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ABSTRACT 19 

Swine influenza A virus is an endemic and economically important pathogen in pigs with the 20 

potential to infect other host species. The hemagglutinin (HA) protein is the primary target of 21 

protective immune responses and the major component in swine influenza A vaccines. However, as 22 

a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating 23 

strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza strains in 24 

humans is also important in assessing the relative risk of interspecies transmission of viruses from 25 

one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human 26 

H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among 27 

H3N2 viruses isolated from pigs in the USA from 1998-2013 and the relative cross-reactivity 28 

between these viruses and current human seasonal influenza A strains. Two primary antigenic 29 

clusters were found circulating in the pig population, but with enough diversity within and between 30 

the clusters to suggest updates in vaccine strains are needed. We identified single amino acid 31 

substitutions likely responsible for antigenic differences between the two primary antigenic clusters 32 

and between each antigenic cluster and outliers. The antigenic distance between current seasonal 33 

influenza H3 strains in humans and those endemic in swine suggests that population immunity may 34 

not prevent the introduction of human viruses into pigs and possibly vice-versa, reinforcing the 35 

need to monitor and prepare for potential incursions. 36 

Importance 37 

Influenza A virus (IAV) is an important pathogen in pigs and humans.  The hemagglutinin (HA) 38 

protein is the primary target of protective immune responses and the major target of vaccines. 39 

However, vaccine strains must be updated to reflect current strains. Characterizing the differences 40 

between seasonal IAV in humans and swine IAV is important in assessing the relative risk of 41 

interspecies transmission of viruses. We found two primary antigenic clusters of H3N2 in the U.S. 42 

pig population with enough diversity to suggest updates in swine vaccine strains. We identified 43 

changes in the HA protein that are likely responsible for these differences that may be useful in 44 
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predicting when vaccines need to be updated. The difference between human H3N2 and those in 45 

swine is enough that population immunity is unlikely to prevent new introductions of human IAV 46 

into pigs or vice-versa, reinforcing the need to monitor and prepare for potential introductions. 47 
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INTRODUCTION 48 

Influenza A viruses (IAV) have negative sense RNA genomes consisting of 8 segments. To 49 

date, the influenza A subtype is comprised of combinations of 17 hemagglutinin (HA) and 11 50 

neuraminidase (NA) surface glycoproteins (1-7). Waterfowl are the natural reservoir of most IAV 51 

subtypes and in these species, infections are generally non-pathogenic. In certain instances, these 52 

viruses can cause substantial morbidity and mortality following transmission to other species (e.g., 53 

(8-10)).  However, only H1N1, H1N2, and H3N2 subtypes are endemic in swine populations 54 

globally (11) and virulence is variable depending on properties of the virus, environment, and 55 

particularly the host and population immunity. 56 

Swine influenza was first recognized as a respiratory disease that coincided with the human 57 

Spanish flu pandemic in 1918. The classical swine A(H1N1) viruses were derived from the 1918 58 

human pandemic virus and remained endemic in the swine population with little evidence of 59 

antigenic drift for approximately 80 years. In 1998, a novel virus emerged in North American pigs 60 

containing what has become known as the triple-reassortant internal gene (TRIG) cassette, with 61 

genetic components from classical swine H1N1 (NP, M, NS), human seasonal H3N2 influenza 62 

(PB1, HA, NA) and North American avian influenza (PB2, PA) viruses. The HA genes from the 63 

triple reassortant H3N2 were the contribution of 3 separate phylogenetically distinct human 64 

seasonal virus introductions, termed Clusters I, II, and III (12), with the cluster III H3 evolving into 65 

a separate Cluster IV (13). These TRIG-viruses subsequently reassorted with the classical H1N1 66 

swine viruses resulting in distinct H1N1 or H1N2 subtype lineages (14-16). The H1N1 and H1N2 67 

subtypes then evolved in pigs to form the contemporary α, β and γ clusters (17). Then in 2005, 68 

H1N1 and H1N2 influenza viruses with the HA and/or NA derived from seasonal human influenza 69 

A viruses circulating in 2002 emerged in pigs and spread across the U.S. in swine herds. Currently, 70 

H1N1, H1N2 and H3N2 subtypes of IAV are endemic in pigs in North America (12, 18). The 71 

marked genetic heterogeneity of HA’s circulating in North American pigs have potential antigenic 72 

consequences in terms of diagnostic test efficacy, use of vaccine as a means of control, and 73 
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assessing the relative risk of further introductions of human seasonal influenza viruses into the pig 74 

population. 75 

Introduction of endemic swine IAV into humans continues to occur, with the most recently 76 

notable pandemic H1N1 virus (H1N1pdm09) that emerged in the human population in North 77 

America in 2009 (19). However, in the summers of 2011-2013 there were multiple infections of 78 

H3N2v in people attending agricultural fairs in a number of states in the U.S. (20, 21) with nearly 79 

350 cases of H3N2v now detected in humans (http://www.cdc.gov/flu/swineflu/variant-cases-80 

us.htm). A factor for the increased frequency of H3N2v detections is the relative lack of human 81 

population immunity against variants of IAV that have continued to circulate independently in 82 

swine, with the ever-present potential for these variants to evolve antigenically, perhaps away from 83 

their respective human seasonal precursor viruses and the strains used in contemporary human 84 

seasonal vaccines.  A substantial proportion of adolescents and young adults were shown to have 85 

cross-reactive antibodies against H3N2v; however, children and older adults lacked such protective 86 

antibodies (22, 23).  The current human seasonal vaccines containing H3N2 do not appear to 87 

protect against H3N2v (22, 24).  Since the vast majority of cases of H3N2v have been in children 88 

with close contact and long periods of exposure time at agricultural fairs, all of these factors point 89 

to a unique set of circumstances that collectively increased the odds for H3N2v in these spillover 90 

events (25).  The unique circumstances do not diminish the epidemic or pandemic risk of H3N2v to 91 

