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Maternal nutrition at conception modulates DNA
methylation of human metastable epialleles
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In experimental animals, maternal diet during the periconceptional period influences the

establishment of DNA methylation at metastable epialleles in the offspring, with permanent

phenotypic consequences. Pronounced naturally occurring seasonal differences in the diet of

rural Gambian women allowed us to test this in humans. We show that significant seasonal

variations in methyl-donor nutrient intake of mothers around the time of conception influence

13 relevant plasma biomarkers. The level of several of these maternal biomarkers predicts

increased/decreased methylation at metastable epialleles in DNA extracted from lympho-

cytes and hair follicles in infants postnatally. Our results demonstrate that maternal nutri-

tional status during early pregnancy causes persistent and systemic epigenetic changes at

human metastable epialleles.
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M
etastable epialleles (MEs) are genomic regions at which
DNA methylation is established stochastically in the
early embryo then stably maintained in differentiated

tissues, leading to interindividual epigenetic variation that affects
multiple cell types1. Experiments in agouti viable yellow (Avy)
mice, later confirmed in axin fused (AxinFu) mice, demonstrated
that maternal dietary changes affecting methyl-donor availability
alter epigenetic development at MEs, causing permanent
phenotypic variation among isogenic offspring2–4. MEs are
essentially epigenetic polymorphisms; their methylation in
accessible cells (for example, peripheral blood lymphocytes
(PBL)) provides a readout of the epigenetic state in other
tissues, making them attractive candidates for epigenetic
epidemiological studies5,6. Exploiting an experiment of nature
that determines seasonal fluctuations in the dietary intake and
nutritional status of rural Gambian women, we previously
demonstrated that season of conception significantly influences
the methylation of candidate MEs in children7. Contrary to our
initial hypothesis, the percentage of DNA methylation was higher
in children conceived in the protein-energy-limited rainy
(‘hungry’) season than in those conceived in the dry (‘harvest’)
season. We therefore hypothesized that rather than the negative
energy balance observed in mothers during the rainy season,
other nutrients critical to methyl-donor metabolic pathways may
have a limiting role7.

We here report a prospective study that replicates the season of
conception effects on epigenotype and extends the findings to

additional human MEs. We further show that DNA methylation
is predictably influenced by periconceptional maternal plasma
biomarker concentrations of key micronutrients involved in one-
carbon metabolism. This represents a demonstration in humans
that a mother’s nutritional status at the time of conception can
influence her child’s epigenome, with likely lifelong implications.

Results
Seasonal differences in maternal blood biomarkers. In rural
Gambia the combination of a monomodal rainy season and the
population’s primary dependence on the consumption of own-
grown foods leads to profound annual variations in the intakes of
macro and micronutrients. Such variations are compounded by
the seasonally variable agricultural workload8. These annual
oscillations in nutrient availability and substrate utilization have
long been known to affect foetal growth and development9–11,
offering a powerful means to explore mechanisms by which early
diet affects long-term functional outcomes in humans. To
exploit this model we designed a prospective study to map
the influence of mothers’ periconceptional dietary intakes and
plasma concentrations of key methyl-donor pathway substrates
(methionine (MET), choline (CHOL), betaine (BET)) cofactors
(folate (FOL), vitamins B2, B6, B12, active B12 (ACTB12))
and intermediary metabolites (dimethyl glycine (DMG),
S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH),
homocysteine (HCY), cysteine (CYS)) on their infants’ DNA CpG
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Figure 1 | Seasonal differences in plasma biomarker concentrations. (a) Heatmap of seasonal variation in maternal plasma biomarker concentrations at

the time of conception. Columns correspond to pregnant women (main group), grouped according to season of conception. Colours represent

deviation from all season mean biomarker concentrations, calculated as z-scores. Biomarkers are ranked by mean seasonal difference (Supplementary

Table 2), with the greatest increment in the rainy versus dry season (BET:DMG) at the top, and the greatest decrement (SAH) at the bottom. Analysis of

variance P-values: *o0.05; **o0.01; ***o0.001; N¼ 167. (b) Comparison of seasonal patterns in the plasma biomarker concentrations between the

indicator group (N¼ 30, shown in black) and the main group before back extrapolation (N¼ 167 total; rainy season (green), dry season (yellow)) for

BET:DMG and SAM:SAH ratios, FOL, B2, MET, HCY, DMG and SAH. Y-axis units: FOL and SAH nmol l� 1; in MET, HCY and DMG mmol l� 1; B2 in 1

EGRAC� 1. Thick line, mean of logarithm of the biomarker; thin lines, 95%CI. Plots for the remaining biomarkers are shown in Supplementary Fig. 1.

