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Abstract 15 

Nearly a decade into Defra’s  current eradication strategy (Defra, 2014, 2011), bovine 16 

tuberculosis (bTB) remains a serious animal health problem in England, with c.30,000 cattle 17 

slaughtered annually in the fight against this insidious disease. There is an urgent need to 18 

improve our understanding of bTB risk in order to enhance the current disease control policy. 19 

Machine learning approaches applied to big datasets offer a potential way to do this. 20 

Regularized regression and random forest machine learning methodologies were implemented 21 

using 2016 herd-level data to generate the best possible predictive models for a bTB incident 22 

in England and its three surveillance risk areas (High-risk area [HRA], Edge area [EA] and 23 

Low-risk area [LRA]). Their predictive performance was compared and the best models in 24 

each area were used to characterize herds according to risk.  25 

While all models provided excellent discrimination, random forest models achieved the 26 

highest balanced accuracy (i.e. average of sensitivity and specificity) in England, HRA and 27 

LRA, whereas the regularized regression LASSO model did so in the Edge (EA). The time 28 

since the last confirmed incident was resolved was the only variable in the top-ten ranking in 29 

all areas according to both types of models, which highlights the importance of bTB history 30 

as a predictor of a new incident. 31 

Risk categorisation based on Receiver Operating Characteristic (ROC) analysis was carried 32 

out using the best predictive models in each area setting a 99% threshold value for sensitivity 33 

and specificity (97% in the LRA). Thirteen percent of herds in the whole of England as well 34 

as in its HRA, 14% in its EA and 31% in its LRA were classified as high-risk. These could be 35 

selected for the deployment of additional disease control measures at national or area level. In 36 
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this way, low-risk herds within the area considered would not be penalised unnecessarily by 37 

blanket control measures and limited resources be used more efficiently. The methodology 38 

presented in this paper demonstrates a way to accurately identify high-risk farms to inform a 39 

targeted disease control and prevention strategy in England that supplements existing 40 

population strategies.  41 

Keywords: Bovine tuberculosis, Machine learning, Random forest, Regularized regression, 42 

ROC analysis, England. 43 

1. Introduction 44 

Bovine tuberculosis (bTB: infection of cattle with Mycobacterium bovis) is a global bacterial 45 

zoonosis, reported in 44% of 188 OIE territories from January 2017 to June 2018 (Murai et 46 

al., 2019). It can affect nearly all mammals although cattle are the most susceptible (Hamzi, 47 

2014). It represents a serious economic problem globally (Olea-Popelka et al., 2017; Pollock 48 

and Neill, 2002) and is one of the most complex (Brooks-Pollock and Keeling, 2009) and 49 

pressing animal health problems in the UK (Defra, 2014). Although current bTB prevalence 50 

levels of 6 to 14% (Defra, 2019) are below the estimated 20-40% prevalence pre-compulsory 51 

controls in the 1940s-50s (Defra, 2006), they do not allow for eradication (Pfeiffer, 2013) in 52 

England by the target year of 2038 (Defra, 2014). A successful strategy would require a 53 

significant reduction in levels of bTB from the current 7.4% prevalence of confirmed 54 

incidents in the High Risk Area (HRA) of England (APHA, 2020) to 0.1% of confirmed 55 

incidents over a six-year period (European-Commission, 1964), with interventions targeted 56 

according to the risk of infection (Defra, 2014).  57 
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The established blanket application of whole-herd test-and-slaughter and abattoir surveillance 58 

programmes underpinned by animal identification, tracing and movement control, are 59 

cornerstones of the bTB eradication strategy. More refined risk-based strategies, central to 60 

eradication programmes in Australia (More et al., 2015), were introduced in 2013 in England 61 

with the establishment of the High-risk, Edge and Low-risk areas (Defra, 2014). However, 62 

individual risk-based designation of farms, recently recommended (Godfray et al., 2018), has 63 

seldomly been attempted (Adkin et al., 2016). This would enable the proactive application of 64 

prevention and disease intervention measures in absence of an incident and on incident 65 

disclosure, respectively, to further limit disease spread. 66 

Decision-making for disease prevention and control is based on quantitative data analysis and 67 