humans if these viruses gained the ability to efficiently transmit from human to human, allowing the 92 

virus further opportunity to mutate and adapt to the human host.  Thus swine IAV not only cost the 93 

swine industry in terms of animal health and production (8), but also pose a potential risk to human 94 

health.  Insights into patterns of swine IAV genetic and antigenic diversity are critical to identify 95 

risks to human and swine populations for interspecies transmission and provide criteria for updating 96 

influenza diagnostics and vaccine composition. 97 

To accurately assess the risk to pigs from introduction of human seasonal IAV and vice 98 

versa requires an understanding of the population dynamics, evolution, and function of circulating 99 
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swine IAV. Quantitative analyses of key factors that contribute to zoonotic risk, namely the relative 100 

antigenic cross-reactivity of currently circulating human and swine IAV strains, will allow for 101 

improved methods of control by optimizing vaccination in swine. Here, we quantified the antigenic 102 

and genetic evolution of swine H3N2 influenza A viruses circulating in pigs from 1998-2013 across 103 

the U.S. with a focus on contemporary strains and we related the cross-reactivity of these viruses to 104 

currently circulating human seasonal H3 influenza viruses used as vaccine strains, demonstrating 105 

substantial antigenic differences between contemporary swine H3N2 circulating in the U.S. and 106 

those included in human vaccines. Integrating the antigenic data with HA1 domain sequences, we 107 

examined the genetic basis for antigenic differences among circulating swine H3N2 isolates, and 108 

identified amino acid substitutions that may lead to immune escape and vaccine failure in pigs. 109 

MATERIALS AND METHODS 110 

Viruses 111 

Forty-two swine and human influenza A H3N2 viruses were selected as hemagglutinin inhibition 112 

(HI) test antigens and/or antigens for swine H3N2-antisera production (Table 1). The swine H3N2 113 

viruses (n = 33) represented twelve U.S. states and major swine production regions and included 1 114 

cluster I H3 from 1998 and 1 cluster II from 1999 as historical references, and 31 cluster IV isolates 115 

from 2006-2013 for our contemporary analysis. Viruses isolated from 1998-2009 (n = 6) from 116 

outbreaks of respiratory disease in pigs from diagnostic cases were obtained from the University of 117 

Minnesota Veterinary Diagnostic Laboratory (UMN-VDL, kindly provided by Dr. Marie Culhane). 118 

The remaining 2010-2013 viruses were obtained from the USDA-National Animal Health 119 

Laboratory Network (NAHLN) voluntary swine influenza A virus (IAV) surveillance system 120 

repository held at the National Veterinary Service Laboratories (kindly provided by Dr. Sabrina 121 

Swenson). Viruses were selected based on the H3 gene phylogeny, representing the maximum 122 

number of swine-producing states, and representing each of the clusters IV and IVA-F.  The cluster 123 

designations were based upon phylogenetic support (nodes with supportive bootstrap values >70) 124 

that also met genetic distance criteria of >5% from other clusters.  Available virus isolates meeting 125 
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this criteria with acceptable growth properties were then randomly selected for study.  Human 126 

seasonal H3N2 viruses isolated in 1995-2011 (n = 8) and incorporated into the 1996-2013 human 127 

influenza vaccines for the Northern hemisphere were obtained from St. Jude Children’s Research 128 

Hospital (kindly provided by Dr. Richard Webby). One non-seasonal human virus, 129 

A/Indiana/08/2011 was provided from the Center for Disease Control and Prevention (CDC) 130 

(kindly provided by the late Dr. Alexander Klimov). This virus was isolated from a human case 131 

infected with swine IAV reported in July 2011 and is classified as an H3N2 variant (H3N2v) virus. 132 

Viruses were propagated in Madin-Darby canine kidney (MDCK) cells, MDCK-London (MDCK-133 

L, Influenza Reagent Resource, VA, USA) cells or embryonated eggs. Harvested cell culture 134 

supernatant or allantoic fluid was clarified by centrifugation and virus was concentrated by 135 

ultracentrifugation over a 20% sucrose cushion. Virus pellets were resuspended overnight at 4oC in 136 

sterile phosphate buffered saline at pH 7.4 and stored at -80°C. 137 

Swine antisera production  138 

Three week-old cross-bred pigs free of IAV and antibody, porcine reproductive and respiratory 139 

syndrome virus, porcine circovirus 2 and Mycoplasma hyopneumoniae were obtained. For each 140 

virus, two pigs were immunized with 128-256 hemagglutinin units (HAU) of ultraviolet (UV) 141 

inactivated IAV combined with 20% commercial adjuvant (Emulsigen D; MVP Laboratories, NE, 142 

USA) by the intramuscular route. Two or three doses of UV inactivated vaccines were given 143 

approximately 2–3 weeks apart. Pigs were bled weekly post-vaccination to test for HI titers against 144 

homologous virus. When HI titers to homologous virus reached at least 1:160, pigs were humanely 145 

euthanized with pentobarbital sodium (Fatal Plus, Vortech Pharmaceuticals, MI, USA) for blood 146 

collection. Sera were collected and stored at -20oC.  147 

Virus antigenic characterization 148 

HI assays using post-vaccination pig antisera were performed to compare the antigenic properties of 149 

swine and human IAV viruses. Prior to HI testing, sera were treated with receptor-destroying 150 

enzyme (Sigma-Aldrich, MO, USA), heat inactivated at 56oC for 30 min and adsorbed with 50% 151 
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turkey red blood cells (RBC) to remove nonspecific inhibitors of hemagglutination.  HI assays were 152 

performed by testing reference antisera raised against 18 swine and 9 human influenza A H3N2 153 

viruses with 42 H3N2 viruses according to standard techniques. Serial 2-fold dilutions starting at 154 

