Tuberculosis xxx (2014) 1-8

Contents lists available at ScienceDirect

Tuberculosis

Tuberculosis

journal homepage: http://intl.elsevierhealth.com/journals/tube

NON-TUBERCULOUS MYCOBACTERIA: GENERAL

Characterisation of a putative AraC transcriptional regulator from
Mycobacterium smegmatis

Dimitrios Evangelopoulos * ™, Antima Gupta 2, Nathan A. Lack ™3, Arundhati Maitra ?,
Annemieke M.C. ten Bokum ©“, Sharon Kendall ¢, Edith Sim ™ °, Sanjib Bhakta * "

@ Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London,
Malet Street, London WCIE 7HX, UK

b Department of Pharmacology, University of Oxford, Mansfield Road, Oxford 0X1 3QT, UK

¢ Department of Pathology and Infectious Diseases, The Royal Veterinary College, Royal College Street, London NW1 0TU, UK

SUMMARY

Keywords: MSMEG_0307 is annotated as a transcriptional regulator belonging to the AraC protein family and is
?rac - ional . located adjacent to the arylamine N-acetyltransferase (nat) gene in Mycobacterium smegmatis, in a gene
ranscriptional regulator cluster, conserved in most environmental mycobacterial species. In order to elucidate the function of the
Mycobacteria AraC protein fi h on in M . d palind ic DNA if id
Mycobacterial two-hybrid system \ra plgteln. rom the r7at operon in M. smegrflan?, t\_/vo conserved palindromic DNA mot} s were iden-
nat operon tified using bioinformatics and tested for protein binding using electrophoretic mobility shift assays with

a recombinant form of the AraC protein. We identified the formation of a DNA:AraC protein complex
with one of the motifs as well as the presence of this motif in 20 loci across the whole genome of
M. smegmatis, supporting the existence of an AraC controlled regulon. To characterise the effects of AraC
in the regulation of the nat operon genes, as well as to gain further insight into its function, we generated
a AaraC mutant strain where the araC gene was replaced by a hygromycin resistance marker. The level of
expression of the nat and MSMEG_0308 genes was down-regulated in the daraC strain when compared
to the wild type strain indicating an activator effect of the AraC protein on the expression of the nat

operon genes.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

Protein—protein interaction

is involved in a variety of cellular processes from carbon meta-
bolism to stress responses and the regulation of virulence [1].

1. Introduction

Transcriptional factors modulate gene expression through
binding to a specific DNA sequence usually found upstream of the
gene or the genomic area that they control. They are important
proteins that can help cells acclimatise to challenging environ-
ments based on the changing external stimuli. The AraC/XylS pro-
tein family of transcriptional regulators, present in bacterial species
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Common characteristics of the AraC proteins is the presence of a
conserved region of 100 residues in the C-terminal region of the
protein that form a helix-turn-helix structure responsible for DNA
binding, a second region in the N-terminal region of the protein
contains a ligand binding domain and a peptide-linker region
connecting the two functional domains. The proteins that belong to
the AraC/XylS family usually recognise palindromic DNA sequences
and bind to them by forming dimers using the helix-turn-helix
domain [2].

Mycobacterium tuberculosis, the causative agent of tuberculosis
(TB) can survive within macrophages as well as in the extreme
environment found in granulomas during infection in the human
body. For this reason, the genome of M. tuberculosis contains an
exceptionally large number of transcriptional factors, including 13
sigma factors, 5 anti-sigma factors and 7 anti-anti-sigma factors
[3] which assist its adaptation to different environments
and stresses. Six of these 190 transcription factors belong to the
AraC/XylS family (Rv1317, Rv1395, Rv1931c, Rv3082c, Rv3736 and
Rv3833). Most of the M. tuberculosis AraC proteins characterised,
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such as the AraC proteins encoded by Rv1395, Rv1931c¢ and
Rv3082c genes are linked with virulence as their genetic alter-
ation generates an attenuated phenotype either in vitro in
macrophage infection model or in vivo in mice [4—8]. Until now
there has been no functional information regarding the role of the
Rv3736 and Rv3833 encoded AraC proteins in M. tuberculosis.
Furthermore, Mycobacterium smegmatis, the saprophytic envi-
ronmental species of the genus Mycobacterium and a common
laboratory surrogate for molecular genetic studies of
M. tuberculosis, contains 16 different AraC proteins encoded in its
genome, indicating the need of this organism to adapt to multiple
niches. One of these AraC proteins is encoded by the
MSMEG_0307, gene which is located between the arylamine N-
acetyltransferase (nat, MSMEG_0306) gene and a novel oxido-
reductase (MSMEG_0308) that is believed to be involved in
riboflavin biosynthesis [9].