B2 (riboflavin) is represented as the reciprocal of the erythrocyte glutathione reductase activation coefficient (EGRAC), a functional test inversely

associated with red blood cell riboflavin sufficiency.
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methylation at seven curated MEs. Because it would be impractical
to collect repeated dietary intake and blood draws in hundreds of
(pre-)pregnant women to capture their precise metabolic status at
the time of conception, we implemented a two-part design using
separate groups of women living among the same villages. An
‘indicator’ group of non-pregnant women (N¼ 30) had dietary
intake and plasma biomarker concentrations assessed monthly
over a full calendar year (July 2009 to June 2010) to provide data
to model the seasonality of each variable using truncated-Fourier
series12. These results have been published in full elsewhere13.
Concurrently, another group of women (the ‘main’ group,
N¼ 2,040) were followed while non-pregnant and visited
monthly until a missed menses was reported, at which point a
blood draw was taken for plasma biomarker assessment;
pregnancy was confirmed a month later. Women who conceived
at the peak of the rainy (‘hungry’) season (July–September 2009,
N¼ 84) or the peak of the dry (‘harvest’) season (February–April
2010, N¼ 83) were fully enroled into the main group (see
Methods). The sonographically-determined stage of gestation at
the time of sampling was 8.6±4.0 weeks (mean±s.d.). Predicted
biomarker concentrations at the time of conception were
calculated by back extrapolation (adjusting for season and
gestational age) using the modelled data from the indicator
group and allowing for pregnancy-induced changes in substrate
concentrations (see Methods, Supplementary Tables 1 and 2).

Eight of the 13 biomarkers, and two derived variables
(BET:DMG and SAM:SAH) showed significant differences
between seasons of conception (Fig. 1a and Supplementary
Table 2). Maternal periconceptional concentrations of FOL, B2,
MET, BET and the SAM:SAH and BET:DMG ratios were higher
in the rainy season, and concentrations of ACTB12, DMG,
HCY and SAH were lower. Biomarker-specific seasonality
in the main and indicator groups are illustrated in Fig. 1b and
Supplementary Fig. 1.

Maternal predictors of infant DNA methylation. We tested
whether these nutritionally driven seasonal differences in
maternal periconceptional one-carbon metabolism affect the
establishment of DNA methylation at human MEs. The DNA
methylation analyses focused on four previously described
MEs (BOLA3, LOC654433, EXD3 and ZFYVE28 (ref. 7)), and
three additional loci (RBM46, PARD6G and ZNF678). The latter
novel MEs were identified by methylation-specific amplification
microarray analysis14, using a parallel two-tissue co-hybridization
design to detect systemic interindividual variation7. Validation
experiments using autopsy samples from Vietnamese adults
demonstrated high inter-tissue correlation of DNA methylation
among distinct embryonic germ layer lineages (liver, kidney and
brain) (Supplementary Fig. 2), and epigenetic discordance within
United States monozygotic (MZ) twin pairs from a previously
established twin registry15 (Fig. 2a–d) corroborated these loci as
true human MEs.

In mice, effects of maternal nutrition on DNA methylation at
MEs are established in the early embryo and subsequently
propagated to all germ lineages4,16. To test whether human MEs
behave similarly, we obtained PBL (N¼ 126) and hair follicle
samples (HF, N¼ 87) mesodermal and ectodermal tissues,
respectively from 2–8 month (3.6±0.9) old infants born to
mothers in the main group. Perhaps owing to ‘limited lineage’
epigenetic metastability3, PARD6G5 was consistently hyper-
methylated in HF (Fig. 2e) and therefore excluded from
subsequent analyses. As expected, percent methylation in HF and
PBL within each of the remaining six MEs was highly correlated
(average r¼ 0.72; Fig. 2e). Importantly, effects of season of
conception on DNA methylation were also correlated in the two
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Figure 2 | Examples of verification of metastable epialleles in humans.