1:10 were tested for their ability to inhibit the agglutination of 0.5% turkey RBC with 4 HAU of 155 

swine and human H3N2 viruses. All HI assays were performed in duplicate. See Table 1 for list of 156 

viruses and reference antisera. 157 

Antigenic cartography 158 

The quantitative analyses of the antigenic properties of swine and human influenza A H3N2 viruses 159 

were performed using antigenic cartography as previously described for human H3 and swine 160 

influenza A H3 and H1 viruses  (26-29). Antigenic clusters were defined using a Ward Hierarchical 161 

Clustering approach, as K-means clustering was biased by the large number of antigenic outliers in 162 

the dataset, using Euclidean distances among strains in the antigenic map implemented in R version 163 

3.0.2 (30). To quantify the relative distances from vaccines to currently circulating viruses we 164 

measured the antigenic distance from representative Cluster I and Cluster IV swine vaccine strains 165 

and the human strain, A/Victoria/361/2011, to all other swine influenza A H3N2 viruses and plotted 166 

these against year of isolation using R version 3.0.2 (30). 167 

Model of the structure of swine influenza A hemagglutinin  168 

A model of the structure of the HA of A/Swine/Illinois/A01241469/2012 was built by using Choral 169 

(31) and Andante (32) based upon the crystal structure of H3N2 HA of the A/Aichi/1/68 (PDB code 170 

2viu) and subsequently visualized with PyMOL (33). 171 

Phylogenetic and sequence analyses 172 

Contemporary H3N2 influenza A hemagglutinin (HA) and neuraminidase (NA) sequences 173 

representing clade designations described in (34) were compiled with sequences used in the HI-174 

assay (Table S1).  Amino acid alignments of the HA1 domain and NA were generated using default 175 

settings in MUSCLE v.3.8.31 (35) with subsequent manual correction in Mesquite (36).  For each 176 

alignment, we inferred the best-known maximum likelihood tree using RAxML v7.3.4 (37) by 177 
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initiating 500 independent tree searches from random start trees generated under parsimony 178 

methods implemented with the best fit model of evolution determined in ProtTest v.3.2 ((38): data 179 

available upon request). Thereafter, we executed 1000 nonparametric bootstraps and the support 180 

values obtained were drawn on the best-scoring tree. 181 

To estimate the average rate of nucleotide substitution in the HA1 domain, we constructed a 182 

second dataset incorporating all U.S. swine IAV H3N2 HA1 sequences from 1997 to present: 183 

nucleotide sequences were downloaded from the Influenza Virus Resource (39) on July 2, 2013 184 

(Table S2: Figure S1). A maximum likelihood tree was inferred using RAxML (v7.4.2; (37)) on the 185 

CIPRES Science Gateway (40) employing a general time-reversible (GTR) model of nucleotide 186 

substitution with Γ-distributed rate variation among sites.  The starting tree was generated under 187 

parsimony methods, with the best-scoring tree and statistical support values obtained with the rapid 188 

bootstrap algorithm (1,000 replications).  Subsequently, we extracted the patristic distance from 189 

A/Wuhan/359/95 in the ML tree to each isolate in Cluster IV H3N2 swine IAV clade using program 190 

R v.3.0.2 with the APE (41) and GEIGER (42) packages. Linear models of genetic distance 191 

(response vector) and time (linear predictor for response) were fitted using the program R v.3.0.2 192 

(30).  193 

HA1 domain deduced amino acid sequence alignments were used to calculate the number of 194 

amino acid substitutions between pairs of isolates. We made genetic maps using a similar method to 195 

that used for antigenic maps except that the target distances were the number of amino acid 196 

substitutions between the amino acid sequences for each antigen in the antigenic map (26). 197 

Analyses of antigenic evolution 198 

Not all substitutions will be responsible for antigenic changes in the HA. An amino acid 199 

substitution X to Y at location L is considered a “cluster-difference” substitution between clusters A 200 

and B if all (or all but one) isolates in cluster A have amino acid X at location L and all (or all but 201 

one) isolates in cluster B have amino acid Y at location L (26, 43). We used this classification and 202 

the HA1 domain amino acid alignments above, to determine which amino acids likely defined the 203 
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difference among swine influenza A H3N2 virus antigenic clusters and outlying variants, and 204 

compared these results to the antigenic effects of the cluster-difference substitutions observed for 205 

H3N2 influenza A viruses in humans (43). 206 

RESULTS 207 

Swine H3N2 viruses are antigenically diverse 208 

Cross HI titers were tabulated (Table S3) and used for antigenic cartography analyses. One strain, 209 

A/swine/Minnesota/01146/2006, showed the broadest cross-reactivity against the swine H3N2 210 

antisera tested and may serve as a suitable contemporary reference strain. However, among the 211 

swine and human influenza A H3N2 viruses, HI cross-reactivity was highly variable and these 212 

antigenic relationships are shown in the 3D antigenic map in Figure 1A, with each antigen colored 213 

according to the antigenic cluster to which it belonged. The swine viruses circulating between 214 

2006-2013 formed two major antigenic groups, the cyan and the red antigenic clusters.  Other more 215 

antigenically diverse strains arising between 2010-13 were also observed, classified as outliers in 216 

the cluster analyses, and identified with unique color-coding. A/Wuhan/359/1995 and the cluster I 217 

prototype swine influenza A H3N2 virus are shown in light blue, and A/Sydney/5/1997, 218 

A/Moscow/10/1999 and the cluster II prototype swine influenza A H3N2 viruses are shown in light 219 

pink. Light grey spheres are human H3N2 isolates from 2002 -2011 and the large grey sphere is 220 

A/Victoria/361/2011.   221 

Genetic evolution of U.S. swine H3 between 1995 and 2013 222 

The ML phylogenetic tree (Figure 2A) shows that the genetic evolution of the swine influenza A 223 