The nat operon in M. tuberculosis has been validated as a likely
therapeutic target due to its important endogenous roles in
M. tuberculosis, related to cholesterol degradation, cell wall
biogenesis, intracellular growth and altered drug susceptibility
[10—-12]. In M. tuberculosis, the hsaA (Rv3570c), hsaB (Rv3567c),
hsaC (Rv3568c) and hsaD (Rv3569c) genes are co-transcribed with
the nat (Rv3566c) gene and their corresponding proteins
have been shown to be directly involved in the cholesterol
metabolism pathway [13]. The NAT protein utilises acyl co-
enzymeA (CoA) catabolites, including acetyl CoA and n-propionyl
CoA. These intermediates play a central role in metabolic support
of cell wall biosynthesis [14,15]. Cholesterol is considered to be a
vital energy source for M. tuberculosis cells growing within
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macrophages [16]. In addition, this nat gene cluster in
M. tuberculosis is under the control of the kstR transcription factor
(Rv3574) that controls a regulon of genes involved in lipid and
cholesterol metabolism [17].

In contrast, the gene organisation around nat differs in
M. smegmatis and the hsaA-D genes (MSMEG_6035- MSMEG_6038)
are clustered together in a region about 57 kb downstream from
the nat locus. Nevertheless, kstR regulatory DNA sequences are
present between the nat and the MSMEG_0305 genes (Figure 1)
and upstream of the hsaA-D gene cluster in the genome of
M. smegmatis indicating possible co-regulation. However, it has
been shown previously that the nat gene cluster in M. smegmatis is
not directly controlled by the kstR transcriptional regulator but
rather the MSMEG_0305 is under the effect of the KstR regulator
[17,18].

In the view of the presence of a transcription factor that belongs
to the AraC protein family in the nat gene cluster in M. smegmatis it
is important to assess whether it influences the expression of nat
and the adjacent gene for the novel reductase (MSMEG_0308). The
question of whether the AraC transcriptional factor has a role in the
regulation of genes that are involved in lipid and cholesterol
metabolism in M. smegmatis also needs to be addressed. We report
here, the characterisation of the AraC-family transcriptional regu-
lator MSMEG_0307 from M. smegmatis using biochemical assays,
the characterisation of its regulon and DNA binding sites, as well as
its influence on the regulation of gene expression of the nat gene
cluster in M. smegmatis. In addition, we have characterised a pro-
tein—protein interaction network that is formed by the nat operon
gene products.
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Figure 1. The nat operon in M. smegmatis. A comparison between the nat operons in M. smegmatis and M. tuberculosis. In the nat operon of M. smegmatis the intergenic region
between nat and MSMEG_0305 genes is shown in loop with the location of the kstR and araC motifs highlighted in the sequence. In the M. tuberculosis nat operon, the identified
promoter and kstR sequences are shown with the arrows. RT-PCR amplification of the overlapping regions of the nat operon genes using specific primers, shown as numbered
arrows on top of the genes. Lanes with (+) on the agarose gel correspond to cDNA whereas lanes with (—) corresponds to negative control, i.e. cDNA that produced without the
addition of reverse transcriptase (RT) in order to distinguish possible genomic DNA contamination. Primer set 1: MSMEG_0305-nat, primer set 2: nat-MSMEG_0307, primer set 3:

