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evidence for upwash exploitation and downwash avoidance?  2 
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Many species travel in highly organised groups1-3. The most quoted function of these 11 

configurations is to reduce energy expenditure and enhance locomotor performance of 12 

individuals within the assemblage4-12.  The distinctive V formation of bird flocks has 13 

long intrigued researchers and continues to attract both scientific and popular 14 

attention4,7,9-14. The well held belief is that such aggregations give an energetic benefit 15 

for those birds which are flying behind and to one side of another bird through using 16 

the regions of upwash generated by the wings of the preceding bird4,7,9-13, though a 17 

definitive account of the aerodynamic implications of these formations has remained 18 

elusive. This has been, in part, due to the lack of suitable technology limiting the study 19 

of such behaviour in free-flying birds, and the shortcomings of applying fixed-wing 20 

aerodynamic theories to flapping flight. Here we show that individuals flying within a V 21 

flock position themselves in aerodynamically optimum positions, in so far as they agree 22 

with aerodynamic theoretical predictions. Furthermore, we demonstrate that birds 23 

exhibit wingtip-path coherence when flying in V positions, flapping spatially in phase 24 

enabling upwash capture to be maximised throughout the entire flap cycle. In contrast, 25 

when birds fly immediately behind another bird – in a streamwise position – there is no 26 

wingtip path coherence; the wing-beats are in spatial anti-phase. This could potentially 27 
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reduce the adverse effects of downwash for the following bird. These aerodynamic 28 

accomplishments were previously not thought possible for birds because of the complex 29 

flight dynamics and sensory feedback that would be required to perform such a feat12,14. 30 

We conclude that the intricate mechanisms involved in V formation flight indicate 31 

remarkable awareness of, and ability to, either sense or predict the spatial wake 32 

structures of nearby flock-mates; and suggest that birds in V formation have phasing 33 

strategies to cope with the dynamic wakes produced by flapping wings. 34 

Fixed-wing aerodynamic theories have predicted the exact spanwise positioning that birds 35 

should adopt within a V formation flock to maximise upwash capture4,9-14. The primary 36 

empirical evidence to confirm that this mechanism is used is a reduction in heart rate and 37 

wing-beat frequency in pelicans flying in a V formation7. There is a general lack of 38 

experimental data from free-flying birds, mainly due to the complications of measuring the 39 

intricate and three-dimensional complexity of formation flight, and the lack of appropriate 40 

devices to monitor and record such information. Therefore, the precise aerodynamic 41 

interactions which birds employ to exploit upwash capture have not been identified. To 42 

investigate the purported aerodynamic interactions of V formation flight, we studied a free-43 

flying flock of critically endangered Northern bald ibises (Geronticus eremita) (Fig. 1a). We 44 

used novel technology15,16 to measure the position, speed and heading of all birds within a V 45 

formation. We recorded position and every wing flap of 14 birds during 43 minutes of 46 

migratory flight using back-mounted integrated Global Positioning System (5 Hz) (GPS) and 47 

inertial measurement units (300 Hz) (IMUs) (see Supplementary Methods)15,16. The precision 48 

of these measurements allows the relative positioning of individuals within a V to be tracked, 49 

and the potential aerodynamic interactions to be investigated at a level and complexity not 50 

previously feasible.  51 

During a 7 minute section of the flight, where the majority of the flock flew in approximate V 52 

formation in steady, level and planar direct flight, (see Supplementary Methods), we found 53 
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wing flaps occurred at an angle of, on average, 45 degrees to the bird ahead (or behind), and 54 

approximately 1.2 m behind (Fig. 1b, c, d). The most populated 1 m by 1 m region was 0.49 55 

m to 1.49 m behind (“streamwise”) and to the side (“favoured V position”) of the bird ahead. 56 

This centre of the most populated (0.25 m) spanwise region was at 0.904 m, resulting in a 57 

wingtip overlap9-13 of 0.115 m (Fig. 1d, wingspan b = 1.2 m). This falls within the bounds of 58 

fixed-wing theory predictions9-13 for maximising the benefits from upwash, which range from 59 

zero wingtip overlap (assuming no wake contraction4) to, maximally, 0.13 m (assuming 60 

elliptical loading over the pair of wings, and full wake contraction from wingspan b to π b /4) 61 

9. 62 

During this 7 minute section of V formation flight, individual birds show a certain degree of 63 

positional infidelity within the V flock (Fig. 2, see also Supplementary Figure 1 and 64 