(H3N2) viruses consisted of 5 contemporary clades evolved from Cluster IV. In agreement with the 224 

criteria previously suggested, a 5-7% average pairwise nucleotide distance threshold (18) continued 225 

to define the new putative clusters of contemporary swine H3.  Thus, clusters A, B, C, E and F were 226 

identified as newly formed genetic clusters, as evidenced by the pairwise criteria as well as onward 227 

transmission into 2013 and continued genetic evolution. Figure 2C shows the genetic map made 228 
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from pairwise differences among strains and again demonstrates the HA clade evolution of 229 

currently circulating strains.  230 

There was a lack of concordance between the topology of the HA and NA gene phylogenies 231 

(Figure 2A and 3).  The NA phylogeny reveals that the majority of our contemporary isolates have 232 

an N2 gene derived from a 2002 human origin N2 lineage.  However, there were no H3 cluster 233 

predilections for the possession of the 1998 or 2002 lineage N2 genes with the exception of Cluster 234 

IV-F.  This is demonstrated by isolates classified with specific Cluster IV lineages using the HA 235 

gene, but being scattered incongruously throughout NA gene lineage. 236 

To evaluate the amount of variation accrued over time in the swine H3 genes, the distance 237 

from A/Wuhan/359/95 to each isolate in Cluster IV was plotted as a function of time (Figure 4).  238 

The regression line had a slope of 0.006 (x-intercept = -11.58 ± 0.27 S.E.: Adjusted R2 = 0.75: p-239 

value < 0.0001): the slope gives the rate of evolution of nucleotide substitutions per year. There was 240 

an apparent increase in diversity since the emergence and reassortment of the H1N1pdm09 viruses 241 

in the U.S. swine population since 2009; however, limited sampling prior to 2009 may have biased 242 

our inference.  The solid regression line for the three years prior to 2009 had a slope of 0.003 (x-243 

intercept = -7.84 ± 1.31 S.E.: Adjusted R2 = 0.30: p-value < 0.0001) whereas the hatched regression 244 

line for 2010-present had a slope of 0.005 (x-intercept = -10.40± 0.68 S.E.: Adjusted R2 = 0.31: p-245 

value < 0.0001).  Though the regression lines had significantly different intercepts (ANCOVA: p-246 

value < 0.0001), the difference in rates of evolutionary change was suggestive but not statistically 247 

significant (ANCOVA: p-value = 0.12).  Retrospective sampling of viruses isolated prior to 2009 or 248 

alternate phylogenetic techniques are required to tease apart these dynamics. 249 

Predictability of antigenic cluster by phylogenetic cluster 250 

Since vaccine strain selection or choice of currently available vaccine for swine in the US relies 251 

primarily on the genetic similarity at the nucleotide level between vaccine strains and the outbreak 252 

strain, we investigated whether the antigenic phenotype could be predicted from the genetic cluster 253 

of a particular isolate.  When we colored the ML phylogenetic tree (Figure 2B) and genetic map 254 
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(Figure 2D) according to antigenic cluster to which each strain belonged we found that the 255 

antigenic cluster was not predicted from the phylogenetic clade alone, or pairwise comparison of 256 

amino acid sequences, particularly for isolates in Clusters IV A, B, D and F. For example, red 257 

antigenic cluster isolates were located genetically in the newly formed Clusters IV-A, -B and -D.  258 

Cyan-colored antigenic cluster isolates were located genetically in Clade IV and Clade IV-F. The 259 

isolate A/swine/Pennsylvania/A01076777/2010 was a genetic outlier not clustered in one of the 260 

newly emerged phylogenetic branches, yet mapped antigenically with the red cluster. 261 

Genetic basis for antigenic differences among currently circulating swine influenza A (H3) 262 

viruses 263 

To investigate the molecular basis of the antigenic clusters, we aligned the amino acid sequences 264 

used in this study (Figure S2), grouped and color-coded based on the antigenic cluster, and marked 265 

with the cluster-defining amino acid substitutions relative to the earliest Cluster I H3 cluster in pigs 266 

from a Wuhan 95-like human seasonal influenza A H3 virus introduction. A subsequent seasonal 267 

human influenza A H3 introduction into pigs from a Sydney 97-like virus led to the swine Cluster II 268 

viruses and differs from the Wuhan-like Cluster I strains at amino acid positions 156 and 158 for all 269 

antigens. 270 

Focusing on the currently circulating strains in North American pigs, we found 2 main 271 

antigenic clusters and 10 different antigenic variants mapping a significant antigenic distance away 272 

from the two primary clusters (red cluster in Figure 1B and cyan cluster in 1C). The cyan cluster 273 

consisted of strains isolated from 2004-2012, and contains strains from the same genetic cluster as 274 

the putative Cluster IV vaccine strain. The red cluster consisted of strains isolated from 2010-2013 275 

and included the H3N2v strain A/Indiana/08/2011 representing the human agricultural fair 276 

outbreaks of 2011-12. The two spheres colored in gold represent the isolate 277 

A/swine/Minnesota/A01125993/2012, which differed from the red cluster at position 145 and 159 278 

(2 A/swine/Minnesota/A01125993/2012 isolates with different passage history were analysed here 279 

and thus the data were not combined). One or both of these 2 amino acid substitutions (N145K and 280 
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Y159N) likely results in the 6 antigenic unit distance from the red cluster. The strain colored in light 281 

green isolated in 2013 (A/swine/Wyoming/A01444562/2013) differed from the red cluster at only 282 

position 145 and was 5.5 antigenic units away from the red cluster. The strain colored in blue 283 

A/Swine/Michigan/A01203498/2012 differed from the majority of the red cluster strains at 284 

positions 145 and 155 and was positioned ~5 antigenic units away. A/swine/North 285 

Carolina/A01432566/2013 (dark green) differed from the red cluster at positions 145, 156, and 189 286 

and was 7.5 antigenic units away. The two strains colored in purple 287 

(A/swine/Nebraska/A01271549/2012 and A/swine/Iowa/A01432500/2013) differed from the red 288 

cluster at two amino acid positions (N145K, K189R/S) and were 8 and 9.4 antigenic units away. 289 

