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Interactions among coinfecting parasites have the potential to alter host susceptibility to infection, the
progression of disease and the efficacy of disease control measures. It is therefore essential to be able
to accurately infer the occurrence and direction of such interactions from parasitological data. Due to
logistical constraints, perturbation experiments are rarely undertaken to directly detect interactions,
therefore a variety of approaches are commonly used to infer them from patterns of parasite association
in observational data. However, the reliability of these various approaches is not known. We assess the
ability of a range of standard analytical approaches to detect known interactions between infections of
nematodes and intestinal coccidia (Eimeria) in natural small-mammal populations, as revealed by exper-
imental perturbations. We show that correlation-based approaches are highly unreliable, often predicting
strong and highly significant associations between nematodes and Eimeria in the opposite direction to the
underlying interaction. The most reliable methods involved longitudinal analyses, in which the nematode
infection status of individuals at one month is related to the infection status by Eimeria the next month.
Even then, however, we suggest these approaches are only viable for certain types of infections and data-
sets. Overall we suggest that, in the absence of experimental approaches, careful consideration be given
to the choice of statistical approach when attempting to infer interspecific interactions from observa-
tional data.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is

an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Interspecific parasite interactions are a major research focus in
disease ecology. Most hosts, including humans in communities
around the globe, are coinfected by many parasite species
(Petney and Andrews, 1998; Cox, 2001). Numerous laboratory
studies (Behnke et al., 1978; Christensen et al., 1987; Adams
et al., 1989; Frontera et al., 2005) have shown coinfecting parasites
can interact strongly, either positively or negatively (Griffiths et al.,
2011), with important implications for disease progression, trans-
mission and control. In particular, if strong interactions are present
then targeted treatment may result in potentially unwanted
responses in other, non-target parasite species (Lello et al., 2004;
Pedersen and Fenton, 2007; Knowles et al., 2013; Pedersen and
Antonovics, 2013). Clearly it is essential to know the occurrence
and direction of such interactions in order to predict disease
dynamics and the likely impact of control efforts.

Given the evidence for parasite interactions in the laboratory,
there is great interest in evaluating their occurrence in nature. As
is well known in community ecology, experimental perturbation
(e.g., measuring responses to the removal or addition of other spe-
cies) is the most reliable way to detect natural interspecific inter-
actions (Bender et al., 1984). Unfortunately, such experiments are
rarely undertaken on parasite communities (but see Ferrari et al.,
2009; Knowles et al., 2013; Pedersen and Antonovics, 2013).
Hence, our knowledge of the natural occurrence and significance
of parasite interactions is based primarily on observational studies,
with various papers reporting clear evidence of strong interspecific
parasite interactions, in both animal and human populations (Lello
et al., 2004, 2013; Telfer et al., 2010; Shrestha et al., 2013). How-
ever, other studies have found little evidence for interactions in
natural populations, concluding they are insignificant in shaping
parasite communities (Haukisalmi and Henttonen, 1993; Poulin,
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1996; Behnke et al., 2005; Behnke, 2008). There is therefore great
variation among studies from natural populations, and a discon-
nection between these observational results and the consistent
interactions reported from laboratory experiments.

One explanation for this variability is that parasite interactions
are indeed highly variable and context-dependent. This would be
an important result, telling us that parasite interactions are only
significant under certain conditions (e.g., dependent on timings
of coinfection, or infection burdens; Fenton, 2013) or within cer-
tain subsets of the host population (e.g., immuno-compromised
hosts, or varying with sex or age etc.); if so, and we can identify
the conditions or individuals in which interactions are strongest,
this may improve our ability to predict the implications of those
interactions and target treatment appropriately. A second explana-
tion is that there is genuine variation in the importance of parasite
interactions between different study systems, such as the types of
parasite communities considered. However, assessing these possi-
bilities is confounded by the fact that different studies often use
different statistical approaches to infer interactions, and so it is
not clear whether the reported differences are due to differences
in biology of the systems or differences in the techniques used.
Clearly, if different studies use different methods that themselves
vary in reliability then we may be getting an inaccurate picture
of the extent of parasite interactions in natural populations. Before
we can fully evaluate the occurrence of these interactions, we need
to establish the reliability of the various techniques used to infer
their presence, ideally within a single study system.