MSMEG_0307-MSMEG_0308 and primer set 4: MSMEG_0308-MSMEG_0309.
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2. Materials and methods
2.1. Bacterial strains, growth conditions and plasmids

The bacterial strains and plasmids used in this study are listed in
Table S4. The oligonucleotide primers are listed in the Supple-
mentary Table S1. Escherichia coli strains JM109 and BL21(DE3)
pLysS were grown in Luria—Bertani (LB) broth with rotation at
200 rpm or in LB agar at 37 °C, unless specified otherwise.
M. smegmatis mc*155 [19] and the modified strains were grown in
Middlebrook 7H9 broth supplemented with 0.2% (v/v) glycerol,
0.05% (w/v) Tween-80 and 10% ADC (Albumin-Dextrose-Catalase,
BD) with rotation at 180 rpm or in Middlebrook 7H10 agar sup-
plemented with 0.5% (v/v) of glycerol and 10% OADC (Oleic acid-
Albumin-Dextrose-Catalase, BD) at 37 °C, unless specified other-
wise. Comparative growth curves of M. smegmatis mc?155 and the
Anat, AMSMEG_0307 and AMSMEG_0308 strains were performed
using mycobacterial minimal medium (0.5 g 1! of r-asparagine,
1 g 1"! of KHyPO4, 2.5 g 17! of NayHPO,4, 50 mg 1-! of ferric
ammonium citrate, 0.5 g 1~! of MgS04.7H,0, 0.5 mg 1! of CaCl, and
0.1 mg 1! of ZnS0,) supplemented with a carbon source (glycerol,
glucose, melibiose or cholesterol) at 0.2% (v/v). Antibiotics were
used at the following concentrations (ug ml~!): kanamycin (30),
chloramphenicol (34), hygromycin B (100 for E. coli and 50 for
M. smegmatis) and trimethoprim (12). All chemicals were pur-
chased from Sigma—Aldrich (Poole, UK) unless otherwise stated.
High-fidelity Phusion DNA polymerase (NEB) was employed in all
cloning related PCR reactions whereas Taqg DNA polymerase (NEB)
was used in all other PCR reactions in this study. Restriction
digestion enzymes were purchased from New England Biolabs
(Hitchin, UK). All constructs were confirmed by sequencing (Gene
Service, UCL).

2.2. Identification promoter sites and DNA motifs

All mycobacterial genome sequences that were used in this study
were obtained from the NCBI (http://www.ncbi.nlm.nih.gov). BLAST
analysis was performed using the NCBI BLAST algorithm [20].
Multiple sequence alignments were done using ClustalW algorithm
at the EBI server [21]. For viewing, annotating and comparing
mycobacterial genomes, the java-based software packages Artemis
and ACT, from the Sanger Institute, were used [22,23]. The sequence
viewer, PromView (http://www.comlab.ox.ac.uk-/activities/
compbio/bioinformatics-/software/index-.htm#PromView) was
used for the search of consensus promoter sequences obtained from
previously published mycobacterial promoters [24]. The MEME al-
gorithm [25] was used to discover conserved palindromic DNA
motifs among mycobacterial species and MAST [26] was used to
idegltify the presence of these motifs in the genome of M. smegmatis
mc-155.