They differed from each other only at position 189 and are ~1 antigenic unit apart. Thus, 189R was 290 

likely antigenically equivalent to 189S with little effect on antigenicity in this background. 291 

A/swine/Nebraska/A01241171/2012 (dark pink) differed from the red cluster at positions 145 and 292 

189 and was also ~9 antigenic units away. 293 

The cyan cluster differed from the red cluster at amino acid positions 155 and 189. The 294 

strains colored in brown (A/swine/Indiana/A01202866/2011 and 295 

A/swine/Michigan/A01432375/2013), representative of strains that were isolated from both pigs 296 

and turkeys, differed from the cyan cluster at amino acid positions 155, 156, 158, 159 and 189 and 297 

were 4.4-4.9 antigenic units away. The orange strain (A/swine/Iowa/A01203196/2012) differed 298 

from the cyan cluster at positions 145, 156 and 189 and was 4.4 antigenic units away. Thus, despite 299 

ongoing genetic evolution at the nucleotide and amino acid level across the entire length of the HA, 300 

as few as one or two amino acid substitutions in the HA1 domain were sufficient to change the 301 

antigenic properties of the swine influenza A (H3N2) viruses sufficiently to move them between the 302 

red or cyan clusters or to define a new antigenic cluster or outlier. The amino acids that 303 

distinguished clusters when mapped onto the HA trimer (Figure 1D) were found to be close to the 304 

receptor binding site.  305 

Antigenic distance from swine influenza A vaccine strains 306 
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To consider the effect this observed antigenic diversity might have on vaccine strain efficacy, we 307 

measured the antigenic distance from genetic representatives of putative vaccine strains (the actual 308 

strain identity being proprietary information) to currently circulating swine H3N2 viruses. Current 309 

vaccine strains in fully licensed swine IAV products are either genetic Cluster I (Figure 2A, orange 310 

viruses) or Cluster IV (Figure 2A, red viruses). The most recent vaccine representative from Cluster 311 

IV was isolated in 2005. When we measured the antigenic distances from a serum raised to either a 312 

Cluster I (Figure 5A) or a Cluster IV (Figure 5B) strain to other currently circulating influenza A 313 

H3N2 strains in pigs, we found that all currently circulating strains were greater than 2 antigenic 314 

units from the Cluster I vaccine serum, and most strains were over 4 antigenic units away. Within 315 

the panel of Cluster IV viruses, we found that some strains were within 2 antigenic units of the 316 

putative vaccine serum, but the majority of isolates were greater than 3 antigenic units from the 317 

vaccine strain. Therefore, vaccination with Clade I or Clade IV vaccine strains are unlikely to 318 

prevent virus infection and/or shedding (e.g., (44)).  We also found that the distances from the two 319 

putative swine vaccine sera to human seasonal H3N2 strains were over 4 antigenic units in viruses 320 

isolated since 1995, and a seasonal strain isolated from humans in 2011 (A/Victoria/361/2011) was 321 

6 antigenic units from the Cluster IV serum and 8 antigenic units from the Cluster I serum. Such 322 

antigenic distances suggest that future incursions of a current human seasonal H3N2 strain into pigs 323 

are unlikely to be mitigated by immunity from either the Cluster I or Cluster IV vaccines currently 324 

in use in pigs.  325 

Antigenic distance to human seasonal vaccine strains 326 

We also quantified the antigenic distance between currently circulating swine strains and 327 

A/Victoria/361/2011, the most recent human seasonal vaccine strain representative (Figure 5C). We 328 

found that all currently circulating swine strains were over 4 antigenic units away from the most 329 

recent representative human H3N2, and some as many as 8 antigenic units away, thus future 330 

incursions of current swine strains into humans may not be mitigated by immunity to the current 331 

human seasonal vaccines.  332 
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DISCUSSION 333 

Here, we quantified the antigenic diversity among currently circulating swine and human 334 

H3 influenza A viruses using HI assay data and antigenic cartography. The swine H3N2 viruses 335 

demonstrated antigenic diversity in the cross-HI assays. In the antigenic maps we saw a clustered 336 

antigenic evolution, similar to that shown for the H1 viruses (α, β, γ, δ-1, and δ-2: (28)) with a 337 

marked antigenic distance among and between two broad antigenic clusters, demonstrating the 338 

substantial antigenic diversity in the milieu of genetically evolving H3N2 viruses circulating in U.S. 339 

pigs.  Although a previous study utilizing different methodology with a ferret antiserum panel 340 

against 8 swine H3N2 viruses identified two antigenic clusters of swine H3N2 from 2006-2012 341 

primarily from one U.S. state (20), our study with a serum panel of 18 swine H3N2 covering 12 342 

states and major hog producing regions and generated in the natural host demonstrated greater 343 

overall antigenic diversity and a greater number of outliers.  In addition, our study included 344 

representatives from each of the newly emerging phylogenetically defined clusters, contributing 345 

significantly to the amount of antigenic diversity we observed. 346 

The genetic evolution of both the HA and the NA of H3N2 viruses in pigs was visualized in 347 

the ML phylogenetic trees and was consistent with previous analyses (18, 34).  However we 348 

observed that there was a relative mismatch between the phylogenetic topology of HA and NA, 349 

where the NA gene segment was not necessarily consistent with that of the HA gene segment, with 350 

the exception of the 2012 and 2013 H3N2v and the Clade IV-F viruses, where there was good 351 

correlation between relative tree topology of HA and NA.  This suggests that co-evolution between 352 

HA and NA pairs may not have an important role in contemporary H3N2 virus fitness, and the 353 

inconsistent tree topologies likely arose from frequent reassortment or other ecological or 354 

immunological pressures (45). 355 

The rate of change in ML likelihood distances of the HA gene in U.S. swine H3N2 of 0.006 356 

per year was similar to an estimate of 0.0047 from previously published work on evolution of swine 357 

