control (scrambled peptide) using the Angiogenesis Analyzer

plugin of ImageJ (Gilles Carpentier, Faculté des Sciences et

Technologie, Université Paris Est, Creteil Val de Marne, France).

Validation experiments of this assay using human umbilical vein

endothelial cells (HUVECs) are shown in Figure S2.

Statistical analysis
Data are expressed throughout as mean 6 SEM and presented

using Prism 5 (GraphPad Software, La Jolla, US). Statistical

significance was analyzed by one-way ANOVA with Bonferroni

post-test (for parametric data) and Kruskal-Wallis analysis with

Dunn’s post-test (for non-parametric data).

Results

ECFC colonies were obtained as described in the methods section

and an example of a colony is presented in Figure 1A. The

development of the endothelial phenotype was assessed by

immunoblotting for the endothelial markers von Willebrand Factor

(VWF), VEGFR2 and CD31 (Figure 1B). All three markers

appeared significantly expressed in ECFCs. While the expression

of VWF and VEGFR2 is significant only in the ECFC population,

CD31 was also significantly expressed in the initial population of

hPBMNC. Interestingly, a significant amount of the platelet-specific

marker integrin aIIb in the initial population of hPBMNCs might

indicate presence of platelets in the first stages of the culture, which

has been previously reported [23]. The endothelial phenotype of the

ECFCs obtained in our experiments was further confirmed by

testing the ability to take up 1,19-dioctadecyl–3,3,39,39-tetramethyl-

indocarbocya-nine-labelled acetylated low-density lipoprotein (DiI-

Ac-LDL) and to be stained by fluorescein isothiocyanate-labelled

Ulex europaeus agglutinin (FITC-UEA) (Figure 1C). The ECFC

cultures were also immunostained for VE-cadherin (which resulted

in a uniform staining of the cell-cell contacts) and VWF (which

highlighted a punctate distribution compatible with the staining of

the Weibel-Palade bodies), as shown in Figure 1D and 1E

respectively.

The expression of PAR1, PAR2, PAR3 and PAR4 mRNAs was

then investigated by RT-PCR in PBMNCs and ECFCs. Only

PAR1 and PAR2 were expressed (Figure S1A), while PAR3 and

PAR4 were not (data not shown). The absence of PAR4 expression

in PBMNCs and ECFCs was confirmed by immunoblotting

(Figure S1B), while PAR1 and PAR2 expression was confirmed by

qPCR using a different set of specific primers and compared in

different cell types (fibroblasts, myofibroblasts, ECFCs and HK2

cells) (Figure 2A and Figure 2B). The expression of PAR1 and

PAR2 was confirmed by immunoblotting in both PBMNCs and

ECFCs using N-19 antibodies (Figure 2C and Figure 2D,

respectively), which have been shown to detect the expression of

these receptors in native primary cell types [24]. Platelet and

human umbilical vein endothelial cell (HUVEC) protein extracts

were used as positive controls. PAR1/2 expression and localization

were finally analyzed by immunofluorescence (Figure 3), which

confirmed that both receptors are expressed in ECFCs and show a

minimal degree of co-localization.

Next, we investigated whether PAR1 and PAR2 are functionally

coupled to the extracellular signal-regulated kinase pathway

(ERK1/2). A specific antibody for phosphorylated ERK1/2 was

utilized to assess ERK activation. In these experiments, PAR1- or

PAR2-stimulation (Figure 4A) resulted in a significant increase in

ERK1/2 activation. The phosphorylation levels of ERK1 and

ERK2 were quantified by densitometry and showed significant

activation by both PAR1 and PAR2 activating peptides (Fig-

ure 4B). Next, the effect of PAR1 and PAR2 stimulation on the

tubulogenic activity of ECFCs was investigated in vitro by

monitoring capillary-like tube formation on Matrigel. Stimulation

of PAR1, but not PAR2 or treatment with scrambled peptide,

inhibited tube formation by ECFCs in this assay (Figure 5A–B).