Supplementary Movie 1). While individuals contribute to the statistical V formation, their 65 

positioning is inconsistent. Certain individuals showed general preferences for a particular 66 

area within the V formation, whether left, right, front or rear, but the variability in positioning 67 

resulted in no clear leader within the flock (Fig. 2). Navigational ability and kin selection 68 

have been proposed as major drivers of leadership in V formation flight17, with more 69 

experienced birds or parents of a family group taking the lead17. The ibis flock in the present 70 

study comprised birds of the same age (< 1 year old), with no prior navigational experience 71 

of the route and no parent-offspring relationships. The absence of immediate kin selection 72 

and learnt navigational ability as possible factors determining a V formation structure in the 73 

recorded flight strengthens the evidence for an aerodynamic function behind the V formation 74 

observed in the ibis. The young age of the birds, however, may be the main factor as to why 75 

there is a lack of a clear leader in the ibis flock, contrasting with previous observations of 76 

adult ibises, in which consistent leaders in flocks were identified18. Spontaneous and 77 

inconsistent leadership has been identified in bird flocks either where no consistent social 78 

hierarchy exists19, or when no prior knowledge of a route is known20. For other ‘classic’ V 79 
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formation fliers, the first migration is a significant cause of mortality for young birds, even 80 

when migrating with parents. As such, aerodynamic mechanisms that reduce the energetic 81 

cost of (albeit only very infrequent) migratory flight, may present considerable selection 82 

advantage.  83 

We demonstrate that when flying in a V, ibises position themselves in fixed-wing 84 

mathematically predicted positions4,9-11. However, the wake path of flapping birds (in this 85 

study, ibises spent 97% of their time flapping; Supplementary Methods) is complex9-14. 86 

Wingtip path coherence, where a flying object flaps its wings in spatial phase with that of the 87 

individual it is following, has been proposed as a method that would both utilise and 88 

maximise upwash capture in V formation flight of birds and flying robotic devices12. Whether 89 

birds are able to take advantage of this additional level of complexity present in flapping 90 

flight (in comparison to that of fixed-wing flight) had previously remained unanswered.  91 

Within the ibis flock, individual flaps for each bird were described from the dorsal 92 

acceleration signal from the IMU15. The temporal phase 
�
φ
temporal

 is defined here as the 93 

proportion of a flap cycle of a leading bird at which a following bird initiates a flap. A value 94 

of ʌ/2 indicates that the following bird started a given flap a quarter of the way through the 95 

flap of the bird ahead of it; a value of 3ʌ/2 indicates the following bird initiates a flap ¾ of 96 

the way through – equivalent to ¼ or -ʌ/2 behind – the bird it is following. Spatial phase 97 

�
φ
spatial

 makes use of the temporal phases calculated above, and takes account of the number of 98 

wavelengths, λ , between the bird ahead and the bird behind: 99 

��φspatial
=φ

temporal
−ʹπλ  100 

A spatial phase of zero would indicate that, were the birds to be directly following each other, 101 

the wingtip paths would match.  102 
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In the most populated 1 m by 1 m favoured V position (Fig. 1c), Rayleigh’s test21 for circular 103 

statistics indicates a significant unimodal bias in both temporal (Rayleigh, P = 0.018, mean 104 

phase = 0.857; Hodges-Ajne, P = 0.012) and, more strongly, spatial (Rayleigh, P = 0.003, 105 

mean phase = -1.155; Hodges-Ajne, P = 0.004) phases (Fig. 3a, b) (see Supplementary Table 106 

1 for further statistics; Supplementary Figure 2a, 3a, 4a). Flapping in spatial phase indicates 107 

that the wing of a following bird goes up and down following the path through the air 108 

previously described by the bird ahead. The following bird then benefits from consistently 109 

flapping into the upwash region from the preceding bird (Fig. 3b, c), presumably reducing the 110 

power requirements for weight support.  Ibises, when flying in the 45 degree V favoured 111 

position (Fig. 1c), keep their wings close to the region of maximal induced upwash 112 

throughout the entire flap cycle (Fig. 3c), by significant spatial wingtip coherence. This 113 

wingtip path coherence allows the tracking of the beneficial air throughout the full flap cycle, 114 

maximising the potential to capture upwash12,14.  115 

In contrast, birds flying directly behind, tracking the bird ahead in a streamwise position 116 

(sampled region 0.5 m across, 4 m streamwise, Fig. 1c) flap in close to spatial antiphase 117 

(median = 2.897, where precise antiphase would be +/-3.142), significantly (P < 0.05) 118 

deviating from flapping ‘in’ spatial phase (see Supplementary Table 1 for further statistics; 119 