2.3. Cloning, overexpression and purification of MS0307

The gene encoding the AraC protein (MSMEG_0307) from
M. smegmatis mc*155 was PCR amplified from genomic DNA and
cloned into pET28b (+) vector (Novagen). The N- terminus of the
AraC-family transcriptional regulator MSMEG_0307 was co-
transcribed with a thrombin cleavage site followed by a hexa-
histidine tag. The recombinant AraC-family transcriptional regu-
lator MSMEG_0307 was produced in BL21(DE3)pLysS cells at 18 °C
following induction with 0.5 mM IPTG overnight. Cells were lysed
by sonication on wet ice (5 cycles of 45sec on, 45sec off) and the
AraC-family transcriptional regulator MSMEG_0307 was purified
using nickel affinity chromatography (Invitrogen). The His-tagged
MSMEG_0307 protein was then further purified on a HilLoad

16/60 Superdex™ 75 pg (Pharmacia) preparative gel filtration col-
umn, equilibrated with 20 mM Tris—HCL pH 8, 100 mM NaCl.
Fractions contained pure (>99%) His-tagged MSMEG_0307 protein
was pooled and concentrated using an Amicon Ultra concentrator
(Millipore) at 5 mg ml~! and stored in 50% (v/v) glycerol in —80 °C
for further use.

2.4. Electrophoretic mobility shift assays (EMSAs)

The DNA fragments (~300bp) containing the binding sequence
motifs were amplified using PCR and primers (Table S1) and further
purified. The reactions had a final volume of 10 ul and contained
100 ng of DNA, 1x EMSA buffer (20 mM Tris.HCl pH8, 75 mM Na(l,
10 mM MgCl;) and increasing concentrations of recombinant His-
tagged MSMEG_0307 protein (0.01 pg to 1 pg). The reactions
were incubated at room temperature for 30 min and then were
loaded onto a 5% (v/v) native polyacrylamide gel. Following elec-
trophoresis the gels were stained with ethidium bromide and the
bands were visualised using BioDoc-It™ imaging system (UVP,
Cambridge, UK).

2.5. Generation of daraC in M. smegmatis and complementation
studies

The deletion of the MSMEG_0307 gene (MSMEG_0307) from
M. smegmatis mc*155 was performed using the method of spe-
cialised transduction as described previously [27]. Briefly, the left
(898 bp) and right (782 bp) arms of the MSMEG_0307 gene were
PCR amplified using the primers given in table S1 and cloned into
the suicide delivery vector p0004S to create the allelic-exchange
plasmid p0004S-MSMEG_0307. The p0004S- MSMEG_0307 was
then Pacl digested and packed into the temperature sensitive
mycobacteriophage phAE159 to generate the allelic-exchange
phage phAaraC. Wild-type M. smegmatis mc?155 was trans-
duced using high-titre phAMSMEG_0307 phages as described
[27]. Following the specialised transduction, hygromycin resistant
colonies were screened by PCR using a gene internal and external
primer set (Table S1) and AaraC mutants were further confirmed
by DNA sequencing. Complementation of the AMSMEG_0307 as
well as overexpression of the WT M. smegmatis mc*155 were
performed using the pMV261 plasmid [28] with the native
MSMEG_0307 expressed under hsp60 mycobacterial promoter
located in the plasmid.

2.6. Drug susceptibility assay

The susceptibility of mycobacterial strains against various an-
tibiotics was determined using the resazurin redox indicator assay
as described previously [29]. Briefly, wild-type M. smegmatis
mc?155 and the AMSMEG_0307 mutant were grown until mid-
exponential phase (1 ODgpo) and then 100 pl of diluted cells
(10* CFUs) were added into a 96 well plate that contained 100 pl of
two-fold dilutions of antibiotics at various concentrations in ug/mL
[isoniazid (INH 50 to 0.09), pyrazinamide (PZA 50 to 0.09),
rifampicin (RMP 50 to 0.09), ethambutol (EMB 150 to 0.29),
streptomycin (STM 50 to 0.09), kanamycin (KAN 50 to 0.09),
ampicilin (AMP 150 to 0.29) and chloramphenicol (CLP 50 to
0.09)]. The plates were incubated at 37 °C for 2 days. Following
24 h of incubation, 50 pl of 0.01% (w/v) sterile resazurin solution in
presence of 1% (v/v) Tween-80 was added to all wells of the plate
and left overnight at 37 °C. The minimum inhibitory concentra-
tions (MICs) were defined as the lowest antibiotic concentration of
the well where bacterial cells were not able to grow and thus did
not reduce the resazurin dye.
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2.7. RNA extraction and cDNA synthesis