H3N2 viruses in European pigs and 0.006 in human seasonal H3N2 from 1982-2002, reported in 358 
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the same study (27). However, the overall genetic evolutionary rate in U.S. swine H3N2 from 1997-359 

2013 was weighted by the increased evolution from 2010-2013, following the introduction and 360 

subsequent reassortment with the H1N1pdm09.  Mutation rates of circulating H3 HA genes also 361 

appear to differ between animal hosts. For example, the rate of change of ML-likelihood distances 362 

of H3 subtype viruses in horses was 0.002, less than half the rate observed in pigs.  This is likely 363 

due to a number of factors, including virus, individual host and population factors. 364 

The rapid genetic evolution seen with our swine H3 data prompted our investigation into 365 

quantifying the impact on antigenic diversity in contemporary U.S. swine H3N2. We found 366 

clustered antigenic evolution of H3N2 viruses in pigs from the USA, similar to that previously 367 

quantified in European pigs.  In Europe, H3N2 viruses continued to circulate and evolve in pigs 368 

following the H3 pandemic of 1968 in humans and subsequent introduction into the pig population. 369 

Despite similar rates of genetic change, European swine H3N2 viruses evolved 6 times more slowly 370 

antigenically than human influenza H3N2 viruses over a similar time period (27).  Although H3N2 371 

viruses were introduced into North American pigs around 1997 and have continued to circulate, 372 

new antigenic variants arose that are antigenically distinct from ancestrally related H3N2 viruses 373 

circulating in humans. In addition, we observed far greater antigenic diversity of H3N2 viruses 374 

circulating in U.S. pigs in a much shorter time period when compared with viruses circulating in 375 

European pigs. Coupled with the antigenic diversity, we observed co-circulation of different 376 

antigenic clusters within the pig population, rather than replacement, as seen in human influenza H3 377 

evolution. Despite relatively similar genetic evolution rates in North American and European swine 378 

H3N2, as well as human seasonal H3N2, the within-host antigenic evolution in pigs in the U.S. 379 

does not parallel the antigenic evolutionary patterns of H3N2 viruses in European pigs, people or 380 

horses, likely because of host population and virus factors that are currently undetermined.   381 

Surprisingly, the substitutions that resulted in marked antigenic differences were attributed 382 

in most cases to one or two amino acid changes in the HA-1 domain, located at 6 amino acid 383 

positions (145, 155, 156, 158, 159 and 189), strikingly similar to the 7 key amino acid changes 384 
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recently identified in human antigenic switches from 1968 to 2003: 145, 155, 156, 158, 159, 189, 385 

and 193 (43).  Furthermore, similarities were also observed between the H3 HA evolution seen in 386 

humans, pigs and horses (see Table S4 for direct comparison of observed substitutions in three host 387 

species). Although the precise amino acid substitutions differed or were present in different 388 

combinations in a particular host species, similar amino acid positions were associated with 389 

antigenic cluster-defining substitutions in all three hosts and all were located close to the receptor-390 

binding site. These observations were consistent whether natural host sera were used to characterize 391 

the antigenic properties of the viruses as was the case in this study, or when ferret sera were used as 392 

a small animal model to characterize H3 viruses circulating in either horses or humans. Of 393 

particular note is position 145, which caused the difference between A/Beijing/1992 and 394 

A/Wuhan/1995 viruses in humans (43). Here, we observed that 395 

A/swine/Minnesota/A01125993/2012 had substitutions at position 145 (N145K) and position 159 396 

(Y159N) associated with an antigenic change of 6 antigenic units away from the red cluster.  This is 397 

remarkably at the same linear amino acid position as the S145N/R substitution associated with the 398 

difference between the first and the second antigenic clusters that emerged in European pigs (27). 399 

We also found that positions 155 and 189 defined the antigenic difference between the red (155Y: 400 

189K) and the cyan (155H: 189R) swine antigenic clusters, whereas Feng, et. al. (20) reported only 401 

the R189K as defining the two antigenic clusters of U.S. swine H3N2 in that study.  The role of the 402 

R189K substitution has been explored in swine (46), and this position 189 has been consistently 403 

identified as cluster defining in other species as well.  In the evolution of equine H3, the European-404 

like cluster was defined from the American-like cluster by the amino acid substitution K189N, -D, -405 

Q, or -E (47). Position 189 was also key in the human influenza A H3 antigenic evolution from 406 

A/England/1972 to A/Victoria/1975 and in combination with positions 155 and 159 in the evolution 407 

from A/Bangkok/1979 to A/Sichuan/1987 (43).  Although position 189 seems to be more 408 

consistently identified among different species and in different studies, it is clear that it is not the 409 

sole position responsible for cluster-transition substitutions in human (43) and now swine H3N2. 410 
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While the amino acid positions associated with antigenic variability were conserved among host 411 

species, the mechanism by which the individual substitutions act in the different host species is not 412 

known.  The amino acid changes may cause structural differences in the hemagglutinin leading to 413 

receptor binding constraints in different hosts, differences in qualitative and quantitative adaptive 414 

immune recognition, or a combination of the above. 415 

In the context of the swine humoral response represented by our serum panel and circulating 416 

swine H3N2 viruses, contemporary human seasonal H3N2 were shown to have substantial 417 

antigenic distance from the contemporary swine H3N2 although these lineages share a common 418 

ancestor from the mid-1990s.  We showed that between 4 and 8 antigenic units separated the human 419 

seasonal vaccine strain representative A/Victoria/361/2011 from all currently circulating strains in 420 

pigs.  This indicates that despite a potentially high level of immunity against swine H3N2 in the pig 421 

population in the U.S., a future incursion of human seasonal H3N2 is possible if the event produced 422 

a virus fit for pig-to-pig transmission.  The increasing antigenic distance of the A/Victoria/361/2011 423 

