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Abstract 

Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular 

dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex 

(DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine 

phosphorylation of dystroglycan has been identified as a possible signal to promote the 

proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of 

dystroglycan in the aetiology of DMD we generated a knock-in mouse with a phenylalanine 

substitution at a key tyrosine phosphorylation site in dystroglycan – Y890. Dystroglycan 

knock-in mice (Dag1Y890F/Y890F) had no overt phenotype. In order to examine the 

consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-

deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established 

model of muscular dystrophy. Dag1Y890F/Y890F/mdx mice showed significant improvement in 

several parameters of muscle pathophysiology associated with muscular dystrophy 

including; reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower 

serum creatine kinase levels. With the exception of dystrophin, other DGC components were 

restored to the sarcolemma including -sarcoglycan, -/-dystroglycan and sarcospan. 

Furthermore, Dag1Y890F/Y890F/mdx showed a significant resistance to muscle damage and 

force loss following repeated eccentric contractions when compared to mdx mice. Whilst the 

Y890F substitution may prevent dystroglycan from proteasomal degradation an increase in 

sarcolemmal plectin appeared to confer protection on Dag1Y890F/Y890F/mdx mouse muscle. 

This new model confirms dystroglycan phosphorylation as an important pathway in the 

aetiology of DMD and provides novel targets for therapeutic intervention. 
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Introduction 

In normal striated muscle dystrophin associates with a large group of proteins known as the 

dystrophin glycoprotein complex (DGC) (1). The DGC serves to stabilise the sarcolemma 

by making regularly spaced connections between the muscle fibre cytoskeleton and 

extracellular matrix – part of the costameric cell adhesion complex (2). At the core of this 

cell adhesion complex is the adhesion receptor dystroglycan, which binds laminin in the 

extracellular matrix and dystrophin on the cytoplasmic face (3). Like many cell adhesion 

complexes, the DGC also has associated signalling activity, in particular we have indentified 

tyrosine phosphorylation of dystroglycan as an important regulatory event in controlling the 

integrity of the DGC (4). Previous studies from the Lisanti group and ourselves suggested 

that tyrosine phosphorylation of dystroglycan is an important mechanism for controlling the 

association of dystroglycan with its cellular binding partners dystrophin and utrophin, and 

also as a signal for degradation of dystroglycan (5-7). The Lisanti group further 

demonstrated that inhibition of the proteasome was able to restore other DGC components 

in both mdx mice that lack dystrophin and in explants of DMD patients (8, 9). From these 

studies it can be concluded that under normal circumstances binding of dystrophin to 

dystroglycan via the WW domain binding motif PPPY890 prevents tyrosine phosphorylation 

of -dystroglycan thus allowing the DGC to be maintained stably at the sarcolemma. 

However, with dystrophin deficiency i.e. in DMD patients or in the mdx mouse, the WW 

domain binding motif in dystroglycan is exposed allowing Y890 to become phosphorylated 

which targets dystroglycan for degradation and results in the loss of the entire DGC from 

the sarcolemma.  

Previously, it has been demonstrated that restoration of the DGC by Dp71 overexpression 

did not alleviate the dystrophic phenotype in mdx mice (10, 11). We surmise that this 

approach fails because whilst the dystrophin and utrophin binding site on dystroglycan is 

blocked by Dp71 and the complex is restored, Dp71 cannot bind to the actin cytoskeleton, 
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so the link between extracellular matrix and cytoskeleton remains compromised. 

Furthermore, simple transgenic overexpression of dystroglycan in mdx is also not able to 

ameliorate the muscular dystrophy phenotype (12), probably because it is still susceptible 

to phosphorylation and subsequent degradation. We have therefore investigated whether 

preventing dystroglycan phosphorylation in mouse by a targeted gene knock-in of 

phenylalanine at tyrosine residue 890, which is predicted to block tyrosine phosphorylation, 

can restore dystroglycan function and reduce the dystrophic phenotype in mdx mice. 
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Results 

Generation of a Dag1Y890F mouse  

In order to assess the role of Y890 in regulating dystroglycan function in vivo, a targeted 

substitution of tyrosine 890 to phenylalanine (Y890F) was generated in mouse using 

standard techniques: homologous recombination in ES cells (see Figure 1), injection into 

blastocyst, selection of germline transmission of the targeting construct. Both heterozygous 

and homozygous Dag1Y890F mice appeared normal and healthy and were born at expected 

Mendelian ratios. To date in mice up to 8 months old, no deleterious effect of the substitution 

has been noted. Western blot and immunohistochemistry analysis of heterozygous and 

homozygous Dag1Y890F revealed normal levels of total -dystroglycan compared to wildtype, 

but with reduced levels of detectable pY890 -dystroglycan in heterozygotes and an 

absence in homozygotes (Figure 1F-I).  

Preventing dystroglycan phosphorylation on tyrosine 890 reduces muscle pathology 

in dystrophic mice 

In order to assess whether the introduction of a Y890F substitution in dystroglycan had any 

beneficial effect on dystrophin deficiency, Dag1Y890F/Y890F/mdx mice were generated. 

Samples of muscle and serum from wildtype, Dag1Y890F/Y890F, mdx and Dag1Y890F/Y890F/mdx 

mice were examined for markers of muscle damage including serum creatine kinase levels 

and centrally nucleated fibres. The introduction of the Y890F substitution into dystroglycan 

by itself had no effect on pathophysiological parameters of muscle and compared to 

wildtype, haematxylin and eosin stained sections of Dag1Y890F/Y890F muscle appeared normal 

(Figure 2A,B). However, when crossed with mdx, Dag1Y890F/Y890F caused a significant 

reduction in the numbers of centrally nucleated fibres (Figure 2C-E) and the levels of serum 

creatine kinase (Figure 2F). The number of fibres with centrally located nuclei was 

decreased by 35% and the levels of serum creatine kinase were halved when compared to 

mdx alone. The improvement in muscle pathophysiology in Dag1Y890F/Y890F/mdx compared 
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to mdx is consistent with an overall reduction in muscle damage as indicated by the reduced 

leakage of creatine kinase into the blood stream from Dag1Y890F/Y890F/mdx muscle. 

Moreover, the reduction in central fibre nucleation likely reflects a reduction in muscle 

regeneration as a consequence of reduced degeneration. Therefore at the level of 

histopathology the Y890F substitution in dystroglycan appears to have significantly reduced 

the dystrophic phenotype observed in mdx mice. 