(a) Pearson correlation of PBL DNA methylation at ZFYVE28 within

25 pairs of MZ twins15 shows that most interindividual variation in DNA

methylation is not explained by genetics. (The inset shows the genomic

region; the grey bar below the gene indicates a CpG island, and the asterisk

the location of the pyrosequencing assay.) (b) Clonal bisulfite sequencing

of discordant twin pair 10066 (circled in (a)). Each row represents an

individual clone from the post-bisulfite PCR product, and each column a

CpG site. Filled circles indicate methylation. The B500 bp region analyzed

is indicated by the line above the gene in (a). Not only the degree but also

the CpG site-specific pattern of methylation is highly discordant between

the two isogenic individuals. (c) Pearson correlation of PBL DNA

methylation for ZNF678 within 25 MZ twin pairs again illustrates that

interindividual variation is not genetically mediated. (d) Clonal bisulfite

sequencing of discordant twin pair 10943 (circled in (c)). (e) DNA

methylation is highly correlated between PBL and HF across all MEs

(excluding PARD6G, average Pearson correlation coefficient r¼0.72, range

0.39 (ZNF678) to 0.87 (LOC654433)), N¼82 paired Gambian PBL and HF

samples). PBL originate from mesodermal and HF from ectodermal germ

layers of the early embryo; thus these data confirm that the systemic

interindividual variation demonstrated in Vietnamese adults

(Supplementary Fig. 2) generally extends to these Gambian children.
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tissues. Offspring of rainy season conceptions had higher levels of
CpG methylation at the six remaining MEs in PBL (Fig. 3a) and the
overall effect of season was highly significant (Fig. 3b). The seasonal
pattern in HF samples was similar (Fig. 3c,d).

We used a 7-step approach to build linear least squares
regression models to regress the methylation scores for the
individual MEs and the mean methylation scores across all MEs
against season, against each maternal nutritional status biomarker
and against other covariates (see Methods). There was no
evidence for ME-specific effects of any of the biomarkers, the
derived variables, or other covariates with the exception of infant
sex (seeming unrelated regression (SUR) P¼ 0.0003). Therefore
the combined sex-adjusted mean methylation score for the six
MEs was used in the final analysis. Maternal body mass index
(BMI), vitamin B2, HCY and CYS concentrations at the time of
conception predicted mean ME methylation in both PBL and HF
DNA of their infants (Table 1). Association was also detected for
B6 in PBL. Increased maternal periconceptional CYS and HCY
concentrations predicted decreased systemic methylation (that is,
both tissues) in their infants, whereas maternal B2 concentrations
predicted increased ME methylation. The direction of each of
these associations is congruent with their expected impact on
methyl group supply. The percentage of the variance of
methylation of PBLs explained by all the biomarkers combined
was 10.3%, 95%CI¼ (7.7, 38.5%); the ‘true’ association, after
adjusting for correlation dilution imposed by estimating the
biomarkers in a single blood draw and back extrapolating to
conception13, is likely much stronger. While biomarkers
both vary seasonally and are strongly associated with DNA
methylation, their net effect does not fully explain the
seasonal variation in DNA methylation; the seasonal effect
remained significant with an increased coefficient (� 0.61,
95%CI¼ (� 1.11, � 0.11); multiple regression model P¼ 0.018)
when the regression model included all the biomarkers.

Discussion
Evidence is accumulating that environmental factors during
early-life have long-term effects on later health outcomes and that
these processes reflect epigenetic responses to periconceptional
exposures17. Our data represent first-in-human confirmation that
the maternal blood biomarker status of substrates and cofactors
required for methyl-donor pathways, measured around the time
of conception, predicts the methylation patterns of MEs in
offspring. Increased maternal BMI was also predictive of
decreased systemic infant DNA methylation at MEs. This
finding is potentially of global significance and is the subject of
further studies in which we are attempting to distinguish possible
effects driven by total adiposity and/or dynamic changes in
energy balance. Further research beyond the current set of MEs
and the follow-up of infants from this study is also ongoing.

Our experimental design (based on random distribution of
conceptions to different seasons) eliminates many possible
confounders and, because our data corroborate prior knowledge
from controlled supplementation studies in animal models2–4,6, a
likely causal effect can be inferred. Although the phenotypic
consequences of these variations in methylation are not yet
known, the possible implications of tissue-wide epigenetic
variation at MEs induced by subtle differences in maternal
micronutrient status and BMI at the time of conception are far
reaching.

Methods
All procedures were approved by the joint Gambian Government/MRC Ethics
Committee and written-informed consent was obtained from all participants or
their guardians.

