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Abstract 

Objective and design: Insulin and inflammatory cytokines may be involved in equine 

laminitis, which might be associated with digital vascular dysfunction. This study determined 

the effects of TNF- and insulin on the endothelial-dependent relaxant responses of equine 

digital blood vessels and on equine digital vein endothelial cell (EDVEC) cGMP production. 

Material: Isolated rings of equine digital arteries (EDAs) and veins (EDVs) were obtained 

and EDVECs were cultured from horses euthanased at an abattoir.  

Methods: The effect of incubation with TNF- (10ng/ml) and/or insulin (1000IU/ml) for 

1.5 hours or overnight under hyperoxic and hypoxic conditions on carbachol (endothelium-

dependent) induced relaxation was assessed. The time course and concentration dependency 

of the effect of TNF-and the effect of insulin (1000IU/ml) on EDVEC cGMP production 

was determined. 

Results: Incubation of EDAs overnight with TNF-α under hypoxic conditions resulted in 

endothelial-dependent vascular dysfunction. EDVs produced a more variable response. TNF-

 increased EDVEC cGMP formation in a time and concentration dependent manner. Insulin 

had no significant effects. 

Conclusions: There is a mismatch between the results obtained from isolated vessel rings 

and cultured endothelial cells suggesting TNF- may reduce the biological effect of NO by 

reducing its bioavailability rather than its formation, leading to endothelial cell dysregulation.  
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Introduction 

Laminitis is a common and painful condition of the horse characterised by failure of the 

attachment of the epidermal cells of the epidermal laminae to the underlying basement 

membrane of the dermal laminae [1]. Animals at greatest risk of pasture-associated laminitis 

have a metabolic phenotype including obesity and IR, similar to that seen in human metabolic 

syndrome (HMS)[2]. Thus the same pathologic mechanisms that underlie the cardiovascular 

disease associated with HMS, including changes in insulin signalling, inflammatory 

cytokines and endothelial dysfunction, could contribute to laminitis. Whilst the exact 

pathogenesis of the disease remains unclear, there is evidence from experimental models of 

the disease to support roles for inflammation [3-5], vascular and endothelial dysfunction [5-

7], insulin resistance [8, 9] and extracellular matrix degradation [10, 11]. However further 

research is required to fully elucidate the pathways involved and perhaps determine a 

unifying concept. 

 

In other species, vascular and endothelial dysfunction can be caused by hyperinsulinaemia 

and/or insulin resistance (IR) [12] and inflammatory mediators [13]. Normally, insulin 

activates both the phosphatidylinositol (PI3) kinase pathway resulting in stimulation of 

endothelial nitric oxide synthase (eNOS) and hence vasodilation and the mitogen activated 

protein (MAP) kinase pathway resulting in enhanced production of endothelin-1 (ET-1) and 

hence vasoconstriction [14]. IR is characterised by specific impairment of the PI3-kinase-

dependent signaling pathway without affecting the MAP-kinase pathway, thus nitric oxide 

(NO) production is decreased whilst ET-1 production remains unchanged resulting in 

vasoconstriction [15]. Tumour necrosis factor- (TNF-α) is a pro-inflammatory cytokine 

secreted by leukocytes and various other cells, including the non fat cells in adipose tissue of 

obese individuals, which plays an important role in HMS [13]. This cytokine is implicated in 
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vascular and endothelial dysfunction, mainly through promotion of redox signalling to inhibit 

flux through the PI-3 kinase pathway distal to the insulin receptor or via activation of serine 

kinases [16, 17]. 

 

Isolated equine digital blood vessels have been used extensively to study the receptors 

involved in vasoconstriction and vasodilation [18, 19] and the effects of various drugs [20], 

mediators [21], cooling [22] and hypoxia [23]. The effect of inflammation on equine digital 

blood vessels has been mostly investigated previously by exposing the vessels to endotoxin 

[24-26]. The effect of tumour necrosis factor- (100pg/ml) on equine digital arterial function 

has been evaluated once previously [27]. The effects of insulin have also been investigated 

previously. In one study, equine digital arteries and veins were exposed to extremely high 

concentrations of insulin (10μmol/l or >1,000,000μIU/ml) for 30 mins, contracted with 

phenylephrine and then a second equally high dose of insulin (10μmol/l) was added [28]. In 

separate study, the effect of insulin (1000IU/ml) on the responses of equine small laminar 

veins to the vasoconstrictors noradrenaline, phenylephrine, ET-1 and 5-hydroxytryptamine 

(5-HT) was evaluated [29].  

