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Introduction
Duchenne muscular dystrophy (DMD) aff ects 1 in 
3500 newborn boys, causing eventually progressive 
muscle weakness, cardiomyopathy, and respiratory 
failure. Patients are diagnosed when they are toddlers, 
become wheelchair-dependent in their early teens, and 
die in their 20s. With improvements in standards of care, 
including non-invasive ventilation and glucocorticoid 
and cardio protective treatment, many individuals with 
DMD survive beyond their mid-20s1,2 despite having 
severe and disabling weaknesses. 

DMD is caused by the absence of the protein dystrophin. 
Dystrophin associates with other sarcolemmal proteins 
of the dystrophin glycoprotein complex and connects the 
cytoskeleton to the extracellular matrix. The absence of 
dystrophin reduces the stability of the sarcolemma and 
increases intracellular calcium infl ux, which is followed 
by degeneration of the muscle fi bres. Dystrophin is 
encoded by DMD. Deletions (in about 65% of patients), 
duplications (in about 10% of patients), point mutations 
(in about 10% of patients), or other smaller rearrangements 
can disrupt the open reading frame of DMD, leading to 
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Summary
Background Mutations that disrupt the open reading frame and prevent full translation of DMD, the gene that encodes 
dystrophin, underlie the fatal X-linked disease Duchenne muscular dystrophy. Oligonucleotides targeted to splicing 
elements (splice switching oligonucleotides) in DMD pre-mRNA can lead to exon skipping, restoration of the open 
reading frame, and the production of functional dystrophin in vitro and in vivo, which could benefi t patients with this 
disorder. 

Methods We did a single-blind, placebo-controlled, dose-escalation study in patients with DMD recruited nationally, 
to assess the safety and biochemical effi  cacy of an intramuscular morpholino splice-switching oligonucleotide 
(AVI-4658) that skips exon 51 in dystrophin mRNA. Seven patients with Duchenne muscular dystrophy with deletions 
in the open reading frame of DMD that are responsive to exon 51 skipping were selected on the basis of the preservation 
of their extensor digitorum brevis (EDB) muscle seen on MRI and the response of cultured fi broblasts from a skin 
biopsy to AVI-4658. AVI-4658 was injected into the EDB muscle; the contralateral muscle received saline. Muscles 
were biopsied between 3 and 4 weeks after injection. The primary endpoint was the safety of AVI-4658 and the 
secondary endpoint was its biochemical effi  cacy. This trial is registered, number NCT00159250. 

Findings Two patients received 0·09 mg AVI-4658 in 900 μL (0·9%) saline and fi ve patients received 0·9 mg AVI-4658 
in 900 μL saline. No adverse events related to AVI-4658 administration were reported. Intramuscular injection of the 
higher-dose of AVI-4658 resulted in increased dystrophin expression in all treated EDB muscles, although the results 
of the immunostaining of EDB-treated muscle for dystrophin were not uniform. In the areas of the immunostained 
sections that were adjacent to the needle track through which AVI-4658 was given, 44–79% of myofi bres had increased 
expression of dystrophin. In randomly chosen sections of treated EDB muscles, the mean intensity of dystrophin 
staining ranged from 22% to 32% of the mean intensity of dystrophin in healthy control muscles (mean 26·4%), and 
the mean intensity was 17% (range 11–21%) greater than the intensity in the contralateral saline-treated muscle 
(one-sample paired t test p=0·002). In the dystrophin-positive fi bres, the intensity of dystrophin staining was up to 
42% of that in healthy muscle. We showed expression of dystrophin at the expected molecular weight in the 
AVI-4658-treated muscle by immunoblot. 

Interpretation Intramuscular AVI-4658 was safe and induced the expression of dystrophin locally within treated 
muscles. This proof-of-concept study has led to an ongoing systemic clinical trial of AVI-4658 in patients with DMD.
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premature termination of its translation,3,4 whereas 
deletions or duplications that maintain the open reading 
frame can lead to truncated but functional dystrophin, 
which underlies the milder disorder Becker muscular 
dystrophy (BMD).5 The spectrum of severity for BMD 
varies, ranging from diffi  culties in walking in the late 
teens to preserved walking ability into late adulthood and 
a normal lifespan.6

Up to 50% of patients with DMD have sporadic 
dystrophin-positive revertant fi bres.7 This dystrophin 
expression arises from alternative processing of DMD 
pre-mRNA that skips some exons, leading to restoration 
of the open reading frame.8 Revertant dystrophin is 
correctly localised to the sarcolemma and mediates the 
assembly of other proteins of the dystrophin glycoprotein 
complex, suggesting that it is physiologically functional. 
The occurrence of revertant fi bres and the mild symptoms 
of some individuals with BMD with in-frame deletions 
suggest that it might be feasible to modify the splicing of 
the DMD transcript and, by skipping the mutated exons, 
produce functional dystrophin (fi gure 1). 

Some exon deletions are more common than others.11 
Deletions of exons 50, 52, 52–63, 45–50, 47–50, and 49–50 
cumulatively account for 13% of all the deletions in 
DMD.12 Skipping of exon 51 in patients with these 
deletions should restore the open reading frame of DMD 
and lead to the expression of functional dystrophin. 