Study setting and population. This was an observational prospective cohort
study, conducted between July 2009 and July 2011 in 34 villages across the rural
West Kiang district of The Gambia, within the catchment area of the MRC
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Figure 3 | Season of conception affects DNA methylation at MEs. (a) Percent methylation at the six MEs in PBL of infants conceived in the dry or rainy

season. Median % methylation is consistently higher in infants conceived in the rainy season. (b) Mean PBL methylation z-score across the six MEs is

significantly higher in infants conceived in the rainy season. (c) Percent methylation at the six MEs in HF of infants conceived in the dry or rainy season; the

overall pattern of methylation is similar to that observed in PBL, as is the seasonal difference in mean methylation z-score (d). Box plots represent the

median (horizontal line) and interquartile range (box) of the indicated distribution. The whiskers extend from the top/bottom of the box to the highest/

lowest data value that is within 1.5. Asterix represents interquartile range of the box. Data beyond the whiskers are plotted as individual points.

PBL, peripheral blood lymphocyte; Oneway analysis of variance P-values: *o0.05, **o0.01; PBL Nmax¼ 126 and HF Nmax¼87 infant DNA samples.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms4746

4 NATURE COMMUNICATIONS | 5:3746 | DOI: 10.1038/ncomms4746 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


International Nutrition Group’s field station at MRC Keneba (http://
www.ing.mrc.ac.uk). This study was registered at http://www.clinicaltrials.gov,
reference number NCT01811641, as a proof-of-principle observational study.

‘Indicator’ group women: Thirty non-pregnant, non-lactating women from three
villages were followed monthly for one full calendar year for the assessment of
dietary intake (48 h-weighed records) of nutrients involved in methyl-donor
pathways and their effect on respective metabolic plasma biomarker concentrations
by season in a parallel study (for full details see ref. 13).

‘Main’ group mothers: All women of reproductive age (18–45 years) registered
in the MRC ING’s Demographic Surveillance System for West Kiang in The
Gambia (DSS, http://www.ing.mrc.ac.uk/research_areas/west_kiang_dss.aspx) were
invited to participate; 2040 women consented. Exclusion criteria included
confirmed pregnancy at time of recruitment, menopause or likely migration (short
or long term) away from West Kiang. Each month all 2040 women were assessed at
the village health post for weight (Tanita DH305 scales (Tanita Corporation, Japan)
and height measurement (Leicester stadiometer, Seca 214, UK)) and answered a
short questionnaire on the date of their last menstrual period. On the first report of
a missed menses, a 10 ml fasting venous blood sample was collected for the purpose
of plasma biomarker assessment. Upon reporting of a second consecutive missed
period the following month, a urine sample was collected for pregnancy testing
(this system was set up to avoid early disclosure of pregnancy to which some
women objected). If the test was negative the woman continued to be visited
monthly, and her blood sample from the previous month was discarded. If the test
was positive, the woman was invited to the MRC Keneba field station for
confirmation and dating of pregnancy by ultrasound examination and a full
antenatal check. Women who conceived during the peak of the rainy (July–
September 2009) or dry (February–April 2010) season and with a maternal blood
sample collected within the first 16 weeks from conception were then fully enroled.
Multiple pregnancies were excluded. The total number of women who conceived
during the a priori selected months and having a blood sample collected during the
first 16 weeks of pregnancy from conception was 166, recruited across 24 villages.
By study design, conceptions were randomly allocated to the different seasons and
therefore village was not considered as covariate in the analyses.

‘Main’ group infants: Between 2–8 month (3.6±0.9) (mean, s.d.) after delivery
infant samples of venous blood (3 ml) and HFs were collected by a trained nurse
for the purpose of DNA extraction. A total of 126 PBL and 87 HF samples were
obtained. Fewer HF samples were collected owing to some mothers objecting as a
number of children had too little hair for sampling leading to insufficient DNA
harvested from HF.

Summary statistics of the study population are shown in Supplementary
Table 1.

Maternal blood methyl-donor and co-factor concentrations (biomarkers). The
first day of the last menses is estimated to be 14 days before fertilization.

Conception date was thus calculated by adding 14 days to the estimated date of
onset of a woman’s last menses, based on the gestational age determined by
ultrasound at the time of the first antenatal check.