 

The aim of the present study was to determine whether inflammation induced by TNF- 

caused impaired vasodilation in equine digital blood vessels, through decreased endothelial 

nitric oxide (NO) production. This was achieved by investigating the effects of TNF- on the 

endothelium-dependent relaxant response of isolated rings of equine digital arteries (EDAs) 

and veins (EDVs) under hypoxic and hyperoxic conditions and on cGMP (marker of NO 

production) mediator production by cultured equine digital vein endothelial cells (EDVECs). 

Furthermore, the effect of insulin was similarly examined to investigate whether high insulin 

concentrations cause further endothelial dysfunction and exacerbate the effect of TNF-.  
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Materials and Methods 

Isolated rings of equine digital arteries (EDAs) and veins (EDVs) 

The hind limbs of healthy, mixed breed horses, euthanased at an abattoir for purposes other 

than research, were removed within 10 minutes of death. EDAs were cannulated at the level 

of the metatarsal-phalangeal joint and flushed with 150 ml cold, oxygenated modified Krebs-

Henseleit (Krebs) solution (composition [mM]: CaCl2 1.27, MgSO4 1.19, NaHCO3 25.0, 

NaCl 118, KH2PO4 1.19, KCl 4.57, glucose 5.55). The legs were then transported to the 

laboratory. The skin over the lateral aspect of the pastern was removed to reveal the digital 

artery and vein which were carefully dissected free from surrounding tissues, cleaned of 

connective tissue and cut into 4-5mm long rings. Vessel rings were stored in pre-oxygenated 

Krebs at 4°C overnight. Only one EDA and one EDV from each horse were harvested and 

each was only used in a single study. 

 

Tension Recording in Isolated EDAs and EDVs 

Twelve vessel rings could be studied simultaneously in a single study. Vessel rings from the 

same horse maintained under different incubation conditions were always evaluated during 

the same experiment. The vessel rings were suspended between two parallel stainless steel 

wires bathed in 10 ml Krebs solution in an organ bath at 30°C bubbled with either 95% O2 

and 5% CO2 (designated hyperoxia) or 95% N2 and 5% CO2 (designated hypoxia). These gas 

mixtures provide standard conditions for isolated blood vessel studies [30], as originally 

described in the work leading to the discovery of the role of nitric oxide in endothelium-

dependent relaxation [31]. One of the wires was fixed and the other was connected to an 

isometric force transducer (HSE force transducer type K30, Linton Instrumentation Ltd, 

Norfolk, UK). The output of the transducer was fed via an amplifier (HSE type 301; Linton 
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Instrumentation Ltd) to a data acquisition system (PowerLab; AD Instruments, Oxfordshire, 

UK). Once mounted, EDA and EDV rings were stretched to 3 g and 2g resting tension, 

respectively, and allowed to equilibrate for 1 h. Previous studies had shown that this protocol 

was optimal for the measurement of vasoconstrictor and vasorelaxant responses in this vessel 

type [18, 32, 33]. 

The viability of each vessel segment was tested by exchanging the Krebs solution for one in 

which the sodium chloride had been replaced with potassium chloride to produce a 

depolarising Krebs solution (DKS; 118 mM KCl). This evaluates the activation of smooth 

muscle contractile elements to an influx of extracellular Ca2+, without specific receptor 

activation. Once the tension had increased to reach a plateau, the vessels were washed three 

times with Krebs solution and allowed to relax to baseline tension. As is standard procedure, 

vessel rings that failed to increase their tension by >50% of the baseline tension in response 

to DKS were considered non viable and were discarded [30, 34]. 