Antisense oligonucleotides have been used for 
experimental gene silencing and recently as splice-
switching oligonucleotides to modify splicing and 
induce exon skipping,13 particularly in myoblasts from 
patients with DMD in vitro,14,15 and in mouse and dog 
models of DMD.16–18 One patient with DMD who had 
a deletion of exon 20 received an intravenous infusion 
of a splice-switching oligonucleotide with a phos-
phorothioate backbone, which induced skipping of 
exon 19 and restored the DMD open reading frame in 
lymphocytes but had no eff ect in skeletal muscle.19 A 
recent phase 1 clinical study reported encouraging 
results in four boys with DMD who received a single 
intramuscular injection of a 2ĽO-methyl-ribooligo-
nucleoside-phoshophorothioate splice-switching oligo-
nucleotide that was targeted to skip exon 51. This 
treatment led to appreciable expression of dystrophin 
and was well tolerated.20 

Other chemically modifi ed oligonucleotides have been 
used in preclinical models and clinical trials. 
Phosphorodiamidate morpholino oligomers (PMOs; 
fi gure 1) are non-toxic, and in the mdx mouse model of 
DMD they were the most eff ective oligomer chemistry for 
inducing exon skipping and restoring long-lasting (weeks) 
dystrophin expression after intravenous or intramuscular 
injection.21–24 PMOs, unlike other antisense oligo-
nucleotides, are uncharged, not metabolised, and in 
preclinical or clinical studies were not associated with 
activation of the immune system, anaphylaxis, hypotension, 
or anti-arrhythmias.25 On the basis of these data, we have 

studied the safety and biochemical effi  cacy of AVI-4658, a 
PMO designed to target exon 51 that is delivered by 
intramuscular injection. Here, we report the results of a 
single-blind, placebo-controlled, dose-escalation safety and 
effi  cacy study of PMOs in patients with DMD.

Methods
Patients
This single-site, non-randomised, single-blind 
(investigator) study was done at Imperial College NHS 
Trust, London, UK, in patients with DMD who were 
recruited nationally. Participants were boys with a classic 
clinical diagnosis of DMD26 who were aged between 10 
and 17 years inclusive when the study drug was given. All 
participants had a deletion that can be rescued by the 
skipping of exon 51 (eg, deletion of exons 45–50, 47–50, 
48–50, 49–50, 50; 52, or 52–63); had fewer than 5% 
revertant fi bres seen in a muscle biopsy; had the extensor 
digitorum brevis (EDB) muscle suffi  ciently preserved 
(grade 1 to 3: grade 1 is near normal; grade 2 is 30–60% of 
the muscle is normal; and grade 3 is muscle is almost all 
abnormal but some normal muscle still present at the 
periphery), as determined by MRI of the feet;27,28 had a 
forced vital capacity of 25% or more and a normal 
overnight sleep study before 3 months from the day of 
injection; were able to comply with all study assessments 
and return for all study visits; and had adequate 
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Figure 1: Deletions and predicted results of exon skipping in the patients who were studied
(A) Pre-mRNA transcripts and dystrophin protein products from full length DMD, in patients with Duchenne 
muscular dystrophy, and predicted protein sequences after exon skipping. (I) The normal dystrophin gene produces 
the full length dystrophin product. (II) Patients 1 and 2 had a deletion in exon 50 that disrupts the open reading 
frame, leading to a truncated and unstable dystrophin. (III) Skipping of exon 51 restores the reading frame, producing 
a truncated but functional dystrophin that lacks exons 50 and 51. (IV) Patient 7 is missing exons 49 and 50. 
(V) Patients 3 and 4 are missing exons 48–50. (VI) Patients 5 and 6 are missing exons 45–50. All the truncated 
dystrophins produced after skipping of exon 51 are missing the hinge 3 region and some of the rod domain but have 
been associated with the milder BMD phenotype.9,10  (B) Structure of the phosphorodiamidate morpholino 
modifi cation of the antisense oligomer.
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psychiatric adjustments, supportive psychosocial 
circumstances, and full understanding of the study aims, 
process, and likely outcomes. 

Exclusion criteria were: absence of EDB muscles or 
advanced pathology of EDB muscles (grade 4) on muscle 
MRI; left ventricular shortening fraction of 25% or less, 
an ejection fraction of less than 35% seen by 
echocardiography within 3 months of visit one, or both; 
respiratory insuffi  ciency defi ned by the need for invasive 
or non-invasive ventilation; severe cognitive dysfunction 
that meant the patient was unable to understand and 
collaborate with the study protocol; immune defi ciency 
or autoimmune disease; bleeding disorders or chronic 
anticoagulant treatment within 3 months before study 
entry; medication with anabolic steroids, creatine protein 
supplementation, albuterol, or other beta agonists, and 
intranasal, inhaled, or topical steroids for a disorder other 
than muscular dystrophy within 1 week before study 
entry; surgery within 3 months before study entry or 
planned for anytime during the study; inability to 
undergo MRI (eg, owing to metal implants); known 
allergies to products likely to be used in the study (eg, 
antiseptics or anaesthetics); and participation in another 
experimental study within 4 weeks of study entry.

Standard-of-care treatment, including glucocorticoids 
and cardioprotective drugs, was continued in all patients. 
All study participants were informed before enrolment of 
the procedures, risks, and possibility of no benefi t. All 
participants provided written assent, and their parents 

gave written informed consent before enrolment in this 
study. This trial was designed and done in compliance 
with UK good clinical practice, International Conference 
on Harmonisation (ICH) E6, and all applicable regulatory 
requirements were met (UK Medicines and Healthcare 
Products Regulatory Agency, UK Gene Therapy Advisory 
Committee, and local research ethics committees). 