H3N2 and other previous human seasonal vaccine strains to the contemporary swine H3N2 also 424 

suggests the youngest of the human population may become increasingly susceptible to incursions 425 

of swine H3N2 due to lack of cross-reacting immunity.  Indeed, a dramatic number of H3N2v 426 

infections in humans, primarily children, in the USA were detected in 2011-2013 and studies with 427 

human sera demonstrated a lack of cross-reacting HI antibodies in children and the elderly (22, 23).  428 

Further study of human sera tested against a panel of swine H3N2 representing the antigenic 429 

diversity we demonstrate here is required to fully understand the level of human population 430 

immunity to H3N2 endemic in the pig population. 431 

The marked antigenic diversity seen in H3N2 viruses in pigs since 2010 poses problems in 432 

assessing the relative risk of a swine variants emerging in the human population and in using 433 

vaccine as an effective means of IAV control in pigs. How differences in host factors alter the 434 

relative evolution of viruses in these two hosts is poorly understood, but some factors that might 435 

alter the evolutionary pattern of the HA gene within pigs in comparison with H3 in the human 436 

 on A
ugust 23, 2018 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


 

19 

population host include differing lifespan and replacement rates of pigs versus humans; more 437 

continental separation of pigs compared to humans; and relative spatial separation of sow farms but 438 

movement and mixing of weaned pigs to the Midwest from Southeast and Southwest USA and 439 

Canada (48). All these factors might lead to different population immunological profiles and thus 440 

alter the evolutionary patterns of viruses. This complex immunological profile is exacerbated by a 441 

difficulty in updating inactivated vaccines to contain representatives of currently circulating strains 442 

and subsequent lack of an ideal vaccine for all situations in pig production. 443 

A national surveillance system was established in 2009 by the U.S. Department of 444 

Agriculture in response to the 2009 H1N1 pandemic, the growing diversity of swine viruses, and 445 

increasing number of detections of zoonotic events in humans (18). The number of isolates with 446 

sequence data from this surveillance stream has grown significantly, building the foundation for 447 

systematic sequence analyses to pair with antigenic assessment. Phylogenetic analysis of 448 

contemporary H3 suggested increasing evolution since the emergence and subsequent reassortment 449 

with the H1N1pdm09 (18, 34), and here we demonstrate the resulting antigenic diversity.  The 450 

USDA surveillance system and analyses such as ours reported here can now begin to be used to 451 

inform vaccine strain selection for swine.  However, to improve and further facilitate vaccine strain 452 

updates, a vaccine strain selection working group established to collectively provide cross-HI and 453 

phylogenetic data from various laboratories and sectors together for interpretation and discussion 454 

would be beneficial.  Changes in regulatory processes to allow rapid replacement of HA and NA 455 

onto approved IAV backbones or platforms would also be extremely useful for improving control 456 

measures against influenza A virus in swine.  Additionally, platforms not currently available in 457 

swine, such as live attenuated influenza vaccines or vectored vaccines, have shown great promise in 458 

experimental settings for improved heterologous protection and greater efficacy in the face of 459 

maternally derived antibodies (44, 49-54). 460 

Here, we found that as few as one or two amino acid substitutions resulted in new antigenic 461 

clusters and/or outliers.  Since these cluster defining amino acid changes were shown to be enough 462 
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to result in vaccine failure in other host species, we need to continue to systematically monitor the 463 

evolution of swine IAV for vaccine strain updates. Such information is also critical to increase our 464 

understanding of what governs the evolutionary mechanisms in different hosts and in improving 465 

control measures for influenza A viruses to protect the health and wellbeing of swine, a primary 466 

protein food source for humans, as well as the respiratory health of the human population. 467 
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 650 
FIGURE LEGENDS 651 

Figure 1. 3D antigenic maps of swine influenza A(H3N2)  and human influenza A(H3N2) viruses 652 

from 1998–2013 and position of key amino acids on the three-dimensional trimeric model of the 653 

hemagglutinin protein. The relative positions of isolates (colored spheres) and antisera (open grey 654 

cubes) were computed  (A) such that the distances between isolates and antisera in the map 655 

correspond with the least error to measurements in the HI assay (26). Swine isolate color represents 656 

the antigenic cluster to which each isolate belongs and grey spheres represent recent human 657 

influenza A (H3N2) viruses. The large grey sphere is A/Victoria/361/2011. The white scale bar 658 

represents 1 unit of antigenic distance, corresponding to a twofold dilution of antiserum in the HI 659 

assay.  Antigenic maps with only swine influenza A(H3N2) viruses showing the antigenic effect of 660 

the amino acid substitutions for each antigenic variant that was not located within the red (B) or the 661 

cyan (C) antigenic clusters. The arrows radiate from the consensus in each cluster to the outlying 662 

antigen and numeric values show the number of antigenic units separating the outlier from the 663 

antigens representing the consensus.  A trimeric structure of A/Swine/Illinois/A01241469/2012 (red 664 

antigenic cluster) was generated to demonstrate the location of the antigenic-determining amino 665 

acid positions (D). The receptor binding site was colored wheat. An α2,6 glycan (LSTc) is shown 666 

docked in the binding site as sticks. The six amino acid positions associated with antigenic outliers 667 

were colored red.  Images were produced using PyMOL (33). 668 

 669 

Figure 2. Maximum likelihood phylogenies (A and B) and genetic maps (C and D) of 670 

representative H3N2 swine influenza A isolates using HA1 domain amino acid sequences. Numbers 671 

above or below branches in the phylogenetic trees indicate bootstrap support (%) estimated from 672 

1,000 resamplings of the sequence data; bootstrap values ≤ 50% are not shown. H3N2 HA 673 

sublineages are indicated by bolded square parantheses (Cluster I, II, II, and IV-A/B/C/D/E/F). 674 