Phenylephrine (PHE, 10−6 M; Sigma-Aldrich Company Ltd, Dorset, UK) was then added to 

the Krebs solution to constrict the vascular smooth muscle. This concentration has previously 

been shown to produce approximately 50% of maximum tension in equine digital arteries and 

veins [35, 36]. Once a plateau was reached, carbachol (CCh, 10−6 M; Sigma-Aldrich) was 

added to produce vasodilation. CCh is a cholinergic (muscarinic receptor) agonist that causes 

endothelial nitric oxide-dependent vasodilation and is thus used to assess the integrity of the 

endothelium. If the endothelium is damaged during vessel preparation, relaxation to CCh 

does not occur. The percentage relaxation of PHE-induced tone was calculated, and the 

vessels were discarded unless a minimum of 50% relaxation to CCh occurred. The vessels 

were then washed three times with Krebs solution and allowed to relax to baseline tension. 
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The Effect of TNF- and Insulin on Relaxant Responses in EDAs and EDVs under 

Hyperoxic and Hypoxic Conditions 

After assessing viability and allowing equilibration back to baseline tension, EDAs (n=6 for 

each experiment) and EDVs (n=6 for each experiment) were incubated with recombinant 

equine TNF- (10ng/ml) and/or insulin (1000IU/ml) for either 1½ hours or overnight (at 

37°C) and bubbled with either 95% oxygen and 5% carbon dioxide (designated hyperoxia) or 

95% nitrogen and 5% carbon dioxide (designated hypoxia). These gas mixtures provide 

standard conditions for isolated blood vessel studies [30], as originally described in the work 

leading to the discovery of the role of nitric oxide in endothelium-dependent relaxation [31]. 

PHE (10-6M) was then added to the Krebs to constrict the vessels and, once a plateau of 

contraction was reached, the carbachol (endothelium-dependent) induced relaxation was 

again assessed by serially adding increasing concentrations to generate a cumulative 

concentration response curve. 

Equine Digital Vein Endothelial Cell Culture 

Equine digital vein endothelial cells (EDVEC) were cultured as previously described [37] 

from the digits of horses euthanased at an abattoir for purposes other than research. Briefly, 

as soon as possible post mortem, the digits were flushed to remove the blood with sterile 

phosphate buffered solution (PBS; 150 ml) by cannulating the medial and lateral digital veins 

3 to 4 cm above the coronary band. The medial and lateral digital arteries were then ligated, 

the digit was infused from the venous side with type II collagenasea (20ml; 1mg/ml; 

prewarmed at 37°C) and the limb was incubated in a water bath for 30 min at 37oC. The 

endothelial cells were then flushed out and collected using sterile PBS before being 

centrifuged (300 x g for 10min). The supernatant was removed and the cells resuspended in 

culture medium (Dulbecco’s modified Eagles mediumb containing 10% foetal calf serum, 
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10% newborn calf serum, 100 U/ml penicillin and 100 mg/ml streptomycin) and transferred 

to a 75cm2 flask for incubation at 37°C in 5% CO2 and 95% air. After 24 hours, erythrocyte 

contamination was removed with warm sterile PBS and fresh culture medium added. Once 

90% confluency was achieved, characterized by the typical cobblestone morphology and 

positive immunostaining for von Willebrand’s factor, the cells were lifted with trypsin and 

EDTA solution (1 mg/ml and 0.25 mg/ml, respectively), resuspended in culture medium, 

transferred evenly to 24 well plates and incubated at 37°C for 48 hours to allow the cells to 

adhere and become confluent. 

 

Effect of TNF- and Insulin on Mediator Production by EDVEC 

Confluent EDVEC monolayers were made quiescent in serum-free medium for 3 hours and 

pre-incubated with the phosphodiesterase inhibitor, 3-Isobutyl-1-methyl-2,6(1H,3H)-

putinedione-Methyl-3-isobutylxzanthinec (IBMX, 1mM) for 30 min at 37°C to inhibit 

breakdown of cyclic GMP (cGMP). EDVEC were then incubated with DMEM containing 

1% bovine serum albumin in the presence or absence of recombinant equine TNF-α 

(10ng/ml) and/or insulin (1000 μIU/ml). The culture medium was sampled after 0, 6, 18 and 

24 hours incubation. EDVEC were also incubated for 18 hours with varying concentrations of 

TNF-α alone (0 – 1000 ng/ml). 

 

Protein and Mediator Determination 

Cyclic GMP concentrations were measured as an index of endothelial NO production using a 

commercial enzyme immunoassay system (Biotrak cGMP EIA; Amersham Pharmacia 

Biotech., Amersham, Buckinghamshire, UK) according to the manufacturer’s instructions 

(Protocol 2) as previously described [38, 39]. Mediator concentrations were expressed per g 
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of protein present in the well, measured following cell lysis using a BCA protein assay kit 

(Pierce Bio Science Ltd., Tattenhall, Cheshire, UK). 