Trial activities and adverse events were monitored by a 
safety monitoring committee. The safety monitoring 
committee met on the following occasions: before recruit-
ment of the fi rst patient; to authorise the recruitment of 
the second patient after the fi rst patient was biopsied; 
and after the second patient was studied but before 
recruitment of the fi rst patient in the high-dose cohort 
without use of an intermediate dose (0·27 mg). The 
safety monitoring committee also met to discuss and 
authorise a proposed change to the protocol, which 
enabled us to increase the dose directly to the higher 
dose, to authorise the recruitment of the last two patients 
in the high-dose cohort, and to discuss a severe adverse 
event (bilateral surgical wound infection after the muscle 
biopsies) in one of the patients in the second cohort. 

The protocol was also amended in May, 2008, so that 
we did not need to recruit the third and last patient into 
the low-dose group (0·09 mg) or recruit the three patients 
into the intermediate dose group (0·27 mg), and 
permitted us to recruit patients in the high-dose group 
(0·9 mg). Because we had identifi ed considerable 
comorbidity  that precluded recruitment of some of the 

Age at 
enrolment 
(years)

DMD deletion Mobility Steroids Age at 
fi rst 
biopsy 
(years)

Dystrophin-positive 
fi bres in original 
biopsy

MRI 
grading 
of EDB 
muscle 

EDB fi brosis Time between 
injection and 
EDB biopsy 
(weeks) 

PCR 
primers to 
exons

Amplicon 
sizes (bp)

Saline injected Treated

Low dose

1 16 14 bp deletion in intron 49 
that included the exon 50 
acceptor splice site

Wheelchair for 
11 years

N 8 A few revertant fi bres, 
(~1–2%); traces on a 
few fi bres 

2a ++ ++ 3 48 and 52 519–286

2 13 Exon 50 Wheelchair for 
10 years; rides 
static bike for 
10 min daily

N 7 No revertant fi bres; 
no traces

∞
2b/3

+++ +++ 4 48 and 52 519–286

High dose

3 11 Exons 48–50 Wheelchair for 
10 years

Y 7 No revertant fi bres; 
no traces

∞
2b/3

+++ ++ 4 46 and 52 570–337

4 15 Exons 48–50 Walks indoors Y 3 One revertant fi bre;
traces on many fi bres 

∞
2a/2b

+ + 4 46 and 52 570–337

5 11 Exons 45–50 Walks unaided Y 7 No revertant fi bres; 
traces on a few fi bres 

1 ++ ++ 4 43 and52 486–253

6 12 Exons 45–50 Walks unaided Y 3 No revertant fi bres;
traces on many fi bres 

2a ++ ++ 4 43 and 52 486–253

7 10 Exons 49–50 Walks unaided Y 4 No revertant fi bres;
traces on many fi bres 

1 + + 3 47 and 52 539–306

Numbers are patient number. EDB=extensor digitorum brevis. bp=base pair. Y=yes. N=no. ∞=Asymmetrical EDB involvement on muscle MRI grading. +=Moderate increase of perimysial and endomysial 
connective tissue; some areas had a severe increase in perimysial and endomysial connective tissue. ++=Most fi bres were surrounded by large amounts of connective tissue, but some areas had less and were 
compact. +++=All fi bres surrounded by connective tissue; severe fi brosis throughout sample. EDB=extensor digitorum brevis. bp=base pairs. PCR=polymerase chain reaction.

Table 1: Baseline characteristics, exons targeted by PCR primers, and predicted amplicon sizes



Articles

www.thelancet.com/neurology   Vol 8   October 2009 921

older patients, we also requested and obtained permission 
to lower the age at inclusion to 10 years and to be able to 
recruit ambulant patients.

Procedures 
To confi rm that each patient had less than 5% 
dystrophin-positive revertant fi bres, each of the original 
muscle biopsies used to diagnose the patients was 
re-evaluated (table 1).29 Presence of a deletion suitable for 
exon 51 skipping and no additional mutations were 
reconfi rmed by sequencing of all the intact DMD coding 
exons and their intron–exon boundaries in all patients. 
The extensor digitorum brevis (EDB) muscle at the back 
of the foot was selected as the target muscle. This muscle 
is well preserved in non-ambulant boys with DMD 
(Kinali and Muntoni, unpublished), is, for the most part, 
functionally redundant (an important consideration in a 
study that is not expected to lead to functional benefi t), 
and can even be absent in some individuals.30 MRI 
confi rmed the presence and preservation of the EDB 
muscles in all patients31,32 and that involvement of the 
EDB muscle was not more than grade 3.27,28 Healthy 
muscle biopsies were obtained from the Dubowitz 
Neuromuscular Centre biobank.