Preventing dystroglycan phosphorylation on tyrosine 890 restores sarcolemmal 

expression of the DGC in dystrophic mice. 

The absence of dystrophin in muscle leads to a significant reduction in the other components 

of the DGC from the sarcolemma (13). This in turn leads to a perturbation in the connection 

between the extracellular matrix and intracellular actin cytoskeleton which is thought to be 

one of the main reasons for the contraction induced muscle damage observed with 

dystrophin deficiency (14). Preventing phosphorylation of dystroglycan on tyrosine 890 had 

no obvious detrimental effects on the localisation of the following key members of the DGC: 

- and -dystroglycan, dystrophin, -sarcoglycan and sarcospan (Figure 3) or on the 

localisation of laminin in the extracellular matrix and utrophin in the neuromuscular junction. 

However, preventing phosphorylation of dystroglycan in the absence of dystrophin i.e. in 

Dag1Y890F/Y890F/mdx muscle restored - and -dystroglycan, -sarcoglycan and sarcospan 

to the sarcolemma (Figure 3). Laminin was maintained in the sarcolemma of 

Dag1Y890F/Y890F/mdx muscle at similar levels to those found in wild-type and mdx muscle 

(Figure 3). In previous studies sarcolemmal utrophin was shown to be upregulated in DMD 

and mdx muscle (15, 16). In the Dag1Y890F/Y890F/mdx muscle sarcolemma however, utrophin 

staining returned to the more restricted neuromuscular junction distribution seen in wild-type 

muscle (Figure 3 and Supplementary Figure 1). Therefore, in the absence of dystrophin the 

Y890F substituted dystroglycan was not only protected from degradation but also 

contributed to the preservation of the normal distribution of other DGC components. 
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Interestingly the Y890F substituted dystroglycan did not support the extrasynaptic 

localisation of utrophin seen in mdx alone (Supplementary Figure 1), but this could be due 

to the utrophin WW domain not binding efficiently to the phenylalanine substituted WW 

domain binding motif (6). The staining of muscle sections with laminin gave the impression 

that there was an increase in the number of smaller muscle fibres in the Dag1Y890F/Y890F 

mice. Quantification of fibre size did reveal an approximate 25% reduction in mean minimum 

Ferret’s diameter in Dag1Y890F/Y890F mice but this was not significant, nor was it associated 

with any apparent change in fibre type based on assessment of glycolytic activity nor any 

change in specific force (Supplementary Figures 2-4). Measurement of muscle weight and 

size from age matched mice also revealed a slight but non-significant reduction in calculated 

muscle cross-sectional area (data not shown). Moreover, fibre number counts of whole 

quadriceps sections did not reveal any significant difference between mouse genotypes 

(Supplementary Figure 2).  

Although from the immunofluorescence analysis there are clear changes in both the 

apparent amounts and localisation of DGC components (Figure 3). Quantification of actual 

protein levels by western blotting suggest that most of the changes observed by 

immunofluorescence are due to either loss of protein by degradation (in the case of mdx) or 

redistribution of protein within the muscle fibre rather than any actual increase in protein 

synthesis in the case of Dag1Y890F/Y890F/mdx (Figure 4). As expected from their respective 

genotypes, Dp427 dystrophin was absent from mdx and Dag1Y890F/Y890F/mdx mice, and 

pY890 -dystroglycan was not detectable in Dag1Y890F/Y890F or Dag1Y890F/Y890F/mdx mice. 

Whilst there was an apparent change in unphosphorylated -dystroglycan levels in the 

different mice this was to be expected as both of the antibodies most commonly used to 

detect -dystroglycan (43DAG/8D5 and MANDAG2) have Y890 in their epitope ((6) and 

Supplementary Figure 5) so are sensitive to the Y890F substitution. Attempts to generate 

antisera against a Y890F substituted peptide were not successful. Moreover it is well 
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documented that -dystroglycan levels are reduced in mdx though not absent (see (17) for 

example). As expected, utrophin levels appear increased in mdx mice, however western blot 

analysis suggests an increase in Dag1Y890F/Y890F and Dag1Y890F/Y890F/mdx mice too (Figure 

4A). Utrophin is apparent at NMJ in all mice (Figure 3 and Supplementary Figure 1), but 

despite the apparent upward trend in total utrophin levels in Dag1Y890F/Y890F. mdx and 

Dag1Y890F/Y890F/mdx (Figure 4C), a redistribution of utrophin to the sarcolemma is only 

apparent in mdx (Figure 3 and Supplementary Figure 1).  

In vitro analysis of pY890 -dystroglycan 

Western blotting of mouse muscle with an antibody against pY890 -dystroglycan (antibody 

1709 (5)) revealed as expected a complete absence of -DG phosphorylation on tyrosine 

890 in muscle samples (Figure 4), this not only verified the genetic change at the protein 

level, but provided further evidence for the specificity of our pY890 antiserum 1709 (see also 

Supplementary Figure 5). However to further confirm the fate of phosphorylated -DG in 

muscle cells we carried out surface biotinylation experiments to determine the role of -

dystroglycan phosphorylation in the internalisation process. Previous analysis of 

dystroglycan function by microscopy in Cos-7 cells has revealed a phosphorylation-

dependent internalisation of -dystroglycan in response to constitutive Src activation (7). In 

order to more rigorously determine the role of dystroglycan phosphorylation on tyrosine 890 

in this process, we analysed the fate of dystroglycan in normal immortalised H2k myoblast 

cells (18) over time using a cell surface biotinylation assay. We monitored non-

phosphorylated -dystroglycan with the monoclonal antibody MANDAG2 (19) which is 

sensitive to the phosphorylation of -dystroglycan at Y890 (6), and monitored -dystroglycan 

phosphorylated at Y890 with antibody 1709 (5) which is specific for Y890 phosphorylated 

dystroglycan and does not detect unphosphorylated -dystroglycan (Supplementary Figure 

5). Following cell-surface biotinylation, in contrast to non-phosphorylated -dystroglycan 

which was detected on the membrane only and not in the internalised fraction, tyrosine 
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phosphorylated -dystroglycan was detected at the cell surface and in the cytosol (Figure 