Plasma biomarker measurements included FOL, B2 (by functional test, see
below), B6, B12, ACTB12 (holotranscobalamin, the biologically ACTB12), CHOL,
BET and MET, as well as HCY, SAM, SAH and DMG. Maternal blood biomarker
assessment was carried out using the same methodologies as for the indicator
group women, as described previously13. Briefly, maternal blood samples (10 ml in
EDTA tubes) were collected in the field and transported on ice to the MRC Keneba
laboratory for processing and freezing within a maximum of 2 h, to avoid decay of
any of the biomarkers (for example, SAM to SAH conversion). Blood samples were
spun at 2,750 g for 10 min, the plasma taken off and frozen at � 80 �C immediately.
A sample of red blood cells was removed from the plasma-depleted blood fraction,
washed and stored at � 80 �C. All plasma biomarkers except B2 were assessed at
the Department of Paediatrics, University of British Columbia, Canada. SAM,
SAH, CHOL, BET, DMG, HCY, MET, CYS and B6 were analyzed by liquid
chromatography–tandem mass spectrometry. B12, ACTB12 and FOL were
analyzed by a microparticle enzyme intrinsic factor assay and by ion capture assay
respectively, on an AxSyM analyzer (Abbot Laboratories, Chicago, IL, USA). B2
status was determined in red blood cell lysate at MRC Human Nutrition Research
(HNR), Cambridge, UK, using the erythrocyte glutathione reductase activation
coefficient (EGRAC) assay, performed on a microplate. Higher EGRAC values
denote B2 deficiency.

DNA methylation. Infant PBL DNA was extracted from venous blood using a
standard salting-out method18 and extracted DNA was cleaned using the Chelex-
100 (BIO-RAD) protocol. Infant DNA from HFs was extracted by phenol
chloroform extraction and ethanol precipitation, as previously described7. DNA
methylation analysis was carried out at the Baylor College of Medicine, USDA/ARS
Children’s Nutrition Research Center, Houston, Texas, USA. Four previously
described MEs7, namely BOLA3, LOC654433, EXD3 and ZFYVE28, were assessed
in the current study. (An additional locus, SLITRK1, was eliminated based on a
strict cutoff (R240.50) in the inter-tissue correlation comparison of DNA
methylation in the expanded set of Vietnamese adults.) In addition, three newly
identified MEs (RBM46, PARD6G and ZNF678) were investigated. These new MEs
were determined as previously described employing a custom methylation-specific
amplification microarray14 combined with a multiple-tissue screening procedure
with validation by bisulfite pyrosequencing3. CpG site-specific methylation in the
current infant DNA samples was measured by quantitative bisulfite
pyrosequencing (Pyro Gold reagents and a PSQTM HS 96 pyrosequencer, both
from Biotage), as described elsewhere2. Briefly, 0.5–2mg of genomic DNA was
bisulfite treated, followed by locus-specific PCR amplification and pyrosequencing
to measure methylation at 4 to 12 CpG sites per candidate locus (Supplementary
Table 3). Each pyrosequencing assay covered 50–70 bp of DNA and was initially

Table 1 | Maternal predictors of mean methylation score across six metastable epialleles combined.