Interestingly, treatment with 50 mM PD98059 did not affect basal

tube formation by ECFCs and did not interfere with PAR1-

Figure 4. ERK activation by PAR1 and PAR2 stimulation. Proteins
were isolated as described in the Methods section from ECFCs after
treatment with 50 mM PAR1- (A), or 50 mM PAR2-activating peptide (B)
for 30 minutes (37uC, 5% CO2). A peptide with a scrambled sequence
was utilized at a concentration of 50 mM as a negative control.
Phospho-ERK1/2, total ERK1/2 and actin were detected by SDS-PAGE
and immunoblotting (from top to bottom). The results are represen-
tative of three independent experiments. In (B), phospho-immunoblots
were scanned to obtain a digital image and band intensity was
analyzed using ImageJ 1.46r. The graphs display the results as arbitrary
intensity units for the phospho-ERK1 and phospho-ERK2 bands from 4
independent experiments. Treatment with 50 mM PAR1- or PAR2-
activating peptides is compared to treatment with the same
concentration of scrambled peptides in A–B and C–D, respectively.
The data are mean 6 standard error of the means (SEM) and the
statistical significance of the difference was tested by t-test for paired
samples (* = p,0.05).
doi:10.1371/journal.pone.0109375.g004
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dependent inhibition of tubulogenesis, suggesting that ERK

activation is not primarily involved in tube formation or

responsible for its inhibition by PAR1 agonist peptide. These

capillary tube formation data were re-analysed using ‘‘total tube

length’’ as readout without changing the interpretation of the data

(Figure S3A). The efficient inhibition of ERK1/2 phosphorylation

in the presence of 50 mM PD98059 was confirmed by immuno-

blotting for phospho-ERK1/2 (Figure 5C). In view of the

inhibitory effect of PAR1 activation on tubulogenesis, we

examined the expression of the vasculogenic factors VEGF-A

and SDF-1 and their receptors VEGFR2 and CXCR4 in the

presence of PAR1-activating peptide [25–27] (Figure 6A–E). We

utilized qPCR and showed a significant decrease in VEGFR2

mRNA levels after 1 and 2 hours of treatment with PAR1-

activating peptide, while at longer incubations VEGFR2 mRNA

levels returned to control levels (Figure 6A). Other vasculogenic

genes showed some changes in response to PAR1 stimulation, but

the changes did not reach statistical significance (Figure 6B–E).

The down-regulation of VEGFR2 by PAR1-activating peptide

was confirmed at the protein level and was evident after

incubation times of 2 and 4 hours, but not 1 hour (Figure 6F).

Densitometric analysis of VEGFR2 immunoblots is shown in

Figure S4.

Finally, in order to confirm that the anti-tubulogenic effect of

PAR1 is mediated by down-regulation of VEGFR2 and reduced

responsiveness to VEGF in the Matrigel, we attempted to rescue

the formation of capillary-like tubes by addition of exogenous

VEGF to ECFC treated with PAR1-activating peptide. As shown

in Figure 7, the addition of 50 or 100 ng/ml VEGF reversed the

inhibition of tube formation induced by PAR1-activating peptide.

The re-analysis of these data using ‘‘total tube length’’ as readout is

in Figure S3B, which also shows significant rescue of capillary tube

formation by both 50 and 100 ng/ml VEGF. On the other hand,

basic Fibroblast Growth Factor (FGF) did not rescue tube

formation in the presence of PAR1-activating peptide at any of

the tested concentrations (25, 50 and 100 ng/ml, Figure 7C and

Figure S3C). Interestingly, neither VEGF (50 or 100 ng/ml) nor

FGF (25, 50 or 100 ng/ml) significantly increased capillary tube

formation in the absence of PAR1-activating peptide.

Figure 5. The activation of PAR1 inhibits capillary-like tube formation by ECFCs on Matrigel. 104 ECFCs/well were plated onto Matrigel
matrix in tube formation assay buffer (i.e. EBM-2 medium containing 2% FBS). Cells were cultured with 50 mM scrambled control peptide, 50 mM
PAR1-activating peptide or 50 mM PAR2-activating peptide in the absence or presence of 50 mM PD98059 (as indicated). Phase contrast images were
captured 4 hours after cell seeding. Representative examples from 4 independent experiments are shown in (A). The number of tubes per image was
quantified using the Angiogenesis Analyzer plugin for ImageJ. Means 6 SEM from three independent experiments are shown in (B). Statistical
significance was tested by one-way ANOVA with Bonferroni post-test (** = p,0.05). Time-dependent activation of ERK1/2 by PAR1-activating peptide
(0, 1, 2 and 4 hours) and its inhibition by 50 mM PD98059 were examined using a phospho-specific ERK1/2 antibody and immunoblotting (C). The
results are representative of three independent experiments.
doi:10.1371/journal.pone.0109375.g005
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Discussion