Observational approaches have been suggested to have limited
ability to infer interspecific interactions in general (Schluter, 1984).
We have previously assessed this theoretically for parasite interac-
tions (Fenton et al., 2010), showing that some commonly-used
approaches are limited in their ability to detect genuine interac-
tions. However, that analysis was purely theoretical and ignored
many of the complexities of natural systems that could prevent,
or even enhance, the performance of different statistical tests.
There is a clear need to test the reliability of these various
approaches on genuine parasite infection data from natural sys-
tems; to do so requires independent measures of the occurrence
Table 1
Summary of observational data available for the Peromyscus and Apodemus analyses in th

Peromyscus

Sample size (experimental data) 270 individuals
(453 captures)

Sample size (observational data) 235 individuals
(363 captures)

Mean nematode
Prevalence 35.5%
Abundance in EPG (range) 68.86 (0–9087)
Intensity in EPG (range) 193.8 (3.23–9087)

Dominant species (prevalence) Aspiculurus americ
Capillaria american

Mean Eimeria
Prevalence 64.7%
Abundancea in EPG (range) 1847 (0–61350)
Intensitya in EPG (range) 2853 (2.66–61350

Dominant species (prevalence) Eimeria delicata (9
Eimeria arizoniensi
Eimeria arizoniensi

Covariates (levels)b Species (leucopus,
Sex (Male, Female
Age (Adult, Sub-ad
Year (2001, 2002,
Trap session (1, 2,

a Abundance refers to data including uninfected hosts; intensity refers to data from i
b All covariates were coded as factors.
c Indicates the year and/or grids from which the experimental data were taken.
of interspecific parasite interactions within a given system, against
which the different analytical approaches can be compared. We
have previously carried out perturbation experiments using tar-
geted drug treatments on two different natural rodent parasite
communities, and have found clear evidence of interspecific para-
site interactions in both systems (Knowles et al., 2013; Pedersen
and Antonovics, 2013). These provide an ideal opportunity to test
the inferences made using standard analytical techniques applied
to observational (unmanipulated) data from the same populations.
We show that many of the standard approaches are unable to
detect the experimentally-demonstrated interactions, and often
report associations in the opposite direction to those found exper-
imentally. Overall, we urge caution for the interpretation of obser-
vational data when inferring the occurrence of interspecific
interactions, suggesting it is only feasible for certain types of anal-
ysis applied to certain datasets, and highlight the importance of
using perturbation approaches where possible to measure the
strength and occurrence of parasite interactions in wild animal
and human systems.
2. Materials and methods

2.1. Summary of interspecific interactions determined via
experimental perturbations

We previously conducted experimental manipulations of the
natural parasite communities of two small mammal species: wood
mice, (Apodemus sylvaticus) in the UK (Knowles et al., 2013) and a
mixed population of white footed mice (Peromyscus leucopus), and
deer mice (Peromyscus maniculatus) in the USA (Pedersen and
Antonovics, 2013). Specific details of each study are given in the
relevant papers and information about the data structure, parasite
diversity and infection prevalences are given in Table 1. Both stud-
ies adopted similar longitudinal designs, whereby permanent sam-
pling grids were regularly trapped (fortnightly in the Peromyscus
study or monthly in the Apodemus study). All individuals caught
were given a unique identification tag and biometric data (size,
is study.

Apodemus

146 individuals
(312 captures)
362 individuals
(653 captures)

57.4%
41.15 (0–1023)
72.04 (0.91–1023)

ana (15.4%) Heligmosomoides polygyrus (52%)
a (15.7%) Syphacia stroma (8.2%)

Aonchotheca murissylvatici (1.4%)
Aspiculuris sp (0.8%)

49.0%
2402 (0–181000)

) 4918 (1.25–181000)
.1%) Eimeria hugaryensis (27.6%)
s A (57.0%) Eimeria apionodes (14.2%)
s B (30.9%) Eimeria uptoni (2.4%)
maniculatus) Grid (Ac, Bc, Cc, Dc, Ec, F)
) Sex (Male, Female)
ult, Juvenile) Age (Adult, Sub-adult, Juvenile)
2003c, 2004) Year (2009, 2010c)
3, 4) Trap month (8 levels, May–Dec)

nfected hosts only.
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weight, age, reproductive condition) were taken at each capture.
Gastrointestinal infection status was assessed at each capture by
faecal examination for the presence of infective stages (eggs for
helminths or oocysts for coccidial protozoa).