the interpretation and validity of models depend on the epidemiological knowledge about the 68 

disease as well as the quality and quantity of data used (Thursfield, 2005). The science of 69 

learning from data plays a key role in the fields of statistics, data mining and artificial 70 

intelligence applied to multiple disciplines. Non-linear decision tree methods are simple and 71 

easy-to-interpret models (James et al., 2014) that account for interactions and non-linear 72 

relationships (Afonso et al., 2012; Fei et al., 2017; Schiltz et al., 2018), without making 73 

distributional assumptions (Frisman et al., 2008; Kashani and Mohaymany, 2011), without 74 

restrictions in predictor numbers (Frisman et al., 2008; Shaikhina et al., 2019; Strobl, 2010) 75 

and without the need to transform variables (Fei et al., 2017; Frisman et al., 2008; Lewis, 76 

2000; Shaikhina et al., 2019; Song and Lu, 2015).  77 

This paper builds on previous research (Romero et al., 2020) that used classification tree 78 

analysis to provide explanatory models of bTB in England and its three surveillance risk areas 79 

(HRA, LRA, EA). Here, we compare two predictive models: random forests and regularized 80 
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logistic regression. Random forests (Breiman, 2001; Liaw and Wiener, 2002) are an improved 81 

decision-tree method which combines resampled observations and variables from multiple 82 

trees producing a single consensus outcome prediction from the de-correlated trees, reducing 83 

variability and improving prediction accuracy although losing interpretability (Hastie et al., 84 

2017; James et al., 2014). Regularized logistic regression, on the other hand, is a method 85 

which penalises the number of variables in traditional logistic regression models and selects 86 

the ones that contribute more to it (Friedman et al., 2010), trying to improve both accuracy 87 

and simplicity (Kassambara, 2018). They reduce the variance of traditional linear models 88 

maintaining predictive performance (Hastie et al., 2017) and are preferred to subset 89 

approaches in terms of bias (Bielza et al., 2011; Kwok et al., 2014). Like random forest 90 

models, they deal well with multi-collinearity, reduce the numerical instability due to 91 

overfitting (Pereira et al., 2016) and are useful in relatively high dimension scenarios (Bielza 92 

et al., 2011). Both modelling approaches produce estimates of risk on a continuous scale for 93 

each farm, whereas we aim to classify herds into risk categories to inform the targeted 94 

deployment of disease prevention and control measures.    95 

 Receiver Operating Characteristic (ROC) analysis was first used in the late 1960s to select 96 

cut-off values for medical diagnostic tests (Greiner et al., 2000) and is now widely accepted 97 

for evaluating the discrimination performance of a continuous variable (Fawcett, 2006; Gerds 98 

et al., 2008; Gonçalves et al., 2014; van Erkel and Pattynama, 1998). To facilitate the 99 

interpretation of the predicted probability of an incident- output of the predictive models- and 100 

using it as the continuous variable to be evaluated (Gerds et al., 2008), ROC analysis allows 101 

us to classify herds into high-, medium- and low-risk. The selection of the two thresholds or 102 

cut-off values needed to separate the herds is determined by the chosen values of sensitivity 103 
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and specificity (Schafer (1989) in (Greiner et al., 2000)). This study aimed to demonstrate a 104 

methodology that could extend the application of the bTB predictive models to devise risk-105 

based disease control and/or prevention strategies at herd level in England and its differing 106 

incidence areas, to supplement the population-level control measures currently applied. 107 

2. Methods 108 

2.1 Source datasets 109 

Animal and Plant Health Agency (APHA)-held and other data on potential herd-level 110 

predictors for herds active in England in 2016 were used, ranging from demographic herd 111 

characteristics and bTB-related variables (e.g. past bTB history from as early as January 2000, 112 

including the status in 2016 as incident or not as the outcome variable) from the Sam bTB 113 

management system, to cattle movements from the Cattle Tracing System (from as early as 114 

January 2012),  badger density (Judge et al., 2017) and land class data (Bunce et al., 2007). 115 