Supplementary Figure 2b, 3b, 4b). As such, the wingtip paths of the following bird do not 120 

match those of the bird they are following, and the wingtip paths are close to maximally 121 

separated. Birds flying directly behind another bird in a streamwise fashion flap in spatial 122 

antiphase (Fig. 3d, e, see also Supplementary Figure 2b, 3b), potentially reducing the adverse 123 

effects of downwash (Fig. 3f), both in terms of magnitude and direction. If this position was 124 

aerodynamically adaptive, it would be predicted to be favoured at higher speeds, where 125 

parasite power is relatively high22, compared with the induced power costs of weight support; 126 

forms of slipstreaming can reduce the drag experienced by followers5,6,8,23, even in cases 127 

where there is zero net horizontal momentum flux in the wake (i.e. drag=thrust) – as in steady 128 
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swimming – due to temporal or local spatial5,25,26 fluctuations from mean wake conditions. 129 

Whether the position immediately behind is accidental or intentional, or whether it offers any 130 

aerodynamic advantage or cost, is currently unclear. However, the wing-beat phasing 131 

observed when in this position would serve to displace the following bird's wings from 132 

regions of greatest downwash (presumably immediately inboard of the trailing wing tip 133 

vortices, close to wing tip paths described by the previous bird), through most of the flap 134 

cycle. 135 

In both the streamwise and V position transects (Fig. 1c), temporal phase increases in 136 

proportion with distance behind the focal bird (Fig. 3a, d), with a full 2ʌ cycle change in 137 

phase over a complete wavelength; spatial phase is approximately maintained up to 4 m 138 

behind the leading bird. Previously, there was much uncertainty about spatial wing-beat 139 

phasing and wingtip path coherence in flapping organisms. The only prior biological 140 

evidence of this phenomenon comes from tethered locusts in wind tunnels, where distance 141 

manipulations between a leading locust and a follower altered the phase patterns of their 142 

wing-beats,26,27. Similarly, phasing of model dragonfly wings was shown to improve 143 

aerodynamic efficiency by recovering energy from the wake wasted as swirl, in a manner 144 

analogous to coaxial contra-rotating helicopter rotors28 Theoretical engineering models have 145 

taken into consideration flapping flight, and the additional benefits a flapping wing may 146 

accrue in formation flight12,14. Such models have suggested that upwards of 20% variation 147 

exists in the induced power savings to be gained, if flapping is done optimally in spatial 148 

phase, versus out of phase12 (Supplementary Figure 4).  149 

Here, we show that ibis flight in V formation does, on average, match fixed-wing 150 

aerodynamic predictions (Fig. 1d), but flock structure is highly dynamic (Fig. 2). Further, 151 

temporal phasing of flapping relates to both streamwise and spanwise position. This indicates 152 

remarkable awareness of, and ability to respond to, the wingpath – and thereby the spatial 153 

wake structure – of nearby flock-mates. Birds flying in V formation flap with wingtip path 154 



7 
 

coherence – the wingtips take the same path – placing wings close to the oscillating positions 155 

of maximal upwash. In contrast, birds flying in line flap in spatial antiphase – the wingtip 156 

paths are maximally separated – consistent with avoidance of adverse downwash. This raises 157 

the possibility that, in contrast with conventional aircraft, following birds may be able to 158 

benefit from ‘drafting’ while, to a certain extent, avoiding an increased cost of weight support 159 

by evading localised regions of downwash. Optimal flight speeds would differ between solo 160 

flight, V formation flight and (whether net-beneficial or not) in-line flight, potentially 161 

providing some account for the unstable, dynamic nature of V formation flocks. 162 

METHODS SUMMARY 163 

Measurements: We equipped 14 juvenile Northern bald ibises (Fig. 1a) with back-mounted 164 

synchronised GPS (5 Hz) and inertial measurement units (IMUs, 300 Hz), mass 23 g 165 

(Supplementary Photo 1), which are custom made within our laboratory, and have been tested 166 

and validated for accuracy and precision15,16. The mass of birds at the start of migration was 167 

1.30 ± 0.73 kg. As such, the 23 g loggers comprised approximately 3% of the body mass of 168 

the smallest bird. This is comfortably below the recommended 5% for flying animals29. The 169 

ibises form part of a large-scale conservation programme (Waldrappteam, 170 

http://www.waldrappteam.at), and had been hand-reared at Salzburg Zoo (Austria), imprinted 171 

onto human foster parents, and taught to follow a powered parachute (paraplane) to learn the 172 

migration routes (Supplementary Methods). Experiment protocols were approved by the 173 