Maternal
Predictor

s.d. PBL HF

Stand
b-coeff

95% CI OR 95% CI P-value Stand
b-coeff

95% CI OR 95% CI P-value

BMI (kg m� 2) 3.33 �0.12 �0.23 to �0.02 0.98 0.97–1.00 0.014* �0.15 �0.29 to �0.02 0.98 0.96–1.00 0.024*
Age (years) 6.5 0.00 �0.10 to 0.10 1.00 0.99–1.01 0.968 �0.05 �0.19 to 0.09 1.00 0.99–1.01 0.472
FOL (nmol l� 1) 0.39 0.02 �0.07 to 0.12 1.03 0.90–1.17 0.615 0.01 �0.11 to 0.13 1.00 0.86–1.16 0.813
B2 (1 EGRAC� 1) 0.24 0.09 0.00 to 0.19 1.19 0.98–1.46 0.046 0.11 0.00 to 0.22 1.22 0.97–1.53 0.042
B12 (pmol l� 1) 0.42 0.03 �0.07 to 0.14 1.04 0.91–1.19 0.539 0.08 �0.06 to 0.23 1.06 0.88–1.26 0.249
ACTB12 (pmol l� 1) 0.49 �0.04 �0.16 to 0.07 0.98 0.87–1.11 0.454 �0.03 �0.18 to 0.13 1.00 0.85–1.18 0.749
CHOL (mmol l� 1) 0.31 �0.01 �0.12 to 0.09 0.95 0.80–1.12 0.799 0.01 �0.13 to 0.14 0.96 0.77–1.19 0.909
BET (mmol l� 1) 0.53 0.05 �0.10 to 0.20 1.03 0.89–1.19 0.485 0.13 �0.07 to 0.32 1.06 0.88–1.28 0.193
DMG (mmol l� 1) 0.55 �0.06 �0.16 to 0.04 0.95 0.86–1.04 0.208 �0.02 �0.15 to 0.11 0.97 0.86–1.09 0.794
BET:DMG ratio 0.6 0.08 �0.02 to 0.17 1.05 0.97–1.14 0.113 0.06 �0.06 to 0.18 1.04 0.94–1.15 0.342
SAM (nmol l� 1) 0.18 �0.06 �0.17 to 0.05 0.79 0.58–1.08 0.282 �0.05 �0.19 to 0.09 0.85 0.57–1.27 0.479
SAH (nmol l� 1) 0.32 �0.09 �0.18 to 0.01 0.88 0.75–1.02 0.065 �0.12 �0.25 to 0.01 0.84 0.69–1.03 0.063
SAM:SAH ratio 0.3 0.06 �0.03 to 0.15 1.08 0.92–1.27 0.175 0.09 �0.03 to 0.22 1.15 0.93–1.41 0.132
MET (mmol l� 1) 0.2 0.07 �0.03 to 0.18 1.19 0.90–1.56 0.178 0.00 �0.13 to 0.14 0.99 0.70–1.38 0.961
HCY (mmol l� 1) 0.31 �0.14 �0.23 to �0.05 0.80 0.68–0.93 0.003** �0.15 �0.27 to �0.03 0.82 0.67–1.00 0.015*
B6 (nmol l� 1) 0.41 �0.16 �0.27 to �0.04 0.82 0.71–0.94 0.005** �0.12 �0.26 to 0.02 0.86 0.73–1.02 0.080
CYS (mmol l� 1) 0.15 �0.19 �0.31 to �0.07 0.45 0.30–0.68 0.002** �0.20 �0.36 to �0.04 0.43 0.25–0.72 0.014*

ACTB12, active B12; BET, betaine; BMI, body mass index; CHOL, choline; CYS, cysteine; DMG, dimethyl glycine; EGRAC, erythrocyte glutathione reductase activity coefficient; FOL, folate; HF, hair follicle;
HCY, homocysteine; MET, methionine; PBL, peripheral blood lymphocyte; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; s.d., standard deviation; Stand b-coef, standardized beta-
coefficient.
The effect size is expressed as (i) standardized b-coefficient which describes the change in mean DNA methylation score per 1 s.d. of the predictor, as well as (ii) odds ratio (OR) which indicates the
factor by which methylation changes for each unit change in the predictor (linear least squares regression models). Comparable and significant effects in PBL and HF DNA were obtained for B2,
homocysteine and cysteine. Significant maternal predictors of infant DNA methylation in PBL showed a dose-responsiveness by maternal biomarker quartiles (Supplementary Fig. 3). P-values: *o0.05;
**o0.01 are shown in bold; Nmax¼ 126 for PBL data; Nmax¼ 87 for HF data.
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validated by analyzing 0, 25, 50, 75 and 100% methylated human genomic DNA
standards19 (Supplementary Fig. 4).

The MZ twin peripheral blood DNA samples were drawn from the Northern
California Twin Registry15; polymorphisms were genotyped to determine zygosity.
Post-mortem liver, kidney and brain tissues from Vietnamese motor vehicle
accident victims was obtained from a human tissue bank (ILSbio, LLC,
Chestertown, MD, USA)7.