Mature endothelial cells have been shown to express PAR1,

PAR2, PAR3 and PAR4 [28]. PAR1 has been shown to play an

important role in endothelial responses to thrombin, such as

junctional remodeling, vascular permeability regulation, paracrine

activity, migration [29], inflammatory responses in endothelial

cells [30,31] and vascular relaxation [32]. PAR2 has been

Figure 6. Downregulation of VEGFR2 by PAR1 stimulation. (A–E) Time course of relative expression of pro-angiogenic marker genes following
PARs-stimulation. Total RNA was extracted at 1, 2, 4 and 8 hours after stimulation and relative expressions were calculated according to the 22DDCt

method and normalized to GAPDH. These data are expressed as mean 6 standard error of the means (SEM) from three independent experiments
(* = p,0.05, compared to scrambled peptide treatment at matched time point). (F) Proteins were isolated as described in the Methods section from
ECFCs after treatment with 50 mM PAR1-activating peptide for 0, 1, 2 and 4 hours. VEGFR2 and actin were detected by SDS-PAGE and
immunoblotting. The results are representative of three independent experiments.
doi:10.1371/journal.pone.0109375.g006
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implicated in the regulation of inflammatory responses of

endothelial cells, including the development of a pro-thrombotic

endothelial state and the upregulation of cyclooxygenases

[30,31,33]. PAR4 has been shown to play some roles in pro-

inflammatory responses in endothelial cells but its major roles

remain elusive [33,34].

On the other hand, previous studies have only reported on the

expression of PAR1 in different EPC types. Bone marrow-derived

early EPC [18], cord blood CD34+-derived EPC [17], and both

cord and adult peripheral blood late EPCs [19] have only been

shown to express PAR1. In this study we present evidence of

expression of PAR1 in adult peripheral blood ECFCs and further

extend these studies by demonstrating the expression of PAR2, but

not PAR3 or PAR4 in these cells. In previous studies, PAR1

activation has been associated with cell differentiation, upregula-

tion of endothelial markers in EPCs (VE-cadherin, [18]) and

increased expression of pro-angiogenic factors or their receptors

(stromal cell-derived factor 1/CXCR4 [17] and interleukin-8

[19]). In our qPCR experiments, we observed a trend towards

increased expression of CXCR4 and IL8 in response to PAR1

activation (Figure 6D and 6E); however, we failed to find a

statistically significant change in the expression of these markers.

In the case of CXCR4, this discrepancy might result from the

difference in the time points analyzed in our and the previous

study (i.e. 1–8 hours in our study vs 24 hours in previous studies).

The upregulation of pro-angiogenic markers in response to PAR1

stimulation observed in previous studies was accompanied by a

pro-angiogenic response in vitro, in particular capillary-like tube

formation [17,19]. A previous report by Smadja and colleagues

showed that PAR1 stimulation induced capillary-like tube

formation by EPCs by up-regulating CXCR4 and potentiating

signalling via the stromal cell-derived factor 1a (SDF-1a)/CXCR4

axis [17]. In disagreement with this study, we observed that PAR1

activation decreased tubulogenesis by ECFCs below basal levels.

The difference in the starting cell population in the isolation

protocol is, again, the most likely explanation for this discrepancy

(i.e. adult peripheral blood mononuclear cells without cell sorting

in our study versus cord blood cells with cd34+ cell sorting in the

above study [17]). Other minor differences in the culture

procedures are: 1) different fetal bovine serum concentration in

Figure 7. The inhibition of capillary-like tube formation by PAR1-activating peptide can be reversed by increasing concentrations
of VEGF. 104 ECFCs/well were plated onto Matrigel matrix in tube formation assay buffer (i.e. EBM-2 medium containing 2% FBS).
Cells were cultured with 50 mM scrambled control peptide or 50 mM PAR1-activating peptide in the absence or presence VEGF (50 and 100 ng/ml) (A
and B) or FGF (25, 50 and 100 ng/ml) (C). 4 hours after seeding, images were collected and representative examples of three independent
experiments are shown in (A). The number of tubes per image was calculated using the Angiogenesis Analyzer plugin for ImageJ. Means 6 SEM from
three independent experiments are shown in (B) and (C). Statistical significance was tested by one-way ANOVA with Bonferroni post-test (* = p,0.05;
** = p,0.01).
doi:10.1371/journal.pone.0109375.g007