5A). Furthermore, there was a time-dependent decrease in the amount of cell surface 

phosphorylated -dystroglycan and a concomitant increase in cytosolic phosphorylated -

dystroglycan (Figure 5A). These data suggest therefore that phosphorylation of -

dystroglycan on tyrosine 890 is a signal for the internalisation and potentially the degradation 

of -dystroglycan. In support of this, immunofluorescence localisation of intracellular 

vesicles containing -dystroglycan with either MANDAG2 or 1709 antibodies revealed 

differing cellular distributions with respect to each other and to transferrin receptor containing 

endocytic vesicles (Supplementary Figure 6). These findings demonstrate that in normal 

myoblasts phosphorylated dystroglycan is found in larger vesicles consistent with its 

internalisation upon phosphorylation. These larger vesicles do not colocalise with early 

endosomal antigen 1 (EEA1) nor with lysotracker and these vesicles are distinct from 

transferrin containing vesicles (Supplementary Figure 6). This suggests that internalisation 

of phosphorylated dystroglycan occurs via an endocytic process that is independent of 

clathrin and is potentially trafficked via a novel route/compartment. 

Preventing dystroglycan phosphorylation on tyrosine 890 confers partial protection 

against contraction induced injury in dystrophic mice. 

Given the marked improvement in histopathology and the clear restoration of DGC 

components in mdx mice expressing Y890F dystroglycan, we examined the extent of any 

functional improvement in mouse muscle. To assess the functional benefit of preventing 

dystroglycan phosphorylation on tyrosine 890, TA muscles from anaesthetised 

Dag1Y890F/Y890F/mdx were subjected to a protocol of 10 eccentric (lengthening) contractions 

in situ. The protocol induced a 10% stretch during each of 10 maximal isometric contractions 

stimulated 2 minutes apart. Isometric tetanic force was measured prior to each stretch and 

expressed as a percentage of baseline isometric force.  
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Gene targeted Dag1Y890F/Y890F mice did not demonstrate a drop in isometric force during the 

eccentric contraction protocol (data not shown) which is similar to wild-type mice (20). When 

Dag1Y890F/Y890F mice were crossed with mdx mice a modest but highly significant 

improvement in resistance to eccentric contraction-induced injury was seen compared to 

mdx control mice of the same age (P=0.006; Figure 6). Specifically Dag1Y890F/Y890F/mdx mice 

were significantly stronger than control mice after eccentric contractions 5, 6 and 7 

(P=0.025, 0.025 and 0.040 respectively; Figure 6). Maximum isometric specific force 

produced by Dag1Y890F/Y890F/mdx mice was 13.5±0.745 N/cm2 which was not significantly 

different from mdx control mice. There was also no significant difference in the force-

frequency curves between Dag1Y890F/Y890F/mdx and mdx mice (Supplementary Figure 4) or 

TA muscle size (Supplementary Table 1).  

The physiological studies described above demonstrate that the Y890F substitution not only 

reduces muscle damage and restores DGC components at the sarcolemma, but can also 

contribute to a modest but significant improvement in resistance to eccentric contraction in 

mdx muscle. 

Preventing dystroglycan phosphorylation on tyrosine 890 increases levels of plectin 

in the sarcolemma of dystrophic mice. 

Given the role of dystroglycan as an adhesion receptor and scaffold for several cytoskeletal 

anchoring proteins (4) we might hypothesise that the most likely candidate to contribute to 

the dystroglycan Y890F mediated rescue of the mdx phenotype would be utrophin. As 

discussed above utrophin is naturally upregulated in DMD and mdx muscle (15, 16), is 

known to bind to dystroglycan (6), and is itself protective when overexpressed in mdx muscle 

(21). However utrophin was not localised to the sarcolemma in Dag1Y890F/Y890F/mdx muscle 

(Figure 3 and Supplementary Figure 1). Therefore, improvement in the dystrophic 

phenotype i.e. decreased number of centrally located nuclei, reduction in serum creatine 

kinase levels and the improvement in resistance to eccentric contraction-induced injury, 
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which was observed by preventing dystroglycan phosphorylation on tyrosine 890 cannot be 

attributed to an increase in sarcolemmal utrophin. Plectin is a cytolinker protein 

predominantly found in skeletal muscle where it is localised at the sarcolemma, z-disks and 

mitochondria. Plectin is also upregulated in dystrophin deficient muscle (22). Plectin 

interacts with -dystroglycan at multiple sites in the cytoplasmic domain (22), therefore its 

interaction may not be affected directly by phosphorylation of -dystroglycan or by the 

substitution of Y890 to phenylalanine. We therefore investigated whether plectin could be 

providing the link between dystroglycan and the actin cytoskeleton in the absence of 

dystrophin in the Dag1Y890F/Y890F/mdx muscle. Samples of wild-type, Dag1Y890F/Y890F, mdx 

and Dag1Y890F/Y890F/mdx muscle were examined for expression and localisation of plectin 

(Figure 7). Consistent with our previous findings (22), plectin immunolocalisation at the 

sarcolemma is low in wildtype muscle but increased in mdx muscle where it appears to 

preferentially stain regenerating fibres i.e. those with centrally located nuclei. Surprisingly 

however, in Dag1Y890F/Y890F muscle, plectin staining of the sarcolemma appeared to be 

increased uniformly when compared to wildtype muscle (Figure 7A,B). Furthermore, the 

increase in plectin staining was also observed at the sarcolemma of Dag1Y890F/Y890F/mdx 

muscles when compared to mdx muscle (Figure 7C,D). However total plectin levels revealed 

by western blotting (Figure 7E) may not accurately reflect specific changes in individual 

isoforms, as it is known that plectin 1f is the predominant isoform localised at the costameres 

at the sarcolemma (22), whereas plectin isoforms 1, 1d and 1b are associated with nuclei, 

Z discs and mitochondria respectively (23). Our findings support the hypothesis that 

phosphorylation of dystroglycan on Y890 is a key event in the aetiology of the dystrophic 

phenotype in the mdx mouse and that plectin is a candidate to maintain the link between the 

extracellular matrix and the cytoskeleton in the absence of dystrophin.  
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Discussion 

This study demonstrates that preventing phosphorylation of a key tyrosine residue on murine 

dystroglycan -Y890, ameliorates many of the main pathological symptoms associated with 

dystrophin deficiency in the mdx mouse. Muscle degeneration/regeneration was reduced as 

shown by a decrease in the number of centrally located nuclei, myofibre integrity was 

increased with a 50% reduction in serum creatine kinase levels, whilst there was also 

restoration of DGC components to the sarcolemma and an improvement in the resistance 

to eccentric contraction-induced injury. The Y890F mutation alone did not appear to have 

any detrimental side effects, with the only observed change from wildtype being a slight 

reduction in fibre diameter and an increase in plectin staining at the sarcolemma. The overt 

health of the Y890F knock-in mice, and the significant improvement in dystrophic pathology 

observed when crossed onto an mdx background, identifies dystroglycan phosphorylation 

as a potential therapeutic target and provides a new paradigm for the treatment of DMD. 