RVC local Ethics and Welfare Committee. A GPS trace of the ibis flight imposed over 174 

Google EarthTM (Landsat) can be found in Supplementary Photo 2 as a KLM file. GPS data 175 

was post-processed using GravNav WaypointTM software15,30, and IMU data via custom-176 

written MATLAB (R2012b, Mathworks, Natick, Mass., USA) programmes16,30. Mean flap 177 

frequency, speed and peak detection protocols are detailed in Supplementary Figures 5 and 6. 178 

For further details on post-processing, see Supplementary Methods.  179 
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Statistical Analysis: Circular statistics21 were carried out in LabVIEW (NI, Austin, Texas, 180 

USA). First order (Rayleigh test) and second order (Hodges-Ajne) statistics were employed 181 

to test the phasing of wing-beats for significant deviations from random distribution. For 182 

further details on statistical analysis, see Supplementary Methods.  183 

Full Methods and any associated references are available in the online version of the paper at 184 

www.nature.com/nature. 185 
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 268 

Figure Legends 269 

Figure 1 V formation flight in migrating ibises. a, Northern bald ibises (Geronticus 270 

eremita) flying in V formation during a human-led migratory flight (photo credit, M. 271 

Unsöld). b, location histogram of the 7 minute flight section, showing position of individual 272 

ibis within the V formation, with respect to flock centroid, measured via a 5 Hz GPS data 273 

logger. The colour scale refers to the duration (s) a bird was present in each 0.25 m x 0.25 m 274 

grid. A plot detailing the formation shape for the duration of the entire flight can be found in 275 

Supplementary Figure 7. c, histogram of number of flaps (colour coded) recorded within each 276 

0.25 m x 0.25 m region between all birds and all other birds. The majority of flaps occurred 277 

at an angle of approximately 45 degrees to the bird ahead (or behind). Transects denoted by 278 

dashed lines, directly behind or along the most populated region (just inboard of wingtip to 279 

wingtip), are the same as those detailed in Fig. 3. d, histogram detailing the total number of 280 

flaps recorded between a bird-bird pair, with respect to position of the following bird. The 281 

shaded area denotes the limits of optimal relative positioning, based on fixed-wing 282 

aerodynamics (see references 9-11). 283 

Figure 2 Histograms demonstrating the positional infidelity for each individual 284 

Northern bald ibis within the V formation during the migratory flight. The grey shaded 285 

V shape behind each individual histogram (N = 14) denotes the structure for all individuals 286 
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within the flock (see Fig. 1b). The colour code refers to the duration (s) a bird was present in 287 

each 0.25 m x 0.25 m grid. While individual birds showed some bias towards the front, back, 288 

left or right regions of the V formation, these positions were not maintained rigidly.  289 

Figure 3 Geometric and aerodynamic implications of observed spatial phase 290 

relationships for ibises flying in a V formation. Temporal phase increases as a function of 291 

position behind more advanced birds (median +/- 95% CI of phase for each mean bird-bird 292 

interaction within a region).  When positioned at close to a wavelength inline with the V 293 

favoured position (a-c), wingtip paths approximately match: observed temporal phases agree 294 

with those predicted from the significant spatial phase relationship (thick black lines, +/- 95% 295 

CI) at the most populated 1 m x 1 m region, using the mean wavelength measured for each 296 

position. When positioned directly in line (d-f), following birds flap in spatial antiphase, 297 

maximally separating wingtip paths. In this case the model line is derived from the median 298 

spatial phase for all bird-bird interactions up to 4 m directly behind. Induced flow velocities 299 

(blue arrows, c, f), due to the trailing wingtip vortices of the bird ahead (vortex cores denoted 300 

by grey circles), are modelled as infinitely long, parallel vortex filaments. Birds flying in 301 

typical V formation keep their wings close to the region of maximal induced upwash (c) 302 

throughout the flap cycle. Birds flying directly behind flap in spatial antiphase, potentially 303 

reducing the adverse effects of downwash (f), both in terms of magnitude and direction. For 304 

scale, the downwash directly between the vortices would be (-) 0.3 m/s, between trailing 305 

vortices for a behind a bird of mass 1.3 kg, span 1.2 kg at a speed of 15 m/s (no account is 306 

taken of flapping, viscosity or wake contraction). Alternative representations of (a) and (d) as 307 

Cartesian plots can be found in Supplementary Figure 3, and Supplementary Figure 4 details 308 

the extended data array displayed beyond the presented model line.  309 
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