Psychiatric assessments were done to ascertain the 
expectations and risk of reactive depression for each 
patient and their family by docu menting previous and 
current psychiatric adjustment and current psychosocial 
stresses and supports. Parents and children were 
interviewed separately. The parental questionnaire 
included the Strengths and Diffi  culties Questionnaire, 
the Parental Stress and Support Questionnaire, the 
General Health Questionnaire, and the Family Assessment 
Device, which are all validated assessment tools.33–36 
Patient interviews with the psychiatrist focused on their 
understanding of the trial, their general adjustment at 
home and school, emotional and depressive symptoms, 
and the Strengths and Diffi  culties Questionnaire and the 
Hamilton Anxiety and Depressive Scale.34,37

Cultured fi broblasts from a skin biopsy were analysed 
to verify oligonucleotide-induced splice switching of 
exon 51 in all patients. Fibroblasts were forced into 
myogenic diff erentiation by transduction with an 
adenovirus expressing the myogenic regulatory factor  
protein MyoD,38 and cultures were transfected with 
AVI-4658 congener on a 2ĽO-methyl backbone (300 nM) 
with Lipofectin (Invitrogen, UK).39 RNA was isolated 
48 h after transfection and analysed after reverse 
transcriptase–polymerase chain reaction (RT-PCR) 
amplifi cation.39 7 days after transfection, cells were 
harvested for western blot analysis,39 and lysates were 
probed with Dys1 (Vector Laboratories, UK), an 
anti-dystrophin monoclonal antibody. Dysferlin (Vector 
Laboratories, UK) was used as a loading control. 
Baseline safety blood analyses, including tests for 
anti-dystrophin antibodies40 and T-cell subsets (CD4:
CD8), were also done. 

AVI-4658 is an exon 51-targeted PMO (sequence CTCC
AACATCAAGGAAGATGGCATTTCTAG).39 AVI-4658 
was synthesised and purifi ed by AVI BioPharma 
(Portland, OR, USA) and was supplied as a low endotoxin 
and low bioburden powder, which was reconstituted in 
normal saline in the operating theatre. 

This dose escalation intramuscular trial was done in 
seven patients, who received either of two doses: 
two patients received 0·09 mg and fi ve patients received 
0·9 mg of AVI-4658; both doses were diluted in 900 μL 
normal saline (0·9%) and were injected in one EDB 
muscle; the contralateral EDB muscle was injected with 
900 μL normal saline. The dose was divided into nine 
100 μL injections in the fi rst fi ve patients and four 225 μL 
injections in the last two patients; this regimen reduced 
leakage into the skin, which was seen to some extent in 
patients 1–4. To ensure delivery in the muscle, the drug 
was injected with a 22 gauge EMG delivery needle 
(Pajunk, Multistim Sensor, Germany) inside a 1 cm² grid 
drawn in non-permanent ink on the skin over the site of 
the EDB muscles. The site and depth of the injections 
were recorded on videotape. After each injection, the 
needle was manipulated to confi rm its correct placement 
within the muscle. This took about 1 min. Each infusion 
was completed in about 30 s. After infusion, the needle 
was left in place for about 30 s to avoid leakage. The choice 
of which muscle to inject with the PMO or saline was 
made in the operating theatre on the day of the injection 
and the person who made the decision (FM) was masked 
to whether the patient was right-handed or left-handed. 
Patients and investigators (except MK, SC, and FM) were 
masked to which site received the active compound. The 
procedure was done under general anaesthetic in 
six patients; one patient opted to have the treatment under 
local anaesthetic. Both types of anaesthesia were available, 
and the choice was left to the families. 

For all patients, an open biopsy of both EDB muscles 
was done between 3 and 4 weeks after injection. The 
rationale for this time frame was taken from previous work 
in mice and in humans.17,20 In the mdx mouse, the same 
level of dystrophin expression was detected at 4 weeks as 
was detected at 2 weeks after an intramuscular injection of 
a 2ĽO-methyl antisense oligonucleotide designed to skip 
dystrophin exon 23.17 Also, in a study of intramuscular 
injection of a 2ĽO-methyl antisense oligonucleotide that 
targeted exon 51, given to patients with DMD, the skipped 
products and dystrophin were still detected in muscles that 
were analysed 4 weeks after intramuscular injection.20 The 
area immediately below the needle track was exposed and 
an open biopsy was taken and rapidly frozen in liquid 
nitrogen-cooled isopentane, according to standard 
techniques.29 To ensure that all the injection site had been 
obtained, most of the EDB muscle was removed.

Safety was determined by physical examination and 
haematological and urinary parameters, which were 
assessed periodically. The injection sites were monitored 
for local reaction and reactive pain. Patients were 
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followed-up at timed intervals for 120 days after treatment. 
Any immune response against the newly synthesised 
dystrophin was assessed by the production of 
anti-dystrophin antibodies: serum samples were used to 
probe western blots loaded with lysates of muscle from the 
AD17 transgenic mouse, which overexpresses full-length 
human dystrophin; goat anti-human-IgG was used as the 
secondary antibody (Bio-Rad, UK).40 The presence of T cells 
and B cells in each biopsy was ascertained by 
immunohistochemistry with antibodies raised against 
human CD3, CD4, CD8, or CD20 (Dako, UK). 

RNA extraction and RT-PCR analysis were done on ten 
serial 7 μm sections of the frozen muscle sample.39 Direct 
DNA sequencing of the excised bands was done by 
University College London Scientifi c Support Services. 
For western blotting, proteins from 20 serial 10 μm 
sections of muscle were isolated directly in 50 μL of 

loading buff er and analysed as previously described.39 
For immunohistochemical detection,29 unfi xed, frozen 