Although in this study we have used a genetic approach to remove an important 

phosphorylation site in dystroglycan, future therapeutic approaches would be aimed at 

targeting the signalling pathways that lead to the phosphorylation of dystroglycan or the 

subsequent degradation process.  

The potential for therapeutic restoration of dystroglycan function to the sarcolemma has 

been assessed previously, but without success. Restoration of dystrophin or utrophin in mdx 

mice, by genetic, viral or chemical means is able to restore dystroglycan and other DGC 

components and effect a significant rescue of the dystrophic phenotype, indeed a number 

of therapeutic strategies are predicated on the success of this approach. In these cases 

however, a ‘corrected’ dystrophin (exon skipping strategies), a replacement dystrophin 

(gene and cell based approaches) or a dystrophin homologue (utrophin upregulation) is 

required to achieve a functional rescue, see (24, 25) for recent reviews. In all these cases 

there was an attempt to restore a fully functional DGC with appropriate connections between 
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extracellular matrix and sarcolemmal cytoskeleton. Other approaches have attempted to 

restore the DGC by different means, including transgenic overexpression of Dp71 a short 3’ 

product of the Dmd gene that includes the WW domain that provides interactions with 

dystroglycan (10, 11), or by simply overexpressing dystroglycan in order to increase the 

amount at the sarcolemma (12). High level overexpression of Dp71 in mdx increases DGC 

components at the sarcolemma but does not result in the redistribution/downregulation of 

utrophin, nor does it improve other aspects of the dystrophic pathology (10, 11). At first sight 

these data appear paradoxical, but if one considers that the level of utrophin upregulation 

present is no different from mdx, which in itself cannot be fully protective as there is a 

dystrophic phenotype. Utrophin clearly does exert some protective function, as knockout of 

utrophin in mdx leads to a much more severe phenotype (26, 27). However, even in the 

presence of some utrophin and with an increase in other DGC components Dp71 cannot 

make connections to the cytoskeleton and therefore does not stabilise the sarcolemma (10, 

11). As the authors of both these studies discuss, restoration of the DGC is by Dp71 binding 

to dystroglycan and reduction of DGC component degradation. From our studies we would 

further surmise that this is due to the protective effect of Dp71 binding to -dystroglycan via 

the PPPY motif and reducing tyrosine phosphorylation and as a consequence dystroglycan 

degradation. By similar reasoning, we hypothesise that simply overexpressing dystroglycan 

also fails to rescue the dystrophic mdx phenotype in the same manner. Whilst elevated 

levels of both - and -dystroglycan and a significant increase in sarcolemmal localisation 

of these proteins have been achieved in muscle by transgenic overexpression, there was 

not a concomitant increase in utrophin or sarcoglycan, nor was there any improvement in 

dystrophic pathology (12). In this case there may be three factors which taken together 

explain the failure of increased dystroglycan to rescue the dystrophic phenotype: first is that 

even though dystroglycan levels are increased, possibly because there is not a coordinated 

upregulation of sarcoglycans and other DGC proteins, the complexes formed at the 



 14 

sarcolemma are not competent to stabilise the sarcolemma. Secondly, as in the case of 

Dp71 overexpression, there is no increase in a cytolinker protein such as utrophin that can 

provide the link to the extracellular matrix and thirdly, whilst dystroglycan levels are 

increased, dystroglycan may be turned over rapidly as it could be susceptible to 

phosphorylation mediated degradation. In the present study by contrast, dystroglycan is 

expressed at normal levels from its own promoter, tyrosine 890 has been substituted to 

phenylalanine so cannot be phosphorylated. Although utrophin levels do not remain 

elevated, plectin expression/localisation at the sarcolemma is increased providing a 

stabilising link from dystroglycan to the cytoskeleton. The data presented here describing 

the rescue of the dystrophic phenotype achieved in mdx by changing a single 

phosphorylation site in dystroglycan, represents a new paradigm in the aetiology and 

potential treatment of DMD. 

We hypothesised that phosphorylation of dystroglycan targets it for degradation. Previous 

work from the Lisanti group had identified Src, but not other Src family kinases or FAK, as 

capable of phosphorylating dystroglycan on Y890 (28), and that pY890 dystroglycan was 

internalised into vesicular structures that colocalised with cSrc when dystroglycan and cSrc 

were co-expressed in Cos-7 cells (7). Furthermore immunofluorescence localisation of 

pY890 -dystroglycan in normal mouse muscle revealed a punctate staining pattern in the 

interior of the fibres and not at the sarcolemma as seen with non-phosphorylated 

dystroglycan (7). Using a membrane targeted -dystroglycan cytoplasmic domain construct, 

they also demonstrated that the -dystroglycan construct was targeted to late endosomes 

dependent on Src phosphorylation of Y890 (7). These data are consistent with our own 

findings in myoblast cells (figure 5) that only endogenous phosphorylated-dystroglycan is 

internalised from the membrane. The fate of internalised phosphorylated -dystroglycan, it 

has not been demonstrated whether -dystroglycan is also internalised, is presumed to be 

proteasomal degradation – along with other DGC components that are internalised in mdx 
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and DMD. Based on this premise, it has been proposed that blocking the ultimate step in 

the pathway, namely the proteasome, might be able to restore DGC components to the 

sarcolemma (8). Treatment with proteasomal inhibitors does indeed restore dystroglycan 

and other DGC components to the membrane and in appropriate models can be 

demonstrated to improve muscle pathophysiology in: mdx mice, explants from DMD and 

BMD patients and in sapje a zebrafish model of DMD (8, 9, 29-31). Our mouse genetic 

model also suggests that blocking the first step in the pathway – namely tyrosine 

phosphorylation of -dystroglycan also has specific and beneficial effects in improving the 

dystrophic phenotype. Consequently appropriate therapeutic agents that inhibit Src kinase 

may also prove to be beneficial in treating DMD. Like proteasomal inhibitors however, 

clinically approved tyrosine kinase inhibitors, mostly in use as anti-cancer agents, have 

significant side effects. However, having identified drugable targets at two different points in 

a pathway leading to the loss of dystroglycan and DGC function in DMD, it should be 

possible to apply combinatorial therapies to achieve synergistic effects at much lower doses 

thus alleviating the side effects.  