Wild-type M. smegmatis mc*155, AMSMEG_0307, wild-type
M. smegmatis mc?155 with either the empty vector (pMV261) or
overexpressing MSMEG_0307 (pMVaraC) and the 4A4MSMEG_0307
complimented mutant cells were grown in Middlebrook 7H9 broth
until ODggp was 0.8 and total RNA was extracted from using the GTC
method as previously described [17] and ¢DNA was synthesised
using SuperScript Il Reverse Transcriptase (Invitrogen) according
to the manufacturer's instructions. A control was set up to assess
genomic DNA contamination by replacing the Superscript III
Reverse Transcriptase with water.

2.8. Operon analysis

The boundaries of the nat operon were identified by PCR
amplification of the intergenic regions of the operon and adjacent
genes using M. smegmatis mc?155 cDNA as a template and specific
primers (Table S1) for each region. Positive (gDNA from
M. smegmatis mc*155) and negative controls (cDNA made without
Reverse Transcriptase) were also used. The amplicons were then
analysed using agarose gel electrophoresis.

2.9. RT-qPCR

Real-time quantitative polymerase chain reactions (RT-qPCR)
were performed using the DyNAmo SYBR Green qPCR kit (NEB) on
the M] Research Bio-Rad Real Time PCR Opticon Engine 2 System
(GRI). M. smegmatis mc?155 gDNA was used for the generation of a
standard curve and sigA gene (MSMEG_2758; a mycobacterial sigma
factor) was used as a reference gene for the relative quantification
method. Briefly, a 20 ul reaction was set up on ice containing 1x
DNA Master SYBR Green I mix, 1 pul of cDNA and 0.3 uM of each
primer (Table S1). The PCR reactions were initially heated to 95 °C
for 10 min before 35 cycles of 95 °C for 30's, 62 °C for 20 s, and 72 °C
for 20 s were performed. Fluorescence was measured at the end of
each cycle following a heating step to 80 °C to ensure the dena-
turation of any primer-dimers. At the end of the PCR, melting curve
analysis was performed to verify the product specificity. The
experiment was performed in duplicate and each gene was
measured in triplicates (three biological replicates, two experi-
mental replicates) giving a total of six data points per gene. Fold
changes were calculated using the 222 statistical method [30].

3. Results
3.1. Defining the nat operon in M. smegmatis

In order to define the presence and extent of a nat operon in
M. smegmatis, RT-PCR analysis was performed on the basis that any
amplicons obtained using intergenic primers would indicate that
the two genes are co-transcribed together and thus belong to the
same operon (Figure 1). Using this rationale, we obtained ampli-
cons for the intergenic regions between nat-MSMEG_0307
(MSMEG_0306-MSMEG_0307) and MSMEG_0307-MSMEG_0308
(MSMEG_0307-MSMEG_0308) but not between the MSMEG_0305-
nat and MSMEG_0308-MSMEG_0309, indicating that in
M. smegmatis the nat operon consists of three genes (Figure 1).
Using bioinformatic analyses, we search for a putative promoter
sequence using as input known mycobacterial promoters; however
we were not able to identify a conserved promoter sequence up-
stream of nat gene at the start of the operon. A comparative analysis
on different mycobacterial genomes indicated that a similar gene
organisation was seen in the nat operon among fast-growing

mycobacteria as opposed to the nat and hsaA-D clusters found in
slow-growing mycobacteria (Figure S1).