In both studies the parasite communities were perturbed by
treating a subset of animals with the anthelmintic drug ivermectin
to reduce their gastrointestinal nematodes (>90% reduction in
nematode prevalence over a period of 4 weeks in Peromyscus, and
71% reduction in prevalence within 3 weeks of treatment in Apode-
mus). Only a subset of animals was treated on the treatment grids
in both studies; the remaining animals were left as untreated con-
trols. In addition, in both studies there were untreated control
grids (two grids in the Peromyscus study and two grids in the
Apodemus study) on which no animals received treatment; there
was no evidence that infections in untreated mice on treatment
grids differed from those of animals from the untreated control
grids. Comparing non-target parasite infections at subsequent cap-
tures between treated and untreated mice showed, in both studies,
that coccidial parasites from the genus Eimeria (a genus of directly-
transmitted protozoa that inhabit the gastrointestinal tract of
small mammals) increased following anti-nematode treatment.
Specifically, in Peromyscus, Eimeria showed a 20% increase in prev-
alence post- treatment (Fig. 1A) whereas in Apodemus, Eimeria
increased 15-fold in intensity post-treatment (Fig. 1B). These clas-
sic perturbation experiments therefore provide clear evidence of
negative interactions between nematodes and Eimeria in two
separate host-parasite systems. Given this, we can then ask
whether any of the standard approaches used for inferring inter-
specific parasite interactions from observational data would
suggest the presence of these interactions.
2.2. Analytical approaches to infer interspecific interactions from
observational data

Data were analysed from the untreated mice in the Peromyscus
and Apodemus studies using five standard approaches (plus vari-
ants) that cover the broad range of techniques typically used in
such analyses, examining either qualitative (presence/absence) or
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Fig. 1. Summary of experimental evidence for negative nematode-coccidia inter-
actions in (A) the study by Pedersen and Antonovics (2013) (n = 270 individuals)
and (B) the study by Knowles et al. (2013) (n = 146 individuals).
quantitative (parasite intensity (excluding uninfected individuals)
or abundance (including uninfected individuals) data, based on
eggs or oocysts per gram of faeces; EPG) measures of infection.
Note that we were restricted to estimating abundance and inten-
sity data indirectly using EPG, since we used non-destructive sam-
pling to allow longitudinal analyses of each individual’s infection
status. For each approach we considered whether we would rea-
sonably infer the negative interactions between nematodes and
Eimeria revealed by our experimental results. In all cases model
assumptions for the analyses (e.g., normality of residuals, homo-
scedasticity etc.) were checked and found to be upheld. Analyses
were conducted in the statistical package R (v. 3.0.1).

Four cross-sectional analyses were conducted on the observa-
tional data from both studies, asking: what is the association in
contemporary infection levels between nematodes and Eimeria
across the host population? Additionally, due to the number of
individual recaptures in the Apodemus dataset, an additional longi-
tudinal analysis was performed on these data, asking: what is the
association between nematode infection one month and Eimeria
infection the following month? Here we briefly describe each
approach, leaving detailed descriptions for Supplementary Data S1.

2.2.1. Correlation approach (cross sectional)
This approach seeks correlations (Pearson’s R, Spearman Rank

or Kendall’s tau) in parasite intensity (EPG in infected hosts) of
the two parasite species. If this approach is reliable for inferring
interactions we would expect a negative correlation between nem-
atodes and Eimeria, to match the experimental results. Two forms
of analysis were explored.

2.2.1.1. Analysis of raw data. A simple correlation of logged nema-
tode and Eimeria intensity data (EPG counts among coinfected
hosts).

2.2.1.2. Analysis of residuals controlling for potential confounding
factors. Confounding variables (e.g., age, sex, sampling location)
may create spurious associations between parasites. One way to
control for these effects has been to conduct two ANOVA (or equiv-
alent) analyses, one with each parasite species as the response var-
iable, on parasite intensity data with potential confounders (see
Table 1 for lists of covariates for each study) as explanatory vari-
ables (e.g., Behnke et al., 2005). A significant correlation between
the residuals from each analysis is then used as evidence of an
interspecific interaction independent of the confounding factors.
It should be noted that using residuals in this way can result
in biased parameter estimates and has been discouraged
(Freckleton, 2002); an alternative approach is to conduct a Gener-
alised Linear Model (GLM) which directly controls for covariates in
the analysis (e.g., Analysis 4, below). This method now tends not to
be used, but has been used previously, and was included here for
completeness. This analysis was run on nematode and Eimeria
intensity data (EPG counts among coinfected hosts).

2.2.2. T-test comparison (cross-sectional)
Here, an interaction is inferred from a significant difference in

infection levels of one parasite between hosts infected and not
infected by the other. Unpaired two sample Student’s t-tests on
logged Eimeria EPG from Eimeria-infected hosts (i.e., using Eimeria
intensity data) were used to compare nematode-infected with -
uninfected hosts. Based on our experimental results, we would
expect nematode infected hosts to have significantly lower Eimeria
EPG counts than hosts without nematode infections. Again, this
analysis does not account for potential confounding covariates,
and an alternative approach using GLMs to control for covariates
is conducted later (Analysis 4). However, as with the correlation
approach, it has been used previously (Chappell, 1969;
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Hendrickson and Curtis, 2002), and was included here for
completeness.