Utrophin upregulation occurs spontaneously to a certain extent in DMD (32, 33) and also in 

mdx (15, 16) where it has a clear protective effect (26, 27). Furthermore, forced expression 

of utrophin ameliorates the dystrophic phenotype in mdx, whether via a transgene (21), or 

by enhancing promoter activity pharmacologically (34). Moreover, as noted above, Dp71 

overexpression in mdx protects the DGC and maintains levels of utrophin seen in mdx alone. 

By stabilising dystroglycan and other DGC components at the sarcolemma we therefore 

expected to achieve a rescue of the dystrophic phenotype in part by the actions of utrophin 

in anchoring the DGC to the sarcolemma. As our data show however, utrophin levels were 

not maintained in mdx expressing Y890F dystroglycan, but instead, plectin levels were 

upregulated. This unexpected finding raises some interesting questions: when the DGC is 

restored by preventing dystroglycan phosphorylation what are the mechanisms that lead to 
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the preferential increase in plectin rather than utrophin at the sarcolemma, and how can 

plectin apparently effect such a rescue of the mdx phenotype? From the phenotypes of 

epidermolysis bullosa simplex with muscular dystrophy, we know that mutations in plectin 

contribute to sarcolemmal integrity (35-37), and that plectin is enriched at the sarcolemma 

in DMD (38) and plectin 1f specifically in the costameres of mdx mice (22). More recently a 

mutation in exon 1f of plectin has been shown to give rise to an autosomal recessive limb 

girdle muscular dystrophy (LGMD2) phenotype independently of any dermatological 

symptoms (39). Therefore plectin, like utrophin, is one of the family of large cytolinker 

proteins that contribute to sarcolemmal integrity and are naturally upregulated, or 

redistributed, in a protective role in dystrophic muscle. From this brief review of plectin 

function in muscle, it is clear that plectin is already contributing to muscle architecture and 

is naturally upregulated in dystrophic conditions. But why plectin and not utrophin 

localisation to the sarcolemma in our Y890F/mdx model? Part of the answer may lie in the 

nature of the mutation that was introduced into dystroglycan in this study. Changing the WW 

domain interaction motif PPPY to PPPF would not be predicted to support efficient binding 

of the utrophin WW domain (6, 40, 41). Our previous biochemical analysis of plectin, 

dystrophin and dystroglycan interactions (22), reveals the ability of plectin to bind to two 

sites on dystroglycan, including one that overlaps with the dystrophin WW domain 

interaction site – but importantly is not itself a WW domain interaction as plectin does not 

contain a WW domain. As previously published, in the mdx mouse, plectin can bind to 

dystroglycan through both interaction sites including the c-terminal PPPY motif (22). Plectin 

upregulation is likely to be more effective at rescuing the dystrophic phenotype in 

mdx/Dag1Y890F/Y890F because dystroglycan is protected from degradation, whereas in mdx it 

is not, and plectin is unable to stabilise the sarcolemma. In the Y890F mouse the ability of 

dystrophin to interact with the mutated PPPF motif is also weakened allowing increased 

plectin binding. In the mdx/Y890F mouse where dystroglycan phosphorylation is prevented 
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and is therefore stabilised at the sarcolemma, plectin interaction/recruitment at the 

sarcolemma is further enhanced leading to a partial rescue of the dystrophic phenotype. 

The scheme put forward in our 2007 publication (see figure 10 in (22)) to explain the role of 

plectin in mdx mouse, also fits well with the role of plectin in our mdx/Y890F mouse model. 

We cannot rule out a role for increased utrophin levels in the rescue of the mdx phenotype, 

however it is unlikely that these alone are sufficient. It is possible that interactions between 

plectin and utrophin could replace interactions between plectin and dystrophin, but this is 

not supported by available utrophin localisation data in the Dag1Y890F/Y890F or 

Dag1Y890F/Y890F/mdx muscle. More detailed examination of the interactions between plectin, 

dystroglycan and utrophin are clearly warranted.  

Thus we have developed a new model of muscular dystrophy that for the first time not only 

reveals the importance of dystroglycan phosphorylation in the aetiology of muscular 

dystrophy, but also provides a new rationale for therapeutic intervention in Duchenne 

muscular dystrophy. Whether combinatorial drug treatment using both proteasomal and 

tyrosine kinase inhibitors would provide sufficient therapeutic benefit on its own remains to 

be tested, however the promising genetic (this study) and pharmacological (8, 9, 29-31) 

interventions suggest at the very least that these approaches could be powerful adjuncts to 

other therapies such as exon skipping or utrophin upregulation.  
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Materials and Methods 

Generation of a Dag1Y890F targeting construct: To generate the targeting vector a 9.8kb 

XhoI-EcoRI fragment that included a portion of intron 1 and the entire exon 2 of the Dag1 

gene was subcloned from bacterial artificial chromosome (BAC) clone bmQ433-E3 

(GeneService) into similarly digested pBluescript SK(+)vector. The A to T nucleotide change 

(underlined) corresponding to the Y890F substitution was introduced by site directed PCR 

mutagenesis using the forward primer (5’- ATACCGATCACCCCCTCCGTTTGTTCCCCCT-

3’) and reverse primer (5’- ACGGAGGGGGTGATCGGTATGGGGTCATGT-3’) and the 

GeneTailor™ site-directed mutagenesis System (Invitrogen). A BclI site in intron 1 was used 

to insert the phospho-glycerate Kinase (PGK) neomycin resistance selection cassette 

flanked by lox P sites. In addition HpaI and XhoI sites in the vector backbone, outside the 

region of homology, were used to insert a PGK DTA cassette for negative selection. The 

final targeting vector (see figure 1A) was verified by restriction digest and direct sequencing.  