serial sections (7 μm) were incubated for 1 h with 
monoclonal antibodies against dystrophin (Dys 2 
[exon 77–79]; Vector Laboratories, UK), MANDYS10641 
(exon 43; a gift from G Morris, Oswestry, and the MDA 
Monoclonal Antibody Resource), and β-spectrin (Vector 
Laboratories, UK)29 and were then assessed by two 
investigators (LF and CS) who were masked to the identity 
of the patient and which side received the active compound. 
Images were captured with a Leica DMR microscope 
linked to MetaMorph, version 7.5 (Molecular Devices, CA, 
USA). Quantitative studies were done as follows: the 
numbers of dystrophin-positive and dystrophin-negative 
fi bres in the muscle fascicles adjacent to a presumed 
injection site were counted on the MANDYS106-stained 
sections of AVI-4658-treated muscles and areas of control 
muscles chosen at random by two independent investi-
gators (JM and CA).  Dystrophin expression was evaluated 
in 40 muscle fi bres selected at random on one representative 
transverse MANDYS 106-stained region per biopsy. 
Expression was normalised against the expression of 
β-spectrin on serial sections and was compared with 
sections of normal control muscle and the contralateral 
EDB saline-injected biopsy that were processed in the same 
way and simultaneously labelled with the same antibodies. 
Four fi elds of the immunostained transverse cryosection of 
each muscle were selected at random (out of focus) and 
these areas (in focus) were photographed. Ten regions per 
image, each including an area of membrane and fi bre 
cytoplasm, were selected by moving the cursor across the 
image and were analysed with MetaMorph. We measured 
the relative intensity of dystrophin in 100 dystrophin-
positive and 100 dystrophin-negative fi bres in the same 
regions of a section of treated muscle from each patient. 
This trial is registered, number NCT00159250.

Role of the funding source
The study was funded by the UK Department of Health 
and sponsored by Imperial College London. Neither had a 
role in the study design, data collection, data analysis, data 
interpretation, or writing of the report. AVI Biopharma 
manufactured and supplied AVI-4658 for the study and 
provided preclinical testing, packaging, labelling and the 
investigator brochure for the drug. The company supported 
the toxicity studies and participated in the design of the 
protocol, the execution and monitoring of the study, and 
discussions with the regulatory authorities. All authors 
have seen and approved the submitted version of the 
manuscript. 

Results
MRI confi rmed that the EDB muscles in all patients had 
changes that were less than grade 4 (fi gure 2). The 
diagnostic muscle biopsies were re-analysed with Dys1, 
Dys2, and Dys 3 antibodies to confi rm there was no or 
little dystrophin and less than 5% of the fi bres were 
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Exon 47 Exon 52

300 310 320
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Figure 2: Procedure for prescreening of patients before injection of AVI-4658. 
Patient 3 is shown as an example; similar results were obtained for all patients. (A) Transverse MRI of the lower leg 
and coronal MRI of the extensor digitorum brevis muscle (arrow) confi rmed the suitability of the muscle. (B)  Skin 
fi broblasts from all patients were forced into myogenic diff erentiation and treated with an AVI-4658 congener to 
confi rm exon skipping and dystrophin production. RT-PCR analysis shows two bands: the high molecular weight 
band corresponds to the unskipped transcript (including exons 46, 47, 51, and 52) and the low molecular weight band 
corresponds to the transcript fragment with size specifi c skipping of exon 51. (C) Exon 51 skipping was confi rmed by 
sequencing. 
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revertant (table 1). Treatment of MyoD transfected 
fi broblasts with the 2ĽO-methyl congener of AVI-4658 
showed exon skipping in the RT-PCR products (confi rmed 
by sequencing) and dystrophin expression on western 
blot in all patients (fi gure 2, webappendix). 

Four patients who had mild cardiac involvement were 
on treatment with angiotensin-converting enzyme (ACE) 
inhibitors before recruitment (table 2). Patient psychiatric 
adjustment and family psychosocial circumstances were 
deemed to be adequate for all patients included in the 
study. One patient who was from a family with unrealistic 
expectations and psychiatric problems was excluded.

All safety assessments showed no adverse events that 
were related to AVI-4568. All patients showed some 
short-lived, bilateral, localised reactions in both EDB 
muscles after the injections and muscle biopsies (table 2). 
In one patient, the echocardiogram at 3 months after the 
screening visit showed deterioration in fractional 
shortening, despite ACE inhibitors. This was attributed 
to the natural history of DMD, and the patient’s condition 
stabilised on beta-blockers. One patient developed 
bilateral cellulitis in the feet after the muscle biopsies 
and needed intravenous antibiotics. A short period of 
refusal to bear weight resolved without consequences. 

Light microscopy and immunocytochemistry done 
masked to treatment showed no diff erences in 
infl ammatory infi ltrates between the treated and control 

EDB muscles in all patients (table 2). There was no 
induction of anti-dystrophin antibodies after treatment 
with the phosphorodiamidate morpholino oligomer, 
although two patients (patient one and patient six) had low 
levels of cross reactivity with dystrophin in their pre-
treatment and post-treatment serum samples (not 
shown).

Both patients who had the low dose AVI-4658 showed 
little expression of dystrophin, despite dystrophin being 
robustly restored in the cultured fi broblasts, ahead of the 
injection of the antisense AVI-4658. This suggests that 
there is a lower threshold eff ect, and the low dose did not 
seem to be suffi  cient to induce exon skipping in patients 
with Duchenne muscular dystrophy; therefore, we 
proceeded straight to the high dose.