2.2.3. Pairwise association matrices (cross-sectional)
This approach compares the observed numbers of single- and

coinfected hosts with those expected from a null model, based
on the observed prevalences of the two parasite species; a signifi-
cant departure (by v2) from the null model implies the parasites
are associated independently from each other. Given our experi-
mental results, we would predict coinfected hosts should occur
less often than expected by chance, as nematodes suppress Eimeria,
thereby reducing the number of coinfected hosts. Two suggested
methods were explored for the construction of the null model.

2.2.3.1. Basic null model. Here the expected proportion of coin-
fected hosts is calculated from the prevalences of the two parasite
species, assuming independent assortment. Hence, if parasite spe-
cies i and j have decimal prevalences pi and pj, the expected propor-
tion of hosts carrying both species is pi.pj, and the expected
proportion carrying neither is (1-pi)(1-pj), etc.

2.2.3.2. Modified null model accounting for species dominance. The
above null model ignores the potential role of interactions in shap-
ing the observed prevalences. Lafferty et al. (1994) suggested a
method to alleviate this circularity by adjusting the prevalences
to account for the potential influence of the ‘dominant’ species
over the other (see Supplementary Data S1), which are then used
to calculate the expected proportions of singly- and coinfected
hosts as above.

2.2.4. Cross-sectional GLM
This approach uses GLM to assess whether infections by one

parasite are influenced by infections of the other at the same time
point, whilst controlling for covariates (Table 1). For the Apodemus
study the following model was used:

Eimeria � Nematodesþ Ageþ Sexþ Trap Monthþ Yearþ Grid

and for Peromyscus it was:

Eimeria � NematodesþHost speciesþ Ageþ Sexþ Trap Session

þ Year

In each case the infection status by both Eimeria and nematodes
could either be qualitative (presence/absence) or quantitative
(EPG), resulting in four possible combinations of variable types.
When the response variable (Eimeria) was qualitative a binomial
GLM was used, and when quantitative (log(Eimeria EPG), restricted
to Eimeria-infected individuals) a Gaussian GLM was used. These
models were simplified by backwards stepwise deletion (using
the function ‘step’ in R), until a minimal model was reached. For
these results to match our experimental results, we would expect
a significant negative relationship between nematodes and
Eimeria.

Note that a further version of this analysis was explored, con-
trolling for potential non-linear effects of host age, using body
length and body mass as proxies (Fenton et al., 2010; Supplemen-
tary Data S1 but found it did not significantly change model log-
likelihood. We therefore only present the results from the standard
GLMs.

2.2.5. Longitudinal GLM
All analyses considered so far have been cross-sectional, exam-

ining the contemporary associations between Eimeria and nema-
todes. For the Apodemus study an additional, longitudinal
analysis was carried out, using the same four baseline models as
the cross-sectional GLMs above, but here the ‘Nematodes’
explanatory variable referred to infection status the previous
month. Once again, model simplification was used to reach a min-
imal model, and we sought evidence that nematode infection one
month reduced Eimeria infection the next.

2.3. Controlling for pseudoreplication arising from multiple captures of
individuals

The full data included multiple captures of some individuals,
which are not independent from each other (i.e., pseudoreplication
at the level of the individual). In Supplementary Data S1 we
describe a range of approaches we explored to control for this
pseudoreplication. However, in all cases the results (the terms
remaining in the minimal models, and effect sizes of those terms)
were very similar for all three methods (Supplementary Data S1;
Supplementary Fig. S1), presumably due to the relatively low num-
bers of recaptures in the data. We therefore concentrate on the
results from the full datasets here.

2.4. Assessing the reliability of each analytical technique

The reliability in inferring the experimentally-revealed negative
interaction between nematodes and Eimeria was assessed for each
of the above approaches. Because our observational data may not
be optimal for inferring interactions using a given technique (e.g.,
the sample size may be too small, or of insufficient temporal reso-
lution), a broad approach was taken to assess reliability. First, we
used a simple qualitative assessment, asking whether each tech-
nique predicted the correct direction (negative) of association
between nematodes and Eimeria. We then used a quantitative
assessment of the statistical significance (P < 0.05) of association
between nematodes and Eimeria. Finally, we sought a quantitative
measure of the magnitude of reported effects of nematodes on
Eimeria. Since the various approaches return different statistical
metrics, these metrics were converted to a common, standardised
effect size, Hedge’s g (Borenstein, 1994; Nakagawa and Cuthill,
2007). This allows effect sizes from different tests to be presented
on the same scale, aiding comparison with the experimental
results; a negative value of Hedge’s g in these analyses implies a
negative association between nematodes and Eimeria, matching
the experimental results.