After linearization of the targeting vector using XhoI, embryonic stem (ES) cell 

electroporation and blastocyst injection was performed by the Mouse Engineering Services 

of the University of Sheffield (MESUS).  

Verification of the correct recombination event within neomycin resistant protamine-Cre (42) 

ES cell clones was performed by Southern analysis of EcoRI and KpnI digested genomic 

DNA using a probe located within intron 1 (Fig. 1A). WT chromosomes resulted in a 16.4 kb 

EcoRI fragment and a 6.8kb KpnI fragment (Fig. 1A and 1B). Properly targeted 

chromosomes produced a smaller 5.8 kb EcoRI fragment resulting from the presence of an 

additional EcoRI site within the neomycin resistance cassette and a larger 8.6kb KpnI 

fragment resulting from the insertion of the ~1.8 kb neomycin cassette (Fig. 1A and 1B). 

Genomic DNA from positive clones and subsequent progeny was also amplified and 

sequenced to confirm the presence of the point mutation (Fig 1C). In male chimeras, when 

PC3 ES cells differentiate into spermatids, Cre recombinase is expressed and results in the 
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excision of the floxed PGK- Neo cassette (42). Excision of the Neo cassette was confirmed 

in this chimera and subsequent progeny by PCR using one set of primers that flank the loxP 

sites as follows: forward primer 5’-ATGAGTTGGATTTCCCAGCA-3’ and reverse primer 5’-

ATGGCCTGGCCTAAAATGAT-3’ giving rise to the following products:104bp in WT 

progeny(+); 177bp in progeny with the neo cassette excised (Neo-) but retaining a single 

loxP site and 1872 bp (not shown) in progeny where the neo cassette is still intact (Neo+, 

Fig 1D) and another that utilise the same forward primer and a reverse primer located in the 

neo gene 5’-ATCGCCTTCTATCGCCTTCT-3’ giving rise to a 499bp product where the neo 

cassette is still intact and no product in WT and neo excised progeny (Fig. 1D).  

Chimaeric animals were then bred to heterozygosity by crossing with C57Bl6 mice. 

Sequencing of the Dag1 gene in targeted heterozygotes demonstrated equal proportions of 

both the WT adenine and MUT thymidine bases specifying the p.Y890F substitution (Fig. 

1C). Breeding to homozygous WT or MUT genotypes was confirmed by PCR amplification, 

restriction enzyme digestion and agarose gel electrophoresis (Fig.1E, see Genotyping 

section below). Homozygous WT, heterozygous Dag1Y890F/+ and homozygous 

Dag1Y890F/Y890F (MUT) mice at the specified ages were used in subsequent studies. To 

examine the effect of the Y890F mutation on muscle pathology in dystrophin deficient 

muscular dystrophy Dag1Y890F/Y890F mice were backcrossed with Dmdmdx/mdx mice (Generous 

gift from Steve Laval, Newcastle) for 4 generations. Mice heterozygous for the Y890F 

mutation and either homozygous or hemizygous for the mdx mutation (Dag1Y890F/+/Dmdmdx/Y 

or Dag1Y890F/+/Dmdmdx/mdx) were crossed to generate double homozygous offspring of both 

sexes (Dag1Y890F/Y890F/Dmdmdx/Y and Dag1Y890F/Y890F/Dmdmdx/mdx) and male mice that were 

hemizygous for the mdx mutation and heterozygous for the Y890F Dag1 mutation 

(Dag1Y890F/+/Dmdmdx/Y) for use in our subsequent studies.  

All animals were maintained in a high health status facility at the University of Sheffield 

according to the UK Home Office guidelines with access to food and water ad libidum. All 
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animal studies were approved by both the ethical committee at the University of Sheffield 

and the UK Home Office. 

Genotyping: Mouse ear biopsies were lysed overnight at 55oC in tail lysis buffer (50mM 

TrisHCl pH 8.5; 2mM EDTA pH 8; 0.5% Tween; 300mg/ml Proteinase K) and used for 

genotyping by PCR. Genotyping for Dag1Y890F/Y890F mutants was performed by PCR 

amplification of a 107 bp fragment of the Dag1 gene using the forward primer 5′-

ATACCGATCACCCCCTACGT-3′ and reverse primer 5′- CGGTCTCTACAGACAACAC -3′. 

PCR fragments containing the Y890F mutation are undigested by SnaBI (107bp), whereas 

WT fragments are digested (89bp) (Fig. 1E). Genotyping for the mdx point mutation was 

performed by PCR amplification of a 157bp fragment of the Dmd gene using the forward 

primer 5′-GCAAAGTTCTTTGAAAGGTCAA-3′ and the reverse primer 5′-

CACCAACTGGGAGGAAAGTT-3′. PCR fragments containing the mdx point mutation are 

undigested by HincII whereas WT fragments are digested (137bp) Fig. 1E. 

Histology and pathophysiology: Samples of quadriceps muscle were dissected from 4-6 

week old animals and processed for haematoylin and eosin staining as described previously 

(43). Similarly prepared 6µm cryosections were also labelled for individual components of 

the dystrophin glycoprotein complex using the following antibodies: anti-αDG (VIA4-1) (1:50, 

4oC, Upstate biotechnology), anti-βDG (Mandag2, 1:10, 4oC), anti-αSG (1:100, 23oC, 

Novocastra), anti-βSG (1:50, 23oC, Novocastra), anti-laminin-α2 (1:100, 23oC, ENZO life 

sciences), anti-utrophin (Rab5 rabbit polyclonal c-terminal, 1:4000, 23oC), anti-pan plectin 

#46 (1:200, 4oC, a gift from Gerhard Wiche, Vienna), anti-dystrophin (DYS1, 1:20 4oC, 

Novocastra), anti-sarcospan (PGM2, 1:50 4oC, BioServUK Ltd, UK). The PGM2 Rabbit 

polyclonal antibodies to murine Sspn were raised using a synthetic peptide (Sspn aa 3-16, 

GenBank accession number U02487, SI-Biologics Ltd, UK). Antibodies were affinity purified 

from rabbit serum before use.  



 21 

A mouse on mouse kit was used with all primary mouse antibodies (M.O.M.TM Kit, Vector, 

Burlingame, CA) and the manufacturer’s protocol was followed. Sections were mounted in 

Hydromount (National Diagnostics, Atlanta, Georgia, USA) containing 1% DABCO (Sigma-

Aldrich). Fluorescence was visualised using a ZEISS AXIOSKOP 2 microscope and images 

were captured using QCapture software.  