Thorough sequence analysis using the MEME algorithm [25]
was carried out on the M. smegmatis nat operon as well as a
1.5 kb DNA fragment upstream of the nat gene in order to identify
the presence of regulatory DNA sequences that could be affected
by the MSMEG_0307 gene product. Comparative genome analyses
were performed on the closely related fast-growing mycobacterial
species that have similar nat gene clusters and an MSMEG_0307
orthologue (M. smegmatis, Mycobacterium gilvum, Mycobacterium
vanbaalenii and Mycobacterium sp. MCS/KMS/JLS). This approach
identified two different regulatory motifs. The motif designated
from now on as Motif 1 is located between —25 and —5 upstream
of the nat gene start codon (Figure 2A) and another motif desig-
nated from now on as Motif 2 is located between —57 and —34
upstream of the MSMEG_0307 gene (Figure 2A). Motif 1 consists of
a 20 bp palindromic DNA sequence (ACCTCGACAGCAGTTCAGGT)
(Figure 2A) and the Motif 2 consists of a 23 bp DNA sequence
(GTCAGGACATGACTTTTCTTGCT) (Figure 2A). In order to identify
the presence of these two motifs elsewhere in the genome of
M. smegmatis as well as possible sites of action of the
MSMEG_0307 protein, the MAST algorithm was employed to
search a database of intergenic regions of the M. smegmatis
genome [26]. Motif 1 was found to be present in twenty additional
instances in the M. smegmatis genome (Table S2) and the Motif 2
in five additional instances (Table S3). This indicates the existence
of a regulon controlled by the AraC transcription regulator
MSMEG_0307.

3.2. Binding of AraCpsmeg to the identified DNA motifs

In order to determine whether the MSMEG_0307 protein binds
to any of the two identified motifs, the MSMEG_0307 protein from
M. smegmatis mc?155 was cloned, over-expressed and purified as a
recombinant protein (Figure S2). DNA fragments containing Motif 1
or 2 were amplified using PCR and used for Electrophoretic
Mobility Shift Assays (EMSA). As shown in Figure 2B the presence of
recombinant MSMEG_0307 was able to produce a band shift indi-
cating the binding of the protein to Motif 1. Interestingly, in a
parallel experiment no DNA band shift was observed when Motif 2
was used as a substrate for the MSMEG_0307 (Figure 2B) indicating
that the MSMEG_0307 protein binds specifically to the Motif 1.

3.3. Characterisation of a daraC strain

In order to investigate the role of the MSMEG_0307 gene
product of the nat operon in M. smegmatis the gene (MSMEG_0307)
was deleted from the genome using specialised transduction [27].
Resistant colonies were screened for the presence of the deletion by
PCR using one set of primers which amplified either an internal
region of the gene or a region flanking the deleted MSMEG_0307
gene. As expected, the AMSMEG_0307 strain did not show any PCR
amplification using the internal set and had an amplicon with a size
difference using the external primer set indicating the presence of
the hygromycin resistance cassette in the genome in the place of
the MSMEG_0307 gene (Figure S3). A similar methodology was
applied for the generation of the MSMEG_0308 gene deletion
mutant (AMSMEG_0308) as well.

The ability to generate a AMSMEG_0307 strain indicates that the
MSMEG_0307 gene is not essential for in vitro growth of
M. smegmatis. Comparative growth curves in enriched media be-
tween wild type and the AMSMEG_0307 strain indicated that the
loss of the MSMEG_0307 gene did not significantly affect the growth
of the mutant strain (Figure 3A). Subsequently the ability of the
AMSMEG_0307 strain to grow in minimal media with glycerol,
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Figure 2. Investigation of DNA regulatory motifs found in the nat operon in M. smegmatis. (A) The palindromic DNA sequences are shown on the graphs. The big letters
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glucose, melibiose [31] was tested as several bacterial AraC tran-
scription factors are known to control genes that are responsible for
the degradation of complex carbon sources, such as arabinose
metabolism in E. coli [32]. It was found that the deletion of the
MSMEG_0307transcription regulator had little effect on the growth
on these carbon sources (Figure 3B—E).