Biopsies of AVI-4658-injected EDB muscles and the 
contralateral saline-injected EDB muscles were analysed 
by assessors who were masked to which muscle was the 
treated one. This involved quantifi cation of 
immunostained, dystrophin-positive fi bres, the detection 
of exon 51 skipped RNA (table 1), and immunoblot 
analysis. After immunostaining of muscle sections with 
anti-dystrophin antibodies (Dys2 and MANDYS106), all 
patients treated with high-dose AVI-4658 showed a strong 
dystrophin signal that prevented masking of which side 
was the treated one in all patients (fi gure 3). The results 
also showed variable low-level immunostaining of the 

Relative intensity 
of dystrophin

Adverse events Infl ammatory 
infi ltrate in muscle

Anti-dystrophin 
antibodies

Untreated Treated EDB muscle biopsies AVI-4658 injection

Low dose

1 9% 6% Mild bilateral oedema of the forefoot that resolved on day 3 Bilateral mild discomfort, erythema (<25 mm), 
slight induration, and ecchymosis (>30 mm but 
≤50 mm) at the injection sites that resolved on day 3

No diff erence between 
the two sides

No diff erence after 
injection

2 8% 6% No local side-eff ects; decline in cardiac function (FS=22%) but 
was on ACE inhibitors before the EDB muscle biopsy

Bilateral erythema (50–85 mm) and induration 
(<25 mm) at the injection sites that resolved on day 3

No diff erence between 
the two sides

No diff erence after 
injection

High dose

3 11% 22% No local side-eff ects; mild biochemical evidence of 
myoglobinuria, which was self-limiting and resolved after the 
third micturition after the muscle biopsies

Bilateral mild discomfort, erythema (<25 mm), 
and slight induration that resolved on day 2

No diff erence between 
the two sides

No diff erence after 
injection

4 14% 32% Bilateral ecchymosis that resolved on day 7 Bilateral ecchymosis that resolved on day 3 No diff erence between 
the two sides

No diff erence after 
injection

5 10% 31% Mild biochemical evidence of myoglobinuria that was self-
limiting and resolved after the third micturition after the 
muscle biopsies; cellulitis (local pain and redness) in both feet 
at the sites of the biopsies was treated with a short course of 
intravenous and then oral antibiotics; refusal to bear weight 
for 10 days owing to moderate discomfort

Ecchymosis (<20 mm) and slight induration at 
the AVI-4658 injection site that resolved on day 2

No diff erence between 
the two sides

No diff erence after 
injection

6 8% 25% Large ecchymosis (>50 mm) that resolved on day 7 Mild biochemical evidence of myoglobinuria that 
was self limiting and resolved after three 
micturitions after the general anaesthetic; mild 
ecchymosis (<20 mm) on the control foot that 
resolved after 2 days

No diff erence between 
the two sides

No diff erence after 
injection

7 4% 22% No local side-eff ects or problems No local side-eff ects and no problems No diff erence between 
the two sides

No diff erence after 
injection

Numbers are patient number. EDB=extensor digitorum brevis. ACEI=angiotensin converting enzyme. FS=shortening fraction. 

Table 2: Safety studies and adverse reactions documented during the trial

See Online for webappendix
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saline-treated muscles in all patients, which underscores 
the importance of this control (webappendix). 
Sarcolemmal colocalisation of dystrophin with other 
proteins of the dystrophin glycoprotein complex 
(webappendix) suggested that dystrophin interacted with 
other members of this protein complex and was therefore 
presumed to be functional. However, in patients one and 
two, who received low-dose AVI-4658, there was no clear 
diff erence in protein expression between the treated and 
control EDB muscle biopsies (webappendix). 

 The results from the high-dose group were quantifi ed 
further by image analysis of fl uorescent sections stained 
with the MANDYS106 antibody, which has been used 
previously for this purpose.20 Masked measurements of 
the fl uorescent intensity of dystrophin staining were 
done in 40 fi bres chosen at random per drug-treated and 
saline-treated muscle sample. In the high-dose group, 
the mean diff erence in measurements of the fl uorescent 
intensity of dystrophin expression in all treated muscles 

was about 17% (range 11–21%) more than that in the 
contralateral saline-injected muscles (one-sample paired 
t test p=0·002; fi gure 4). Because the random 
measurements took into account areas that contained 
both dystrophin-positive and dystrophin-negative fi bres 
for the intensity measurements, we targeted the 
dystrophin-positive fi bres within the same area. The 
intensity in these fi bres in patient 4 was 42% of that in 
healthy muscle (fi gure 4). 

Counting of the positive fi bres stained with 
MANDYS106 was done after confi rmation of which 
muscle was the treated muscle and which was the control, 
owing to low-level staining in several of the patients 
(fi gures 3 and 4). If the low-level immunostaining was 
not factored in, the number of positive fi bres in the side 
that received AVI-4658 reached 100% in several patients. 
We therefore adjusted the detection threshold so that 
only the rare revertant fi bres were seen in the 
saline-injected muscle. This threshold was then 
subtracted from the contralateral AVI-4658 injected 
muscle. A mean of 419 fi bres (range 262–792 fi bres) were 
seen in the four areas counted from the treated muscles 
in patients from the high-dose group. In the fi ve muscles 
treated with high-dose AVI-4658 there was a mean of 
269·8 (SD 204·5) dystrophin-positive fi bres by contrast 
with 6·6 (8·1) dystrophin-positive fi bres in the 
saline-treated side (one-sample paired t test p=0·02). 
When the proportion of positive fi bres in the fascicles 
that were assumed to relate to the needle track were 
counted, the number varied between 44% and 79% (mean 
59·8% [SD 13·9]; table 3). At least 262 fi bres were counted 

Patient 4 (untreated)A

B Patient 3

Untreated

Treated

Patient 4 Patient 5 Patient 6 Patient 7

Patient 4 (treated)

Figure 3: Dystrophin expression in patients treated with high-dose AVI-4658
Transverse sections of treated and contralateral EDB muscles that were immunostained for dystrophin with MANDYS106. (A) Low-power micrograph of a whole 
section taken with ×10 objective lens shows widespread expression of dystrophin in fi bres from the treated muscle in patient 4. (B) Higher magnifi cation 
(×20 objective lens) of dystrophin immunolabelling in treated and untreated sections in patients 3–7. Scale bars=100 μm.