Anti-Tubulogenic Activity of PAR1

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109375



the culture medium (12% in our study versus 2–5% in the other

studies [17–19]); and 2) extracellular matrix coating of the culture

vessels (collagen in our study versus gelatin [17,19] or fibronectin

[18] in the other studies). The protocol that we utilized was

previously described in one of the most influential papers in the

field [2]. The ECFCs used in our study are characterized by a

stronger vasculogenic response compared to EPCs from the above

study, as suggested by significant tube formation at earlier time

points (4 hours culture on Matrigel for maximal response in our

study versus measurements after 18 hours on Matrigel in the

above study [17]). Previous studies suggested that upregulation of

CXCR4 and subsequent increased signaling through the

CXCR4/SDF-1a axis is responsible for tubulogenesis in response

to PAR1 activation [17]. In this study, we investigated the

expression of CXCR4 and SDF-1 and did not detect significant

modulation by PAR1/2 stimulation. Some controversy regarding

the role of PAR1 in the regulation of capillary-like tube formation

by mature endothelial cell types also exists. Despite a general

agreement that PAR1 activation is a pro-angiogenic stimulus in

mature endothelial cells, PAR1 activation by thrombin has also

been shown to inhibit tube formation on Matrigel by HUVECs

[35]. Moreover, PAR1 activation by thrombin in human

microvascular endothelial cells displayed dual effects on tube

formation on Matrigel, with low concentrations stimulating and

high concentrations inhibiting tubulogenesis [36]. Data presented

in this study suggest that VEGFR2 is down regulated by PAR1

activation in ECFCs. The importance of this receptor for

vasculogenic responses of EPCs has been reported previously

[37]. The relevance of VEGFR2 downregulation for PAR1-

dependent inhibition of tubulogenesis was confirmed by the rescue

of normal capillary-like tube formation in the presence of both

PAR1-activating peptides and high concentrations of exogenous

VEGF (50 or 100 ng/ml). This suggests that PAR1 activation

decreases VEGF signalling by reducing VEGFR2 density on the

surface of ECFCs and that high concentrations of exogenous

VEGF are necessary to restore sufficient levels of VEGF-

dependent signalling and guarantee tube formation. Interestingly,

VEGF on its own does not increase tube formation (which suggests

that in the absence of PAR1 activation and VEGFR2 downreg-

ulation the concentration of VEGF in Matrigel is sufficient to

achieve full response) and addition of equally high concentrations

of FGF (25, 50 or 100 ng/ml) does not rescue the inhibition of

capillary tube formation induced by PAR1 activation (which

suggests that the restoration of sufficient levels of VEGF signalling

is necessary for the tubulogenic response to occur in the presence

of PAR1-activating peptide).

It seems important to highlight here that the PAR1 stimulation

has previously been shown to accelerate the proliferation of

endothelial progenitor cells similar to the ones described in this

study [17,19]. Our observation of an inhibition of the tubulogenic

response of ECFCs by PAR1 activation is not in contrast with

these previous reports. In fact, the tubulogenic response analyzed

here is unlikely to be affected by cell proliferation due to its short

time course (i.e. 4 hours are not sufficient for a significant effect of

cell proliferation on cell number and tube formation). The

phenomena analyzed in our vasculogenic assay are related to cell

migration, cytoskeletal rearrangement and establishment of cell-

cell contacts.

Although PAR2 shares some aspects of its signal transduction

with PAR1, such as activation of the MEK-ERK pathway

[17,28,38], these two receptors affect ECFC tubulogenic responses

differently. In our study, although both PAR1 and PAR2 coupled

to ERK signaling pathways, only PAR1 activation inhibited ECFC

tube formation. This, together with the lack of effect of the

inhibitor PD98959, suggests that ERKs do not play a significant

role in the regulation of capillary-like tube formation by ECFCs.

Taken together, we show that PAR1 and PAR2 are both

expressed in ECFCs. These receptors are functionally coupled to

the ERK1/2 signaling pathway, but only PAR1 stimulation leads

to VEGFR2 down-regulation and inhibition of tubulogenesis.

These observations can be utilized to modulate the vasculogenic

activity of ECFCs for cell therapy and tissue engineering purposes.
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