The number of fibres with centrally placed nuclei was determined by staining sections of 

quadriceps muscle with an anti-laminin-α2 antibody (as above) to delineate individual fibres 

with DAPI counterstain to visualise nuclei. Central nuclei were counted using cell counter in 

Image J 64. Analysis and statistical data was calculated in Graphpad Prism. Sections of 

mouse quadriceps were stained for NADH to determine oxidative fibre type as described 

previously (44). 

Sarcolemmal integrity: Levels of serum creatine kinase were measured in duplicate using 

a commercial CK ELISA kit (Uscn Life Science Inc. Wuhan, P.R. China) according to the 

manufacturer’s instructions. The plate was read at 450nm on a FLUOStar Optima plate 

reader (BMG-LABTECH Gmbh, Ortenberg, Germany) and data expressed as U/L. 

In vivo muscle physiology: Mice were surgically prepared as described previously (20, 

45). Isometric force measurements were made from TA muscle and maximum isometric 

tetanic force (Po) was determined from the plateau of the force-frequency curve (20). After 

completing the final isometric contraction the muscle was allowed to rest for 5 minutes 

before the eccentric contraction protocol was initiated. A tetanic contraction was induced 

using a stimulus of 120Hz for 700ms. During the last 200ms of this contraction the muscle 

was stretched by 10% of Lo at a velocity of 0.5Lo s-1 and relaxed at -0.5Los-1. The isometric 

tension recorded prior to the first stretch was used as a baseline. The muscle was then 

subjected to 10 eccentric contractions separated by a 2 minute rest period to avoid the 

confounding effect of muscle fatigue. The isometric tension prior to each stretch was 
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recorded and expressed as a percentage of the baseline tension. (20) The mouse was then 

euthanised and the muscle was carefully removed and weighed.  

In vitro assays and western blotting 

Cell surface biotinylation assays. H2kb-tsA58 mouse myoblasts (18) maintained as 

described previously (46), were placed on ice, washed three times in chilled PBS and 

incubated for 30min with 0.5 mg/ml Sulfo-NHS-SS-Biotin (Thermo Scientific) in PBS on ice. 

Cells were washed three times with serum free media to remove uncoupled biotin and 

returned to 37˚C to allow endocytosis to proceed. At various time points cells were placed 

on ice and washed twice in chilled MesNa stripping buffer (50mM Tris-HCL pH 8.6, 100mM 

NaCl, 1mM EDTA), followed by 3 x 20 min washes in chilled MesNa stripping buffer with 

0.2% BSA (w/v) and 100mM MesNa (Sigma) added fresh. Cells were then washed in chilled 

PBS containing 500mM iodoacetamide (Sigma) and left on ice for 10min, before being 

washed a further three times in chilled PBS before lysis in radioimmunoprecipitation buffer 

(6). As a control for stripping, the experiment was repeated as above, except the cells were 

not incubated at 37˚C but were stripped immediately after biotinylation and washing with 

serum free media. Samples were analysed by SDS-PAGE and western blotting for 

phosphorylated and non-phosphorylated -dystroglycan and transferrin receptor as control. 

SDS-PAGE and western blotting of muscle samples was carried out as below and described 

previously (6, 22, 47). 

Quantification of muscle proteins. Hamstring muscle was snap frozen in liquid nitrogen and 

stored at -80˚C prior to use. Approximately 100mg of tissue was weighed, ground to a 

powder under liquid nitrogen, resuspended in RIPA buffer (6) at a ratio of 1ml per 100mg of 

tissue and homogenised in a dounce homogeniser for 10 strokes. Samples were incubated 

on a roller for 30min at 4˚C, before sonicating and centrifuging at 15000g for 15min. 

Supernatant was resuspended in Laemmli sample buffer, boiled for 10min and 30µl was run 

out on 4-15% Criterion TGX polyacrylamide gels (BioRad). Following transfer and blotting 
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as above, chemiluminescence signals were imaged on a Chemidoc XRS+ (Biorad). 

Quantification was carried out in Image Lab software (Biorad) using volume measurements 

for each band with rolling disk background subtraction (diameter 10mm). Values were 

normalized against concavalin A lectin signal and represented as a ratio of the average wild 

type signal for each antibody. Primary Antibodies; β-DG (43Dag1 1:50, Vector Labs), pY β-

DG (1709 1:1000), utrophin (Rab5 rabbit polyclonal c-terminal 1:5000), plectin (#46 1:3000, 

a kind gift from Gehard Wiche), dystrophin (DYS1 1:100, Novacastra) and concavalin A 

lectin biotin conjugate (1:2500, Vector Labs). Secondary antibodies; peroxidase conjugated 

anti-mouse raised in goat (1:10000 Sigma-Aldrich), peroxidase conjugated anti-rabbit raised 

in goat (1:20000 Sigma-Aldrich) and peroxidase conjugated extravidin (Sigma-Aldrich 

1:10000). 

Unless otherwise stated, statistical significance was ascertained using a 1 way ANOVA 

analysis with a threshold of P<0.05. Tukey's multiple comparison test used for pairwise 

comparisons. All analyses were performed using Graphpad Prism software. 
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Figure legends 

Figure 1, Generation of a Dag1Y890F targeting construct. A) Schematic representation of 

the genomic locus (1), targeting construct (2), targeted locus both with (4) and without (3) 

cre recombined excision of the neomycin resistance cassette are shown. Restrictions sites 

for Southern blotting are shown KI= KpnI and EI = EcoRI. Flank and Neo PCR primers used 

to determine whether the neomycin resistance cassette (PGK Neo) has been excised are 

represented by arrows. LoxP sites flanking PGK Neo are depicted by arrowheads. The 

location of the probe used for Southern blotting is indicated. Scalebar = 1 kb. B) A 

representative Southern blot of restriction digested genomic DNA from four different ES cell 

clones probed with the probe indicated in A is shown. Whether the band corresponds to a 

wild-type allele or a targeted allele is indicated. C) Chromatograms of sequences from 

progeny with the genotypes indicated on the left are shown, the A to T point mutation 

corresponding to Y890F is indicated with an asterisk. D) 2% agarose gel electrophoresis of 