Untreated Treated

Total Positive Total Positive

3 443 21 (5%) 377 182 (49%)

4 662 2 (<1%) 792 623 (79%)

5 475 2 (<1%) 263 116 (44%)

6 554 5 (1%) 404 264 (65%)

7 405 3 (<1%) 262 164 (63%)

Table 3: Dystrophin expression in muscle myofi bres in patients 3–7, who 
were treated with high-dose AVI-4658 
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in each sample. There was no correlation between the 
proportion of dystrophin-positive fi bres and the severity 
of fi brosis (table 1).

The results of the dystrophin immunostaining were 
corroborated by those from the RT-PCR and western 
blots, which were done masked to treatment. Exon 51 
skipping and distinct bands of dystrophin protein were 
seen in the drug-treated muscles but not in the 
saline-treated muscles of patients in the high-dose group 
(fi gure 5). Exon 51 skipping was also seen in the 
two patients in the low-dose group, but this was less 
abundant and only detected when high-sensitivity 
conditions were used (additional cycles);20 however, these 
two patients did not have detectable dystrophin on 
western blot (webappendix). Sequencing of the RT-PCR 
products confi rmed accurate skipping of exon 51 in the 
treated muscles of all patients (fi gure 5). Immunoblot 
analysis showed bands of the expected molecular weight 
in the AVI-4658-treated muscles.

Discussion
This single-blind study assessed the local safety and 
biochemical effi  cacy of intramuscular injection of 
AVI-4658 in patients with DMD who have deletions that 
are responsive to skipping of DMD exon 51. We showed, 
in vivo, that the PMO AVI-4658 induced specifi c skipping 
of exon 51 and the production of dystrophin that was 
correctly localised at the sarcolemma. The treatment was 
not associated with any systemic or local adverse events 
or with any immune response against dystrophin. 

Specifi c dose-dependent exon skipping was seen in the 
treated EDB muscles compared with the contralateral 
saline-injected muscles. Patients in the low-dose group 
showed RT-PCR evidence of exon skipping, confi rmed by 
sequencing, but no dystrophin protein was detected. 

Strong expression of dystrophin was seen in the treated 
muscle in all patients in the high-dose cohort after 
subtraction of the signal intensity for the low-level of 
antibody labelling in the sarcolemma of the saline-injected 
contralateral muscle (fi gure 3). Localisation of dystrophin 
to the sarcolemma suggests appropriate interaction with 
other proteins of the dystrophin glycoprotein complex. 
Western blot analysis detected increased expression of 
dystrophin in the AVI-4658-treated muscle of all patients 
who received the high dose, and the immunoblot detected 
expression of dystrophin of the expected molecular weight 
in all patients. However, the quantifi cation of dystrophin 
from a western blot after an intramuscular injection is 
diffi  cult (eg, ensuring that equivalent amounts of 
sarcolemmal proteins are loaded in each track, the transfer 
of large proteins is effi  cient, and development of the signal 
in the linear range). In view of the highly localised delivery 
of AVI-4658, we chose an immunohistochemistry-based 
method to quantify dystrophin in specifi c myofi bres. This 
method has several advantages over other techniques, 
such as western blot and real-time RT-PCR, because it 
enables the in situ visualisation of the correct localisation 

of the expressed protein. Additionally, western blot and 
RT-PCR are not relevant for proteins that are only expressed 
in a subset of fi bres, which is the case here because of the 
local injection.

The quantitative immunohistochemistry method we 
used goes a step further than the one used in a recent 
exon-skipping study,20 because fi bres are randomly 
selected to calculate the mean expression in the treated 
muscle and compared with that in the control muscle 
(fi gure 4). We extended our analysis by measuring the 
intensity of selected dystrophin-positive and dystrophin-
negative fi bres within the same areas of the treated 
muscles. We show that the fl uorescent intensity of the 
dystrophin-positive fi bres was 42% of that of fi bres in 
healthy, non-dystrophic control muscles (fi gure 4).

In a recent clinical trial in which exon 51 was targeted, 
the investigators showed dystrophin expression in the 
tibialis anterior muscle after one injection of PRO051, a 
2ĽO-methyl antisense oligonucleotide.20 Although 
PRO051 and AVI-4658 target the same region of exon 51, 
we used a phosphorodiamidate morpholino oligomer 
chemistry, used a longer splice-skipping oligonuceotide, 
and treated a small intrinsic and relatively non-functional 
foot muscle, which enabled us to obtain bilateral muscle 
biopsies that were not available in the PRO051 study. 
Because staining with the MANDYS106 antibody, which 
was used in both studies, results in low-level labelling in 
some patients with DMD (fi gure 4), negative controls are 