Note that, to maximise sample size for these analyses data were
used from a wider range of years and study grids than were used in
the experiments (Table 1). To check whether this explains any dis-
crepancies between these analyses and the experimental results,
we re-ran our analyses of the Apodemus data restricted to the same
year as the experiment was conducted, and found the results were
little affected (Supplementary Data S1; Supplementary Fig. S2).
Finally, we emphasise that our results are only directly applicable
to the host-parasite systems examined and the quality and resolu-
tion of data available to us (we return to this point in the Discus-
sion). However we suggest that many of our conclusions are
likely to be applicable to many other empirical systems where sim-
ilarly structured data are used to infer the existence of interspecific
parasite interactions.
3. Results

Here we summarise the reliability of each technique in
comparison to our experimental results, leaving more detailed
descriptions of each analysis in Supplementary Data S1.

Overall, there was considerable variation between the different
approaches in the predicted association between nematodes and
Eimeria (Fig. 2; Table 2), with relatively few tests matching the
experimental results by returning negative associations (5/17 tests
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for Apodemus (two significant at P < 0.05), and 0/13 tests for Pero-
myscus; Fig. 2). Indeed, the majority of tests returned positive asso-
ciations between nematodes and Eimeria (12/17 for Apodemus and
13/13 for Peromyscus), the opposite direction of that seen with
experimental manipulation.

The least reliable techniques were the correlation-based ones,
where all variations reported positive associations between nema-
todes and Eimeria (Fig. 2 and Table 2). Furthermore, even the cross-
sectional GLMs, which controlled as much as possible for potential
confounders, fared poorly; one variant (where both nematode and
Eimeria infections were analysed as EPG) resulted in the strongest
positive effect size out of all tests for both Apodemus and Peromyscus
(Fig. 2), and the other cross-sectional GLMs returned effect sizes
around zero. This suggests that adding covariates into the analysis
does not necessarily improve model accuracy. For example, the
cross-sectional ‘Eim(EPG)�Nematode(PA)’ GLM is closely related
to the t-test analysis (both have Eimeria EPG as the response vari-
able and nematode presence/absence as the predictor), except that
the GLM controls for covariates, whereas the t-test does not. How-
ever there was no evidence that the GLM performed any better
(predicted effect sizes were not stronger, and confidence intervals
were not narrower) than the t-test. Similarly, the cross-sectional
‘Eim(EPG)�Nematode(EPG)’ GLM is related to the standard correla-
tions in the nature of the response and predictor variables, but there
was no evidence that the GLM, which controls for covariates,
performed any better than the correlation approach (Fig. 2).
Nematode−Eimeria interactio

−0.75

GLM: Eim(EPG)~Nem(EPG) − longitudinal

GLM: Eim(EPG)~Nem(PA) − longitudinal

GLM: Eim(PA)~Nem(EPG) − longitudinal

GLM: Eim(PA)~Nem(PA) − longitudinal

GLM: Eim(EPG)~Nem(EPG) − x−sectional

GLM: Eim(EPG)~Nem(PA) − x−sectional

GLM: Eim(PA)~Nem(EPG) − x−sectional

GLM: Eim(PA)~Nem(PA) − x−sectional

Pairwise matrix (modified)

Pairwise matrix (raw)

T−test

Kendalls correlation (residuals)

Spearman correlation (residuals)

Pearson correlation (residuals)

Kendalls correlation (raw)

Spearman correlation (raw)

Pearson correlation (raw)

Fig. 2. Mean (±95% Confidence Intervals) effect sizes (Hedge’s g) of the relationship betw
Apodemus sylvaticus (black) and Peromyscus spp. (red; grey) studies, using all data (includi
are given in Supplementary Fig. S1). Asterisks indicate approaches where the relevant 95
the references to colour in this figure legend, the reader is referred to the web version o
Overall the most reliable methods tended to be longitudinally-
based, which examined the association between nematode infec-
tions one month and Eimeria infections the following month; three
out of four of these analyses predicted a negative association
between nematodes and Eimeria and two were statistically signif-
icant (Fig. 2). However, the form of analysis that most closely
matches the experimental result for Apodemus, in terms of the
nature of the response and predictor variables (Eimeria EPG and
nematode presence/absence), although predicting a negative
effect size, had a wide confidence interval and was not statistically
significant (Fig. 2 and Table 2).