 

Curve fitting and Statistical Analysis 

Statistical analyses were carried out using computer software (Graphpad Prism, version 6.0; 

GraphPad Inc.). Concentration-response curve data were fitted to a single site sigmoidal 

response curve model (variable slope) to give values for maximum relaxation (Emax) and 

EC50 values.   Normality of the distribution of the data was assessed using the Kolmogorov–

Smirnov test. Values represent mean ± sem from n=6-12 (see Figure legends), referring to the 

number of individual animals from which cells or blood vessels were derived. EC50 values 

were presented as the geometric mean with 95% confidence intervals. The effect of TNF- 

and insulin on the maximum relaxant responses of EDAs and EVDs under hyperoxic and 

hypoxic conditions was evaluated using a paired Student’s t-test or one way analysis of 

variance with Dunnett’s post hoc test. The effect of TNF- and insulin on EDVEC mediator 

production was analysed using a linear mixed effect model. Significance was accepted at 

p<0.05. 

 

Results 

There was no significant effect of incubation with 10 ng/ml TNF- and/or 1000 μIU/ml 

insulin for 1½ hours, under hyperoxic or hypoxic conditions, on carbachol (endothelium-

dependent) induced relaxation of isolated rings of equine digital arteries (EDAs; Figure 1) or 

equine digital veins (EDVs; Figure 2). The curve fitting parameters calculated from these 

experiments are presented in Table 1. However, despite the short-term treatment having no 

appreciable effect, incubation with the same concentration of TNF- overnight at 37°C under 

hypoxic conditions significantly (p<0.05) decreased the carbachol (endothelium-dependent) 
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induced relaxation of EDAs (Figure 3). There was no effect of insulin under hyperoxic or 

hypoxic conditions, even at high concentrations (Figure 4). Finally, incubation with high 

concentrations of both TNF- and insulin overnight under hypoxic conditions significantly 

reduced carbachol (endothelium-dependent) induced relaxation of EDVs; however, again this 

effect was not observed under hyperoxic conditions (Figure 5). 

 

TNF-α (10ng/ml) stimulated significant increases of 4.0+2.5 and 2.9+3.1 fold (p<0.05) in 

EDVEC production of cGMP above basal levels after 18 and 24 hours, respectively (Figure 

6).  This stimulation was TNF-α concentration dependent (Figure 6). Insulin (1000 μIU/ml) 

had no significant effect alone or when added in combination with TNF-α (Figure 6).  
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Discussion 

Many studies have hypothesised that reduced lamellar blood flow is a key event in the 

pathogenesis of laminitis [25, 40-42], with ischaemia and subsequent reperfusion resulting in 

lamellar damage. However, the results of studies of laminar and digital blood flow using in 

vivo techniques have been conflicting, with increases in blood flow in some studies [43-45] 

and decreases in others [40, 46-48]. This apparent disagreement may be a consequence of a 

lack of sensitivity and specificity of the methods used to detect changes in laminar blood 

flow. In vitro studies make it possible to investigate the direct effects of individual factors on 

the function of specific equine digital blood vessels. 

 

Animals at greatest risk of pasture-associated laminitis have a metabolic phenotype that 

includes obesity and IR [2]. The prolonged experimental infusion of insulin to induce 

hyperinsulinaemia resulted in the clinical and histological development of laminitis [49, 50]. 

Hyperinsulinaemia and IR may predispose to laminitis via vascular function disturbances. 

Obesity may predispose to laminitis through IR or inflammation as adipocytes are 

endocrinologically active producing a variety of mediators, some of which antagonise insulin 

resulting in IR and some of which are pro-inflammatory [51]. TNF-α is one such pro-

inflammatory cytokine secreted mainly by the non fat cell within adipose tissue [52], which is 

associated with endothelial dysfunction [13]. Within a herd of inbred obese ponies, laminitis 

prone animals had significantly higher plasma TNF-α concentrations compared to normal 

ponies thus associating laminitis predisposition with increased circulating inflammatory 

cytokines [53]. Plasma TNF-α concentration is also an independent risk factor for increased 

IR in horses [54].  
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TNF-α appears to have variable effects on vascular function in other species. Intracranial 

injection of TNF-α in vivo constricted pial arterioles and reduced cerebral blood flow [55-57]; 