Taxon names indicate viral isolate, followed by Genbank or GISAID EpiFlu accession identifiers in 675 

parentheses. Branches were colored by genetic cluster (A) and antigenic cluster (B); branches in 676 
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light grey were not part of antigenic study. Scale bars in the phylogenies indicate amino acid 677 

substitutions per site. Genetic maps were made from pairwise differences among strains and spheres 678 

representing virus strains were colored by genetic cluster (C) or antigenic cluster (D).  The white 679 

scale bars in the genetic maps correspond to 5 amino acid substitutions. 680 

 681 

Figure 3. Maximum likelihood phylogeny of neuraminidase (NA) gene amino acid sequences from 682 

viruses in the antigenic study and representative H3N2 swine influenza A isolates. Branches were 683 

colored by HA genetic cluster; branches in light grey were not part of study. Numbers above or 684 

below branches in the phylogenetic trees indicate bootstrap support (%) estimated from 1,000 685 

resamplings of the sequence data; bootstrap values ≤ 50% are not shown. H3N2 NA sublineages are 686 

indicated by bolded square parentheses (1998 vs. 2002). Taxon names indicate viral isolate, 687 

followed by Genbank or GISAID EpiFlu accession identifiers in parentheses. Scale bar in the 688 

phylogeny indicates amino acid substitutions. 689 

 690 

Figure 4.  Patristic distance from A/Wuhan/359/95 in the maximum likelihood phylogenetic tree 691 

presented in Figure S1 to each isolate in Cluster IV H3N2 swine influenza A virus clade plotted as a 692 

function of time. The solid line represents the regression for the three years prior to 2009 with a 693 

slope of 0.003 (x-intercept = -7.84 ± 1.31 S.E.: Adjusted R2 = 0.30: p-value < 0.0001) whereas the 694 

hatched line represents the regression for the isolates from 2010-present with a slope of 0.005 (x-695 

intercept = -10.40± 0.68 S.E.: Adjusted R2 = 0.31: p-value < 0.0001).   696 

 697 

Figure 5. Antigenic distances from putative Cluster I (A) and Cluster IV (B) swine vaccine sera and 698 

antigenic distance from the human seasonal vaccine strain A/Victoria/361/2011 (C) swine sera to 699 

circulating strains in pigs by year.  700 

 701 

 on A
ugust 23, 2018 by guest

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


 

30 

Table 1.  Viruses used to raise reference antisera in swine (underlined) and test antigens in the 702 

hemagglutination inhibition (HI) assay. 703 

Viruses H3 Cluster Virus propagation H3 Accession

Swine    

A/swine/Texas/4199-2/1998 H3-I MDCK CY095675

A/swine/Colorado/23619/1999 H3-II MDCK AF268128

A/swine/Minnesota/01146/2006 H3-IV MDCK CY099035

A/swine/Iowa/01700/2007 H3-IV MDCK CY099027

A/swine/Minnesota/02782/2009 H3-IV MDCK CY099103

A/swine/Illinois/02907/2009 H3-IV MDCK KF739390

A/swine/Pennsylvania/A01076777/2010 H3-IV MDCK JF263535 

A/swine/New York/A01104005/2011 H3-IV (A) MDCK JN940422

A/swine/Indiana/A00968373/2012 H3-IV (A) MDCK JX534982

A/swine/Illinois/A01241469/2012 H3-IV (A) MDCK JX422497

A/swine/Michigan/A01259000/2012 H3-IV (A) MDCK-L JX442056

A/swine/Wyoming/A01444562/2013 H3-IV (A) MDCK KC562197

A/swine/North_Carolina/A01432566/2013 H3-IV (A) MDCK KC841842

A/swine/Minnesota/A01300213/2012 H3-IV (B) MDCK JX657030

A/swine/Minnesota/A01125993/2012 H3-IV (B) MDCK JX422257

A/swine/Minnesota/A01327922/2012 H3-IV (B) MDCK JX422521

A/swine/Iowa/A01300195/2012 H3-IV (B) MDCK JX657018

A/swine/Minnesota/A01432544/2013 H3-IV (B) MDCK KC841830

A/swine/Minnesota/A01280592/2013 H3-IV (B) MDCK KC589443

A/swine/Indiana/A01202866/2011 H3-IV (C) MDCK JX092535

A/swine/Michigan/A01432375/2013 H3-IV (C) MDCK KC534987

A/swine/Illinois/A01201606/2011 H3-IV (D) MDCK CY107066

A/swine/Iowa/A01202613/2011 H3-IV (D) MDCK-L JX092307

A/swine/Iowa/A01202889/2011 H3-IV (D) MDCK-L JX092542

A/swine/Iowa/A01203196/2012 H3-IV (D) MDCK-L JQ739697

A/swine/Michigan/A01203498/2012 H3-IV (D) MDCK JX163265

A/swine/Iowa/A01049750/2011 H3-IV (F) MDCK JN652493

A/swine/Texas/A01049914/2011 H3-IV (F) MDCK JN652507

A/swine/Illinois/A01241066/2012 H3-IV (F) MDCK JX422557

A/swine/Iowa/A01203121/2012 H3-IV (F) MDCK-L JX092555

A/swine/Nebraska/A01241171/2012 H3-IV (F) MDCK-L JX422575

A/swine/Nebraska/A01271549/2012 H3-IV (F) MDCK KC222305
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A/swine/Iowa/A01432500/2013 H3-IV (F) MDCK KC755694

Human    

A/Wuhan/359/1995 Vaccine strain (1996-1998) MDCK-L AY661190

A/Sydney/5/1997 Vaccine strain (1998-2000) MDCK-L CY039079

A/Moscow/10/1999 Vaccine strain (2000-2004) MDCK-L AY531035

A/Fujian/411/2002 Vaccine strain (2004-2005) MDCK-L EF541397

A/Wisconsin/67/2005 Vaccine strain (2006-2008) MDCK-L CY034116

A/Brisbane/10/2007 Vaccine strain (2008-2010) Egg CY039087

A/Perth/16/2009 Vaccine strain (2010-2012) Egg GQ293081

A/Victoria/361/2011 Vaccine strain (2012-2013) Egg KC306165

A/Indiana/08/2011 H3N2v: H3-IV(A) MDCK JN638733

 704 
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