4. Discussion

Few of the observation-based statistical approaches tested were
successful at inferring the experimentally-revealed negative
interaction between nematodes and Eimeria. In particular most
cross-sectional approaches, particularly the correlation-based
ones, performed extremely poorly, often returning highly signifi-
cant but strongly positive associations between the parasites. This
was particularly apparent for the Peromyscus dataset (Fig. 2), which
had a lower sample size than the Apodemus dataset. These results
match, and extend, our previous theoretical analyses which
showed that correlation-based approaches can perform very
poorly when attempting to detect negative interactions between
parasites (Fenton et al., 2010). While we may expect detection of
n effect size (Hedge's g)

−0.25 0.25 0.75

*
*
*

*

*

*
*

*
*

een nematode and Eimeria infections for each analytical approach examined for the
ng multiple captures per individual; corresponding results for the bootstrapped data
% Confidence Interval of effect size does not overlap with zero. (For interpretation of
f this article.)
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genuine interactions in real-world data to be difficult, it is highly
concerning that such frequently-used techniques can lead to the
inference of significant associations in the opposite direction to
the genuine interaction. Therefore, we strongly advise against
using correlation-based approaches, even those that attempt to
control for confounding factors, when seeking interspecific interac-
tions from ecological data (parasitological or otherwise).

The most reliable approaches examined were longitudinally-
based, which sought associations between nematodes one month
and Eimeria the next. Intuitively this makes sense, as it reflects
the cause and effect of the underlying interaction; Eimeria levels
will decline following nematode infection. As such, we advocate
the use of longitudinal methods where possible in the inference
of interspecific interactions. However, this should be tempered
with the recognition that, for our Apodemus data set, the longitudi-
nal analysis that most closely matched the experimental data in
terms of the nature of the response and predictor variables
[‘Eim(EPG)�Nematode(PA)’], although matching the direction of
the experimental results, did not predict a statistically significant
association. Furthermore, the merits of longitudinal analyses will
depend greatly on the time-scale of sampling relative to the inter-
action dynamics of the parasites. If the parasites interact very
strongly, with one species responding rapidly to the other, then
fine-scale sampling will be needed to detect the interaction. Nota-
bly, for the Apodemus experimental data, the interaction could only
be detected within 1–3 weeks of treatment; by the fourth week
nematodes and Eimeria had returned to pre-treatment levels
(Knowles et al., 2013). Hence, fine-scale sampling would be needed
to maximise the chances of detecting the interaction from observa-
tional data under such rapid dynamics. In addition, sample size
will be an important consideration in the viability of longitudinal
analyses. Restrictions in the number of recaptures per individual,
as seen in the Peromyscus dataset, will severely limit the ability
to perform these analyses for many systems. Even with the Apode-
mus data set, with the larger overall sample size, the requirement
for data on the same individual caught over successive months
greatly restricted the power of the analyses (the Apodemus dataset
was reduced from 653 captures to 254 for the longitudinal analy-
ses). It is notable that one study that found a particularly dense
network of associations among coinfecting parasites (Telfer et al.,
2010) used a longitudinal approach on a very large dataset
(14,075 captures of 5,981 animals), which enabled the authors to
look at how transitions in infection status (switching from unin-
fected to infected between captures) related to their coinfection
status. Such approaches and data are likely to be beyond the scope
of many studies of natural parasite communities (including those
of humans), therefore great caution should be taken either when
applying longitudinal approaches to more restricted datasets, or
when having to resort to less desirable cross-sectional approaches.