TNF-α induced pro-contractile effects in coronary arteries [58, 59]; and TNF- impaired 

acetylcholine-induced vasodilation of mouse thoracic aorta [60]. In contrast, TNF-α dilated 

cerebral, mesenteric and cremaster muscle arterioles and relaxed endothelium-denuded aortas 

[61-66]. In bronchial arteries, TNF-α initially induced dilation, followed by constriction 2 hrs 

later [67]. Finally, TNF- (1mM) had no effect on bradykinin-mediated endothelium-

dependent relaxant of human omental arteries [68] and TNF- (10ng/ml) had no effect on the 

diameter of isolated resistance arteries from the rat cremaster muscle [69]. The effect of TNF-

 on equine digital vascular function has only been investigated once previously [27]. 

Incubation with TNF- (0.1 or 1ng/ml) for 10 mins significantly decreased the endothelial-

dependent relaxation of equine palmar digital arteries to the muscarinic receptor agonist 

acetylcholine and significantly increased the maximal contraction to noradrenaline [27]. 

Reported plasma TNF- concentrations in normal horses range from 1ng/ml [70] to 14ng/ml 

[71]. In the present study incubation of equine digital arteries for longer (either 90 mins or 

overnight) with a higher (10ng/ml), but still clinically relevant concentration of TNF-α under 

hyperoxic conditions had no effect on endothelial-dependent relaxation. However, overnight 

incubation under hypoxic conditions resulted in endothelial-dependent vascular dysfunction. 

Equine digital veins showed greater variability in the degree of vasorelaxation but incubation 

with TNF-α and insulin overnight under hypoxic conditions significantly inhibited 

vasodilation. The effect of hypoxia on equine digital vascular function has only been 

investigated once previously; short term (3 hrs) hypoxia enhanced the contractile responses of 

equine digital arteries [23]. To the authors’ knowledge, the effect of TNF-on vascular 

function under hypoxic conditions has not been previously evaluated in any species. 
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Previous studies have produced variable results with respect to the effects of insulin on 

equine blood vessel function. Infusion of insulin into healthy Standardbreds resulted in mean 

serum insulin concentrations of approximately 1000μIU/ml and the hoof wall surface 

temperature (HMST) was higher and less variable once hyperinsulinaemia was established, 

when compared to control horses, suggestive of insulin-mediated increased digital perfusion 

[50]. In contrast, in vitro, following induction of IR using supra physiologic concentrations of 

insulin (>1,600,000μIU/ml), instead of the normal relaxation responses, a further equally 

high dose of insulin resulted in contraction of isolated rings of equine palmar digital arteries 

[28] and short-term hyperinsulinaemia (142 μIU/ml) led to increased vascular resistance 

within the isolated equine digit in a model of extracorporeal perfusion [72]. Serum insulin 

concentrations of up to approximately 600μIU/ml have been recorded in previously laminitic 

ponies[73]; thus in the present study an insulin concentration of 600μIU/ml was used. This 

high but still clinically relevant concentration of insulin alone had no effect on endothelium-

dependent relaxation. 

 

The combined effect of insulin and TNF- has been previously evaluated only in humans and 

rats. Infusion of TNF- (17ng/min) inhibited endothelium-dependent vasodilation of the 

brachial artery in humans and the inhibitory effect on vasodilator function was greater with 

concurrent insulin infusion (0.05mg/kg/min) [74]. Alone neither insulin nor TNF- had an 

effect, but TNF- inhibited the vasodilator but not vasoconstrictor effects of insulin in 

isolated cremaster muscle resistance arteries, resulting in insulin-mediated vasoconstriction in 

the presence of TNF- [69]. In the present study, a high but clinically relevant concentration 

of insulin did not alter the effects of TNF-on equine digital vascular function. 
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The endothelium normally produces vasodilator mediators including nitric oxide (NO), 

prostacyclin (PGI2) and endothelium-derived hyperpolarising factor (EDHF) [75] and the 

potent vasoconstrictor endothelin-1 (ET-1) [76]. Endothelial dysfunction results in an 

imbalance between the production of vasoconstrictory and vasodilatory mediators 

predominantly due to reduced endothelium-dependent NO bioavailability [77] and hence 

favouring vasoconstriction. Endothelial dysfunction may occur as a result of insulin 

resistance and inflammation [14]. 