As the genes of the nat operon in M. tuberculosis are involved in
cholesterol metabolism [13,33], the ability of the AMSMEG_0307 as
well as 4nat [34] and AMSMEG_0308 strains to grow in presence of
cholesterol as the sole carbon source was also examined. The re-
sults showed that the proteins encoded by nat operon in
M. smegmatis are not essential for degradation of cholesterol
(Figure 3F) in contrast to those present in M. tuberculosis.

Furthermore, in order to investigate the possibility that the
MSMEG_0307regulator is involved in the development of multi-
drug resistance as other studied AraC proteins are known to be [35],
we tested the susceptibility of the AMSMEG_0307 strain to a variety
of antibiotics including all the first line anti-tuberculosis drugs
(isoniazid, ethambutol, rifampicin and pyrazinamide). The sus-
ceptibility pattern of the two strains, WT and 4MSMEG_0307, was
similar apart from negligible differences observed in the MIC values
on rifampicin, kanamycin and chloramphenicol (Figure S4).

3.4. MSMEG_0307 protein regulates the expression of the nat
operon in M. smegmatis

As the recombinant MSMEG_0307, a putative transcription
regulator, was able to bind specifically to the Motif 1 upstream of
the nat operon in M. smegmatis, the effect of the MSMEG_0307 gene
deletion on the expression of the other genes of the operon was
studied using RT-qPCR. The comparison of the relative expression
levels of nat (MSMEG_0306) and MSMEG_0308 genes between the
WT and the AMSMEG_0307 mutant revealed that the deletion of
the MSMEG_0307 gene has a significant effect on the expression of
the other operon genes (Figure 4) suggesting that the AraC protein
controls the gene expression of the operon. Both nat and
MSMEG_0308 genes were down-regulated in the 4AMSMEG_0307
mutant by 18 and 13 fold respectively indicating that the AraC
transcription factor acts as an activator for the expression of nat and
MSMEG_0308 genes. On the contrary, overexpression of the
MSMEG_0307 gene in the wild-type M. smegmatis from the
pMVaraC plasmid increased the expression of both nat and
MSMEG_0308 by 23 and 16 fold respectively (Figure 4) confirming
the activator effect of the MSMEG_0307 protein on the operon. The
overexpression of the MSMEG_0307 gene using the pMVaraC
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Figure 3. Growth curves of WT and AMSMEG_0307 M. smegmatis in enriched and minimal media. The cultures were inoculated with the same amount of bacteria (~107) and the
growth was detected by measuring the ODggonm OVer time. The volume of each culture was 100 mL. Growth curves of WT (00), 4nat (A), AMSMEG_0307 (O ) and AMSMEG_0308 (¢)
M. smegmatis in (A) Middlebrook 7H9medium, (B) minimal medium with no added carbon source (C) minimal medium with glycerol (D) minimal medium with glucose (E) minimal

medium with melibiose and (F) minimal medium supplemented with cholesterol.

construct in M. smegmatis was also confirmed by qPCR (data not
shown). Complementation of the 4AMSMEG_0307 strain with the
same plasmid (pMVaraC) was able to compensate for the down
regulation of the nat gene resulting in a 7 fold up regulation;
however, this was not the case for the MSMEG_0308 gene that
remained down regulated 3 fold. The presence of the internal
cassette in place of MSMEG_0307 gene might partially explain the

reason why MSMEG_0308 gene expression remained down regu-
lated in the complemented AMSMEG_0307 strain.

4. Discussion

The regulation of gene expression is essential for all living or-
ganisms to adapt to various environmental and physiological
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Figure 4. Differential expression of nat and MSMEG_0308 genes in M. smegmatis
strains. The fold changes of the AMSMEG_0307, WT containing the empty pMV261
vector (WTpMV261), WT overexpressing MSMEG_0307 (WTpMVaraC) and the
complementation strain AMSMEG_0307 containing the pMaraC vector (WTpMVaraC)
compared to WT. Relative quantification of the gene expression levels were applied
using the 44Ct statistical method and the expression of sigA gene from M. smegmatis
was used as reference gene. The range of the box plots represent the SE with the mean
outlined as the small box inside each box plot. Confidence intervals at 1% and 99% are
mentioned by the x symbols at each box.