Statistical analyses. We set out to test: (i) whether methylation of the seven MEs
varied according to the season of conception, (ii) whether plasma biomarkers
associated with one-carbon metabolism were predictive of ME methylation; and
(iii) whether changes in the availability of methyl donors (as reflected by plasma
biomarkers) explain the seasonal difference in ME methylation. The analysis
followed seven steps:

(1) Back extrapolation of biomarker concentrations: Blood samples for biomarker
measurements were collected within 0–16 weeks (mean 8.6±4.0 weeks) post
conception. To estimate biomarker concentrations at the time of conception
we back-extrapolated along a trajectory parallel to the seasonal patterns
(fitted by Fourier regression12) derived from a separate group of non-pregnant
women recruited specifically for this purpose (the indicator group described
in detail in13). To account for pregnancy-mediated changes in biomarkers
the values were further adjusted for the gestational age of the infant at the
time of measurement. This was achieved by regressing the biomarker on the
first three orthogonal polynomials of gestational age and subtracting the
predicted value so obtained from each woman’s seasonally adjusted
value. Comparison of seasonal patterns in the plasma biomarker con-
centrations between the indicator and the main groups are shown in Fig. 1b
and Supplementary Fig. 1.

(2) Confirmation of the seasonal variation in biomarkers using analysis of
variance: These data are shown in Supplementary Table 2.

(3) Testing the validity of a single methylation score averaged overall six MEs
(PARD6G excluded): This analysis was carried out using PBL DNA
methylation data only, given the smaller HF data set. A simple score for the
methylation percentage at each ME was derived for each infant by taking the
logit of the mean methylation percentage overall CpG sites within the ME. We
then fitted these simultaneously to each biomarker and covariated one at a time
using seeming unrelated regression (SUR20). In each case we compared two
models; one in which a different coefficient was fitted for each ME, and the
other in which all the coefficients were constrained to be the same. In every
case, except for offspring sex (SUR P¼ 0.004), the unconstrained model fitted
no better than the constrained one (that is, the biomarkers and other covariates
did not have a differential effect on different MEs). Supplementary Table 4
shows the difference in individual ME methylation in males and females with
generally lower methylation in males. These results justified the use of an
overall methylation score for each infant, based on the sex-adjusted individual
ME methylation scores, for subsequent analysis. The overall score was
calculated by standardising each ME score (subtracting the sex-specific mean
and dividing by the sex-specific standard deviation) and taking the mean
overall six MEs.

(4) Regression of MEs on maternal biomarkers and covariates: We used simple
linear least squares regression to fit the methylation score to each biomarker,
season and other covariates in turn. We also fitted two derived variables
predicted a priori to be important in the regulation of methylation: SAM:SAH
and BET:DMG ratios. These data are presented in Table 1. Two measures of
effect size are presented to facilitate different interpretation: (i) the
standardised b-coefficient, which gives the change in mean methylation score
for each 1 s.d. change in the predictor and thus facilitates comparison of effect
size between predictors and (ii) as the odds ratio, which was derived from the
SUR analysis and gives the factor by which the odds of methylation, that is,
percent methylation/(100-percent methylation), is expected to change for each
unit change in the predictor. Significant maternal predictors of infant DNA
methylation in PBL showed a consistent dose-responsiveness by maternal
biomarker quartiles (Supplementary Fig. 3).

(5) Exploring interactions between biomarkers: Simple models including the main
effects for two variables and their interaction term were fitted (using PBL DNA
methylation data). The motivation was to capture some of the complexities of
one-carbon metabolism, for instance possible switching of the source of methyl
groups between the betaine and the FOL-cycle. Since there is a prohibitively
large number of biomarker pairs, we only examined a limited number of their
interactions selected based on a priori knowledge of their relationships in the
metabolic pathways: B2*FOL; B2*B12; B12*FOL; B2*HCY; B12*HCY; and
FOL*HYC. Least angle regression, LASSO or other methods might have
allowed us to select the best predictors among many correlated main effects
and interactions. However, applying the LASSO to these data added little to the
reported analysis (data not shown).

(6) Estimation of the total association between biomarkers and methylation: Since
no interactions between biomarkers or biomarkers and sex of the infant
were found to be significant we calculated R2 for the multiple regression of
the methylation score on all the main biomarker terms. We then ran the

same model on 1,000 bootstrap samples and used the 2.5th and 97.5th centiles
of the R2 estimates to derive the 95% confidence interval for R2. Models with
terms for season, sex of infant and age of mother yielded very similar partial R2

values for the biomarkers so these terms were not included in the bootstrap
analyses.

(7) Testing for seasonal differences in biomarkers: To examine whether seasonal
differences in methylation might be owing to seasonal difference in biomarkers
we fitted a model including season and all biomarker main effects.

All biomarkers were analyzed in the logarithm. The main analysis was
performed using Stata v12MEP_L_cop2 (StataCorp, College Station, TX, USA) and
the sklearn package in Python was used to implement the LASSO.
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