Why then did so many of the other approaches perform so
badly? There are several, not mutually exclusive, explanations.
One possibility is that the methods may be reliable given the right
data, but the datasets used here are lacking in terms of sample size,
resolution (frequency of sampling) or type of data available (egg
count data, which are an indirect and potentially unreliable proxy
for parasite abundance). For these reasons we used liberal assess-
ments of reliability, tending to base our conclusions on directions
of effects, rather than strict statistical significance. Hence, if a given
approach is reasonable, but our sample size was inadequate, we
may expect a predicted effect in the correct direction even if it
was not statistically significant. However, our results do not sug-
gest a mere lack of statistical power, as the associations we found
were not necessarily small or insignificant but were, in the major-
ity of cases, in the opposite direction to the experimentally-
observed interactions. It is certainly true that two of the most
prominent observational studies reporting strong associations
among coinfecting parasites (Lello et al., 2004; Telfer et al., 2010)
had particularly large sample sizes. However, the sample sizes of
our datasets were not particularly different from those used in
many observational studies of parasite communities, and so it
seems reasonable to suggest that if our datasets were inadequate
for these statistical methods then the same may apply to other
studies. An alternative explanation is that observational studies
do not adequately control for confounding factors that either
obscure genuine interactions, or generate spurious associations.
In our GLM analyses we attempted to control for such effects as
much as possible (e.g., host age, sex, sampling location, time-point
etc.) but these analyses did not necessarily perform better than the
equivalent analyses that did not control for covariates (e.g., corre-
lations or t-tests). Clearly there may be other important factors
that we did not account for (e.g., exposure, host genetic resis-
tance/susceptibility, local spatial heterogeneity etc.), but the fac-
tors we controlled for are consistent with those used in many
other studies. Thus these approaches may not be expected to be
any more reliable for other, similar studies. Finally, it is possible
that interactions among parasites are non-linear, meaning that lin-
ear statistical models, as are commonly used for inferring the exis-
tence of parasite interactions (and as were used here) are not
adequate to detect the true relationships between parasites. In par-
ticular, if interactions are strongest at low infection intensities (i.e.,
between nematode-free hosts and those with light nematode
infections) then the typically higher burdens seen in untreated
individuals may reduce the ability of observational approaches to
detect those interactions. To assess this possibility we re-ran our
cross-sectional and longitudinal GLM analyses with a quadratic
term for nematode EPG as the predictor variable (for both Eimeria
EPG and presence/absence as the response variables). However in
no cases did the quadratic term stay in the final model, suggesting
there was no detectable non-linearity in the nematode-Eimeria
interaction that could have caused the differences between our
observational and experimental results.

An alternative explanation for the mismatch between experi-
mental and observational analyses is that it is the experimental
results are incorrect, while the observational results reflect the true
interaction. For example, the administered drug (ivermectin, a
broad-spectrum nematocidal drug) may directly affect Eimeria,
generating the apparent interactions we saw experimentally. How-
ever, this seems highly unlikely, as ivermectin is one of the most
widely used anthelmintic drugs for both medical and veterinary
usage and has been tested multiple times and in a diverse array
of systems, yet we have not found any reported direct effects on
coccidia. Furthermore, if ivermectin did directly affect Eimeria it
would have to have a positive effect (increase Eimeria infection sta-
tus) to create the post-treatment effects that we found in both
datasets. Ivermectin targets the nervous system, and it is hard to
envisage how that mode of action would directly lead to an
increase in the abundance of Eimeria. Alternatively, ivermectin
may be affecting a nematode that is not detected in the observa-
tional samples (i.e., that does not pass eggs in the host’s faeces),
but that is affecting Eimeria. However, there is evidence that the
negative interaction between nematodes and Eimeria in Apodemus
occurs through a highly localised interaction between two species
that are regularly passed in faeces: the nematode Heligmosomoides
polygyrus (the most common nematode in this population), and a
common species of Eimeria (Eimeria hungaryensis) that inhabits
the same section of the gut as H. polygyrus; another Eimeria species
found in lower parts of the gut (where H. polygyrus is absent) was
unaffected by anti-nematode treatment (Knowles et al., 2013). It
would be hard to explain these species-specific effects if the exper-
imental results were mediated by an undetected nematode. It
therefore seems more parsimonious to suggest that the nematodes
we detect do indeed negatively affect Eimeria, but that many of the



Table 2
Summary of results in this study. P-values refer to associations between nematodes and Eimeria. ‘All data’ includes multiple captures per individual. Bootstrapped results from
100 random subsamples, each including one capture per individual, presenting the percentage of runs (Sig%) returning a significant association between nematodes and Eimeria.
Cell shadings show analyses that may imply an association between nematodes and Eimeria (based on P < �0.05 for all data, or >50% of runs were significant for bootstrapped
data); blue, positive association; yellow, negative association.

+ve, positive; �ve, negative.
aPearson’s correlations. r is the correlation coefficient. PA, the parasite is coded as present/absent (categorical variable); EPG, eggs per gram (continuous variable); Eim, Eimeria
(the response variable); and Nem, nematodes (the predictor).
bP, value at which ‘nematodes’ drops out or is retained in the final model.
cOR, Odds Ratio (and 95% Confidence Intervals) for the effect of nematodes on Eimeria from models where ‘nematodes’ is retained.
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observational analyses are unable to reliably detect this
interaction.