 

In other species there is a large amount of evidence to suggest that TNF- is associated with 

endothelial dysfunction [78-81]. TNF-α (10ng/ml) impaired NO production by bovine aortic 

endothelial cells in a time and dose-dependent manner due to a reduction in eNOS expression 

[82-86]. TNF-α (10ng/ml) depressed human aortic endothelial cell NO production via the 

coordinate down regulation of both eNOS expression and argininosuccinate synthase [87], 

the enzyme which produces arginine, a key substrate for NO synthase. In the present study 

cGMP was measured as it is a marker of NO biological activity [88]. TNF-α increased cGMP 

formation by cultured equine digital endothelial cells in a time and concentration dependent 

manner. 

 

Insulin increased human umbilical endothelial cell NO production in a dose dependent 

manner with an ED50 of 500nM [89]  and NOS activation in a dose and time dependent 

manner, an insulin concentration of 600nM was required to activate eNOS and the effect was 

maximal after 30 mins [90]. Insulin (500nmol/L) also increased eNOS activation in bovine 

aortic endothelial cells [91]. In the present study, high clinically relevant concentrations of 

insulin were used. These concentrations of insulin were 5-fold lower than these previous 

studies and had no effect on endothelial cGMP production over a much longer time period.  



15 

 

 

A limitation of the current study was that it used large digital vessels. Whilst similar vessels 

have been used in several other studies attempting to further elucidate the pathogenesis of 

equine laminitis [18, 41], it must be acknowledged that there are differences in the vascular 

responses of large conductance or capacitance vessels and small resistance vessels [41]. Thus 

caution is advised in extrapolating results of the current study to other vessel types within the 

equine digit.  

 

In conclusion, incubation of equine digital arteries overnight with high clinically relevant 

concentrations of the inflammatory cytokine TNF-α under hypoxic conditions resulted in 

endothelial-dependent vascular dysfunction. High clinically relevant concentrations of insulin 

did not have a similar effect. Equine digital veins showed greater variability in the degree of 

vasorelaxation but incubation with TNF-α and insulin overnight under hypoxic conditions 

also significantly inhibited vasodilation. By contrast, clinically relevant concentrations of 

TNF- increased cGMP formation by cultured equine digital endothelial cells. Thus, there is 

a mismatch between results obtained in isolated endothelial cells and intact blood vessels 

suggesting that TNF- may reduce the biological effect of NO by reducing its bioavailability 

rather than its formation, leading to endothelial cell dysregulation. However, the mechanisms 

involved require further investigation. 
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Table 1. Concentration-response curve parameters for the effect of TNF- (10ng/ml) and insulin (1000IU/ml) on carbachol-induced relaxation 

of equine digital arteries and veins, incubated under hyperoxic or hypoxic conditions for 1½ hours. For graphs see Figs 1 and 2.  

CL—confidence limits.  No significant differences were observed between treatment and control groups (oneway ANOVA for arteries and 

paired t-tests for veins).  

 

Treatment EC50 (M)                                                                     

Geometric mean (95% CL) 

Emax (% relaxation of PHE-induced tone)          

mean ± sem 

 arteries veins arteries veins 

Hypoxia:     

Control 6.17 (2.48-9.86) x 10-8 33.2 (2.07-4.57) x 10-8 79.82 ± 4.30 44.58 ± 7.58 

TNF- (10ng/ml) 4.96 (1.61-8.31) x 10-8  74.40 ± 6.28  

insulin (1000IU/ml) 4.47 (3.02-5.94) x 10-8  70.95 ± 6.46  

       TNF- + insulin 5.96 (1.43-10.50) x 10-8 27.6 (2.14-3.38) x 10-8 71.93 ± 5.42 50.94 ± 9.22 

Hyperoxia:     

Control 10.04 (0.51-1.57) x 10-8 90.4 (0.15-19.50) x 10-8 76.61 ± 4.99 51.50 ± 7.53 

TNF- (10ng/ml) 13.8 (0.73-2.03) x 10-8  74.23 ± 3.80  

insulin (1000IU/ml) 9.91 (5.63-14.20) x 10-8  69.38 ± 4.09  

TNF- + insulin 10.4 (0.61-1.42) x 10-8 44.5(3.13-5.77) x 10-8 71.09 ± 5.02 55.04 ± 6.43 
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Table 2. Concentration-response curve parameters for the effect of TNF- (10ng/ml) and insulin (1000IU/ml) on carbachol-induced relaxation 

of equine digital arteries and veins, incubated overnight at 37°C under hypoxic or hyperoxic conditions. For graphs, see Figs 3,4 and 5.  