conditions and stresses. In this study, we describe the role of a
transcriptional regulator from the AraC/XylS family in
M. smegmatis, a fast growing, environmental species of Mycobac-
terium. We have identified that the AraC-family transcriptional
regulator MSMEG_0307 protein recognises and binds to a palin-
dromic motif upstream of the nat operon in M. smegmatis and that
it is also involved in the regulation of the expression of the nat and
the MSMEG_0308 genes of the same operon. It is also very likely
that it auto-regulates its own expression as other AraC proteins are
known to do [36,37] and thus controls the gene expression of the
nat operon in M. smegmatis. In addition, the palindromic DNA
sequence that the MSMEG_0307 binds to, has been found in 20 loci
across the genome and this might represent an early view of the
regulon that is under the control of the MSMEG_0307 protein.
The exact roles of these 20 genes that might be under the
control of the MSMEG_0307 regulator have not been fully assigned;
however, they can be divided into five main categories based on
their function excluding the 6 hypothetical proteins (Table S2).
There are four genes encoding for ATP-binding cassette (ABC)
transporters and two transmembrane proteins with unknown
functions. ABC transporters that might be under the control of AraC
constitute universal transporter systems that are responsible for
the transfer of a variety of substrates across the cell membrane [38].
In addition, one of the mechanisms of antibiotic resistance in
bacteria is due to specific ABC transporters. The fluoroquinolone
efflux pump encoded by the Rv2686¢c-Rv2688c operon in
M. tuberculosis is an example [39]. Four of the genes that might be
controlled by the MSMEG_0307 protein, encode proteins that are
involved in metabolic pathways, including the NAT protein that has
been shown to be involved in lipid biosynthesis [10] and a
cholesterol degradation pathway [14]. In addition, there are three
genes involved in oxidation/reduction reactions and three more
that are involved in the regulation of gene expression. One of these
20 genes encodes an alternative sigma factor (MSMEG_0574) rpoE1,
a putative extracytoplasmic (ECF) function alternative sigma factor.
M. tuberculosis contains 10 copies of ECF alternative sigma factors

and they are believed to act in a similar manner to the two
component system enhancing the adaptation of bacteria under
different physiological stages and pathogenesis [40]. It is clear that
the binding of the MSMEG_0307 protein to the conserved Motif 1
located upstream of the nat gene has a direct effect on the
expression of nat and MSMEG_0308 transcripts.

Our preliminary studies using protein-fragment complementa-
tion [41] revealed the presence of a small protein complex made
from the gene products of the nat operon (Figure S5). We also
hypothesise that the MSMEG_0307, transcription factor, might also
interact with sigma factors as parts of the RNA polymerase in order
to support the initiation of the transcription on this genomic area.

Although there is no clear evidence of an orthologue of the
MSMEG_0307 AraC protein in M. tuberculosis it is clear from
comparative genomic analyses that all fast-growing environmental
mycobacteria sequenced to date possess a similar gene architecture
in their nat gene clusters and that the AraC-family transcriptional
regulator MSMEG_0307 protein and its preferred DNA binding
motif are highly conserved, suggesting that this genomic area plays
an important role in the adaptation of these mycobacterial species
to their specific environment. It will be interesting to identify the
external stimuli as well as the ligands that bind to the
MSMEG_0307 protein. Furthermore, ascertaining the biological
significance of the MSMEG_0307 protein being situated next to NAT
in environmental mycobacteria and providing an explanation of the
different evolutionary pathways adopted by fast-growing envi-
ronmental and slow-growing pathogenic mycobacteria, will give us
an insight into the unique characteristics of the adaptation of this
genus to multiple environments. This is the first report of the role of
the AraC-family transcriptional regulator MSMEG_0307 protein
from the M. smegmatis nat operon.
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