Above we asked why many of the observational approaches
failed to detect the underlying interactions. However it also seems
reasonable to ask the reverse question: why would we expect them
to be able to detect a true interaction? Real-world parasitological
(or indeed any ecological) data are typically highly noisy with mul-
tiple sources of variation and confounding factors, generated by
highly non-linear processes acting across multiple levels of biolog-
ical organisation and spatial and temporal scales. It therefore
seems unlikely that many statistical approaches will fare well
when confronted with purely observational data, particularly if
datasets are of limited size or resolution. A previous individual-
based model showed that even with model-generated data, where
the generating processes and confounding variables were com-
pletely known and could be statistically controlled for, most tech-
niques failed to detect the underlying parasite interactions (Fenton
et al., 2010). Furthermore, mathematical modelling shows
that there may be highly non-linear, and even non-monotonic,
relationships between individual-level helminth burdens and the
population-level transmission of coinfecting pathogens; just by
changing worm burden there may be a switch from a positive rela-
tionship between worms and coinfecting pathogens at the popula-
tion level to a negative one, for the same system with the same
underlying interaction between them (Fenton, 2008, 2013). Hence,
samples from the same system taken from different times or
different locations may suggest opposite relationships between
parasites, simply by sampling at different points along the same
curve (Fenton, 2013). As such, not only may the occurrence of
interspecific interactions be highly context dependent, but so
may our ability to detect them. We suggest that while having more
data will generally be better than having less, it is equally impor-
tant to have data that span the full range of possible infection lev-
els, appropriate control for all sources of heterogeneity (spatial,
temporal and individual level) in the data and account for potential
non-linearities in their effects (e.g., non-linear relationships
between worm burden, host age and interaction strength; Fenton
et al., 2010; Lello et al., 2013). Furthermore, we strongly recom-
mend using longitudinal approaches where possible, even though
that requires non-destructive sampling and may involve indirect,
and possibly unreliable, estimates of infection status (e.g., faecal
egg counts as proxies of helminth burdens). It is possible that
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destructive sampling, although constraining analyses to be cross-
sectional, may prove more reliable than the results presented here,
due to the ability to make direct measures of infection status (e.g.,
Behnke et al., 2005); however, we were not able to assess that here
due to a lack of such data for our systems.

We emphasise that our results and conclusions relate specifi-
cally to the characteristics of our datasets and systems. As noted
above, for example, the extent to which longitudinal analyses
out-perform cross-sectional analyses will depend on having an
appropriate time scale of sampling relative to the dynamics of
the parasites. In addition, whether qualitative (presence/absence)
or quantitative (EPG) analyses are preferable will depend on the
system-specific accuracy of the assays for quantifying infection
levels. Infection by microparasites (viruses, bacteria etc.) is often
detected either directly by PCR or indirectly by immunity-based
assays for antibodies or antigen (e.g. ELISA, immunofluorescence-
based assays), whereas macroparasite (e.g., helminth) detection
by non-destructive sampling is most often by faecal egg counts
from microscopy. The reliability of the different qualitative and
quantitative measures of infection status will vary between sys-
tems and so will the relative benefits of using qualitative or quan-
titative analyses.

Overall we have shown considerable variability among observa-
tion-based approaches in their ability to infer interspecific parasite
interactions from natural parasite data. Based on these results, and
previous theory (Fenton et al., 2010), we would strongly discourage
the use of cross-sectional approaches, particularly correlation-based
methods, for inferring interspecific interactions. If possible, we
would recommend longitudinal approaches, although the size of
dataset needed, the requirement for non-destructive sampling and
the required frequency of sampling may restrict their applicability
to only certain systems (e.g., Telfer et al., 2010). Ultimately, as is well
known in free-living community ecology, we would suggest that
experimental approaches, if possible, are the most direct way of
detecting genuine interspecific interactions. In terms of human
infectious diseases we see great, but currently under-exploited,
potential for detecting parasite interactions following drug treat-
ment programmes. There are many programmes underway in
human communities around the globe that use specific drugs to tar-
get narrow groups of parasites, or broad spectrum drugs that differ
in their efficacy against different parasite species (Basáñez et al.,
2012), but often little attempt is made to follow non-target parasites
(but see Blackwell et al., 2013). Often, these programmes show great
variability in their benefits to host health (Taylor-Robinson et al.,
2012), and one possibility is that coinfecting, non-target, parasites
may be responding to suppression of the target parasites (Fenton,
2013). Such treatment programmes provide ideal perturbations
(exactly like those used in our Apodemus and Peromyscus studies)
which, if appropriate data can be collected, could provide great
insight into how the targeted parasites interact with other members
of the parasite community, and may help the design of more effec-
tive and sustainable treatment programmes.
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