PCR products from the Neo and Flank PCRs used to determine the presence or absence of 

the neomycin resistance cassette, the genotype of the DNA used as a template is shown on 

the bottom: +=wild-type allele, neo-=an allele with the neomycin cassette excised; neo+= an 

allele with the neomycin cassette intact, NTC= the no template control. E) 3.5% agarose gel 

electrophoresis of SnaBI and HincII digested PCR products used to genotype progeny for 

the Y890F and mdx point mutations respectively, genotypes of the samples are shown 

beneath. F, western blotting of quadriceps femoris samples from wildtype (+/+), 

heterozygote (+/Y890F) and homozygote (Y890F/Y890F) mice using antibodies against 

non-phosphorylated -dystroglycan (-DG), tyrosine phosphorylated -DG (pY -DG) and 

tubulin as a loading control. Representative immunofluorescence localisation of tyrosine 

phosphorylated -DG in sections of quadriceps femoris from wildtype (+/+; G), heterozygote 

(+/Y890F; H) and homozygote (Y890F/Y890F; I) mice. 
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Figure 2. Pathophysiological analysis of Dag1Y890F/Y890F and Dag1 Y890F/Y890F/mdx 

muscle. Haematoxylin and eosin staining of wildtype quadriceps muscle (A) is similar to 

Dag1Y890F/Y890F (B) whereas when crossed to mdx there was improved pathology in 

Dag1Y890F/Y890F /mdx (D) compared to mdx alone (C), with larger more even fibre size and a 

reduction in centrally nucleated fibres (CNF). Scale bar = 50µm. Central nucleation was 

quantified by counting more than 100 fibres per section from 3 different animals of the 

indicated genotype (E). Whilst Dag1Y890F/Y890F had a very low number of CNF and was no 

different from wildtype, compared to mdx, Dag1Y890F/Y890F/mdx  showed a significant 30% 

reduction in CNF. Mean ± sem p=0.043. Serum creatine kinase (CK) levels were similarly 

unaffected in Dag1Y890F/Y890F mice (n=4), whereas the introduction of Dag1Y890F/Y890F into 

mdx (n=4) caused a dramatic and significant 50% reduction in CK levels compared to mdx 

alone (n=7; F).  
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Figure 3. Restoration of DGC components in Dag1Y890F/Y890F/mdx muscle. 

Immunofluorescence localisation to the sarcolemma of the DGC components: - and -

dystroglycan; -sarcoglycan; sarcospan; dystrophin and utrophin, was unaltered in 

Dag1Y890F/Y890F mice. As expected all DGC components were significantly reduced from the 

sarcolemma of mdx muscle, where laminin localisation was unaltered and utrophin showed 

an increased extra-synaptic localisation. In Dag1Y890F/Y890F/mdx mice however, there was a 

clear restoration of all DGC components examined, even in the absence of dystrophin, but 

with a concomitant loss of utrophin staining from the sarcolemma. Some mdx muscle fibres 

show internal fluorescence, which is likely to be non-specific uptake of secondary antibody 

by necrotic fibres. Scale bar = 50µm. 
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Figure 4. Western blot analysis of dystrophin, utrophin and dystroglycan.  

In keeping with the genetic background of the respective animal models, dystrophin was not 

detectable in western blots of muscle from mdx (m) or Dag1Y890F/Y890F/mdx Y/m) mice (A,B) 

and pY -dystroglycan was not detectable in muscle from Dag1Y890F/Y890F (Y) or 

Dag1Y890F/Y890F/mdx mice (A,E). Compared to wildtype (WT), un-phosphorylated -

dystroglycan was significantly reduced in all mice (D), but despite an upward trend in 

utrophin levels from WT to Y to m to Y/m, the differences were not significant (C). Data are 

mean ± SEM n=4.  
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Figure 5. Internalisation of pY890 -dystroglycan in myoblasts.  

Cell surface biotinylation followed by recovery of endocytosed biotinylated proteins (A) 

revealed that only tyrosine phosphorylated -dystroglycan (pDG) was internalised and 

recovered in the pellet fraction (pDG P) with a clear reduction over time of the surface 

supernatant fraction (pDG S). Unphosphorylated -dystroglycan (DG) remained on the cell 

surface (DG S) with no unphosphorylated -dystroglycan being internalised (DG P). Control 

western blots for transferrin receptor (TfR P) demonstrate the time course of clathrin 

mediated endocytosis in these cells, and blotting of an unknown biotinylated protein (Con 

P) acts as a loading control.  
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Figure 6. Resistance to contraction-induced injury in mdx and Dag1Y890F/Y890F/mdx 

mice. The TA muscle from anaesthetised Dag1Y890F/Y890F /mdx (n=4) and mdx mice (n=5) 

underwent a protocol of 10 eccentric contractions in situ. Each stretch induced a 10% 

increase in muscle length during a tetanic contraction. Tetanic force is expressed as a 

percentage of baseline isometric force produced prior to the first stretch. The drop in tetanic 

force was significantly reduced in Dag1Y890F/Y890F /mdx mice compared to age-matched mdx 

controls (P=0.006). Dag1Y890F/Y890F /mdx mice were significantly stronger than mdx mice at 

contractions 5, 6 and 7 (P=0.025, 0.025 and 0.040 respectively; Two-way Repeated 

Measures ANOVA with Tukey’s Post-hoc test). TA: tibialis anterior.  Error bars represent 

SEM. 
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Figure 7. Plectin staining is increased at the sarcolemma of Dag1Y890F/Y890F/mdx mice. 

Immunofluorescence localisation of plectin (A-D) revealed an expected increase in 

sarcolemmal staining in mdx mice, most often associated with regenerating fibres where 

plectin staining also localises around the central nuclei (C). However, there was also a 

significant localisation of plectin to the sarcolemma in Dag1Y890F/Y890F mice (B) which was 

maintained at a similar level in Dag1Y890F/Y890F/mdx mice (D). Quantification of plectin levels 

by western blotting in wildtype (WT), Dag1Y890F/Y890F(Y), mdx (m) or Dag1Y890F/Y890F /mdx 

Y/m) mice (E,F) revealed a slight increase in plectin levels in Dag1Y890F/Y890F mice in keeping 

with the immunohistochemistry (B), however this increase was not significant (mean ± SEM, 

n=4). Scale bar = 50µm. 

 