* and ** indicate significant differences between treatment and control groups (p<0.05 and p<0.01, respectively; paired t-test).  

 

 

Treatment EC50 (M)                                                                     

Geometric mean (95% CL) 

Emax (% relaxation of PHE-induced tone)          

mean ± sem 

 arteries veins arteries veins 

Hypoxia:     

Control 9.54 (3.42-15.65) x 10-8  68.80 ± 4.42  

TNF- (10ng/ml) 7.38 (3.92-10.83) x 10-8       47.81 ± 6.74**  

Control 14.1 (-2.12-3.03) x 10-8  55.79 ± 8.93  

Insulin  11.6 (0.35-1.98) x 10-8  56.99 ± 9.56  

Control 5.75 (2.29-9.21) x 10-8 74.1 (1.29-13.53) x 10-8 68.43 ±6.87 33.93 ± 7.48 

TNF- + insulin 14.5 (0.68-2.22) x 10-8 33.2 (2.73-3.91) x 10-8       44.77 ± 10.05 *    21.32 ± 2.11 * 

Hyperoxia:     

Control 13.3 (0.82-1.84) x 10-8 46.9 (-0.26-9.64) x 10-8 61.20 ± 2.80 44.66 ± 8.71 

TNF- (10ng/ml) 

+ insulin (1000IU/ml) 

15.1 (0.85-2.18) x 10-8 120.0 (-0.36-2.76) x 10-8 55.23 ± 5.10 39.89 ± 8.94 
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Figure Legends 

Figure 1: The effect of TNF- (10ng/ml) and insulin (1000IU/ml) on carbachol-induced 

relaxation of equine digital arteries incubated under hyperoxic (A) or hypoxic (B) conditions 

for 1½ hours. Each point represents mean ±sem from 6 separate experiments. No significant 

differences were observed between treatment and control groups (see Table 1 for curve fitting 

parameters).  

 

 Figure 2: The effect of TNF- (10ng/ml) and insulin (1000IU/ml) on carbachol-induced 

relaxation of equine digital veins incubated under hyperoxic (A) or hypoxic (B) conditions 

for 1½ hours. Each point represents mean ±sem from 6 (A) or 10 (B) separate experiments. 

No significant differences were observed between treatment and control groups (see Table 1 

for curve fitting parameters).  

 

Figure 3: The effect of TNF- (10ng/ml) on carbachol-induced relaxation of equine digital 

arteries incubated overnight under hypoxic conditions. Each point represents mean ±sem 

from 12 separate experiments. The maximum relaxation was significantly reduced with TNF-

 treatment (see Table 2 for curve fitting parameters).  

 

Figure 4: The effect of (A) insulin (1000IU/ml) and (B) TNF- (10ng/ml) and insulin 

(1000IU/ml) on carbachol-induced relaxation of equine digital arteries incubated overnight 

at 37°C under hypoxic conditions. C: The effect of TNF- (10ng/ml) and insulin 

(1000IU/ml) on carbachol-induced relaxation of equine digital arteries incubated overnight 

at 37°C under hyperoxic conditions. Each point represents mean ±sem from 6 separate 

experiments. Under hypoxic conditions, the maximum relaxation was significantly reduced 

with TNF- + insulin treatment (Panel B; see Table 2 for curve fitting parameters).  
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Figure 5: The effect of TNF- (10ng/ml) and insulin (1000IU/ml) on carbachol-induced 

relaxation of equine digital veins incubated overnight at 37oC under hyperoxic (A) or hypoxic 

(B) conditions. Each point represents mean ±sem from 6 (A) or 7 (B) separate experiments. 

Under hypoxic conditions, the maximum relaxation was significantly reduced with TNF- + 

insulin treatment (Panel B; see Table 2 for curve fitting parameters). 

 

Figure 6: The (A) time course and (B) concentration dependency of the effect of TNF- on 

cGMP production by equine digital vein endothelial cells. Data were analysed using a linear 

mixed effect model. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 
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Figures 
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Figure 2 
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Figure 3 
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Figure 5 
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Figure 6 
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