100%

100%

0

20

40

60

Re
la

tiv
e 

in
te

ns
ity

 (%
) 80

100

A

0

20

40

60

Re
la

tiv
e 

in
te

ns
ity

 (%
) 80

100

B

42%

11%

11%

22%
14%

32%

10%

31%

8%

25%

4%

22%

Control

Control Bright fibres
MANDYS106

Dim fibres
MANDYS106

3 4 5 6 7

Saline
AVI–4658

Figure 4: Intensity of dystrophin expression in patients treated with 
high-dose AVI-4658 relative to control
(A) Mean random intensity measurements. (B) Measurement of mean 
dystrophin intensity in positive fi bres: intensity measurements exclusively 
targeted to 100 dystrophin-positive and 100 dystrophin-negative fi bres within 
the same area in patient 4. Bars are SEM.
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crucial for accurate quantifi cation of the protein. This 
low-level labelling of dystrophin is absent only in patients 
with DMD in whom the MANDYS106 epitope (coded in 
exon 43) is deleted (data not shown), implying that a 
genuine product of DMD is detected by this high-affi  nity 
antibody. Our controlled study of exon skipping for 
DMD clearly shows an increase in the expression of 
dystrophin in drug-treated muscles compared with the 
saline-injected contralateral muscle. Because a negative 
saline-injected control was not included in the previous 
study,20 and the background concentration of endogenous 
dystrophin  expression was not taken into account, the 
relative effi  cacy of the two compounds for inducing 
dystrophin-positive fi bres cannot be compared directly. 
If we estimate that we obtained an average dystrophin 
intensity value of 26·4% (range 22·0–32·0%) in a much 
larger biopsy (about 0·5×2×2 cm; webappendix) 
compared with the 27% (range 17–35%) in the previous 
study, which reported biopsy sizes between 
120–726 fi bres,20 this might suggest that the 
phosphorodiamidate morpholino oligomer AVI-4658 
compares favourably with the 2ĽO-methyl chemistry.20 
This seems to be particularly relevant because the 
method used to measure intensity values in the PRO051 
study averaged the intensities of the whole image and 
did not subtract the low-level background expression. 
However the methods for quantifying immuno-
cytochemistry in the two studies are not identical, 
diff erent muscles were studied, and the volume of the 

injected drug was diff erent; therefore, direct comparison 
between the two studies cannot be made with precision. 
This implies that, in terms of the diff erent chemistries 
used for the antisense oligonucleotides, the effi  cacies of 
the results of these two studies cannot be directly 
compared. Although PMOs that were designed to skip 
exon 23 were more effi  cient than were 2ĽO-methyl 
oligomers after intramuscular injection in mdx mice,22,24 
any diff erences in length among the antisense 
oligonucleotides might contribute to their effi  cacy.24 
Nevertheless, both studies reported unequivocal 
expression of dystrophin at similar concentrations.

Whether this expression of dystrophin resulted in 
improved muscle function was not studied. However, 
in-frame deletions of the exons 48–51, 50–51, and 45–51 
in DMD, which will lead to dystrophin that is similar to 
that induced in this study, have been described in 
multi-generation families in which the aff ected members 
were asymptomatic.9,10 We therefore anticipate that the 
dystrophin produced by the patients in our study would 
be functional and speculate that the missing domain is 
not essential for protein function or structure. The 
concentration of dystrophin needed to improve or 
preclude clinical symptoms will probably depend on the 
quantity and quality (molecular structure) of the 
protein. We recently reported that dystrophin expression 
of 27% of the concentration in healthy muscle was 
suffi  cient to avoid skeletal muscle symptoms,42 but the 
concentration of truncated dystrophin without exon 51 
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Figure 5: Exon 51 skipping in amplifi ed RNA from treated muscles
(A) RT-PCR analysis of RNA extracted from treated (X), untreated (O), and control (C) muscle sections detects shorter transcript fragments in the treated muscles, 
with sizes that correspond to the specifi c skipping of exon 51. (B) Exon 51 skipping was confi rmed by sequencing. (C) Western blot analysis of homogenates of 
treated and untreated muscle (20x10 μm sections) and control muscle (2x10 μm sections [to avoid overexposure]) shows dystrophin expression in extracts from the 
control muscles (C) and treated (X) extensor digitorum brevis but not in the contralateral muscles (O). Loading was monitored with protogold. Low dose=0·09 mg 
AV-4658. High dose=0·9 mg AV-4658. 
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that is suffi  cient to provide a clinical benefi t is not known. 
Nevertheless, if the increases in dystrophin concentration 
that we observed along the needle track were achieved 
after systemic delivery, then this might lead to a clinically 
signifi cant response.

Preclinical studies in mdx mice have shown that seven 
weekly doses of PMOs resulted in a high number of 
dystrophin-positive fi bres, varying between 10% and 70% 
of the muscle fi bres in the diff erent muscles analysed.17 
Translation of dose from intramuscular to systemic 
studies or studies with the same delivery route but in 
diff erent species is diffi  cult. However, in a recent study18 
in which dogs with canine X-linked muscular dystrophy 
were given an intravenous cocktail of morpholinos 
designed to skip exons 6 and 8 of dystrophin, expression 
of the protein was successfully restored and a clinical 
benefi t was noticed without adverse reactions to the 
high-doses of morpholinos used. This bodes well for 
systemic studies in humans. On the basis of these 
observations, we have initiated a dose-ranging study in 
ambulant patients with DMD to assess the safety and 
effi  cacy of repeated doses of systemic intravenous 
AVI-4658 (ClinicalTrials.gov, number NCT00844597). 
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