UK climate data variables were extracted from the gridded land surface climate observations 116 

datasets (Met_Office, 2017): maximum, mean and minimum temperature and rainfall from 117 

the daily temperature and precipitation at 5 km resolution datasets (2013-2016); relative 118 

humidity (2011-2014) and sunshine (2013-2016) from the monthly climate variables at 5 km 119 

resolution datasets. 120 

2.2 Data reduction 121 

Non-eligible herds were excluded:  122 

• Being a government-approved finishing unit (i.e. Approved Finishing Unit, Licensed 123 

Finishing Unit and Exempt Finishing Unit). These are biosecure finishing units 124 

officially licensed and monitored by the government that can receive cattle from bTB-125 



Predictive models comparison M. Pilar Romero 7 

restricted premises (first two) (APHA, 2018a, 2017a) and from premises that have not 126 

had their required pre-movement test in the latter case (APHA, 2018b), but can only 127 

send cattle to slaughter. Movements to these represent a deferred slaughter, possibly 128 

beyond the study year; 129 

• Not having a value for herd size, a key predictor based on previous studies (Broughan 130 

et al., 2016; Skuce et al., 2012), and  131 

• Not having a chance of an incident being detected in 2016 due to absence of active 132 

(disease testing) and passive (slaughterhouse) surveillance. 133 

2.3 Data preparation 134 

Proximity variables to bovine and non-bovine bTB incidents (i.e. from any non-bovine 135 

species where bTB has been confirmed on culture from 2008 to 2016), namely the herd's 136 

rounded distance as the crow flies to nearest incident occurring in 2015 and to the nearest 137 

non-bovine incident, respectively; as well as the land class value, were extracted at herd level 138 

using ArcMapTM extraction tool. 139 

2.4 Data analysis 140 

2.4.1 Descriptive data analysis 141 

The initial dataset used for analysis was made up of the outcome variable (i.e. incident or not 142 

in 2016) and 141 predictors, which included factors such as number of incidents, number of 143 

movements and area incidence (for a full list, see Supplementary materials S1). The presence 144 

of missing values was assessed and dealt with by either removing herds with any missing 145 

observations (6.12% or 2 461 out of 40 184 herds removed) (complete-case analysis)  (Hayes 146 
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et al., 2015; Maimon and Rokach, 2010; Pedersen et al., 2017)  or by substituting missing 147 

observations using multiple imputation (Afifi et al., 2011; Maimon and Rokach, 2010; 148 

Pedersen et al., 2017) with chained equations (van Buuren, 2011) to reduce the bias in 149 

estimates of missing values, since these are based on the distribution of observed data (White 150 

et al., 2011). Numerical variables were not categorized. The proportions of incident and non-151 

incident herds in England, High-risk area (HRA), Edge area (EA) and Low-risk area (LRA) 152 

were presented (Figure 1). 153 

2.4.2 Variable selection 154 

To improve the speed and performance of the algorithms, non-predictive variables were 155 

identified and removed (Guyon and Elisseeff, 2003; Jain and Singh, 2018; Maimon and 156 

Rokach, 2010) in three steps. First, univariable logistic regression analysis was carried out to 157 

reveal associations between each individual predictor and the outcome, removing non-158 

significant variables with a relaxed threshold (p > 0.1) (Jain and Singh, 2018; Winkler and 159 

Mathews, 2015). This relaxed threshold was chosen since non-significant variables could still 160 

improve predictive performance in the presence of others (Guyon and Elisseeff, 2003; Hilbe, 161 

2009). Second, the presence of highly-correlated variables was identified by a correlation 162 

coefficient (detected using the Spearman test) above 0.79 in absolute value (Campbell and 163 

Swinscow, 2009). Among highly-correlated pairs of numerical variables, the one with the 164 

lowest mean correlation between that predictor and all other ones was selected and the rest 165 

excluded (Kuhn, 2008). Categorical variables were assessed using the Cramer’s V test 166 

(Cramer, 1946), followed by the manual selection of certain variables within highly-167 

correlated pairs based on practical criteria with the remaining highly-correlated pairs being 168 

excluded. Selected highly-correlated and non-highly correlated variables entered the next 169 



Predictive models comparison M. Pilar Romero 9 

step. Third, predictors with near-zero variation (i.e. the ratio of the number of unique values 170 

relative to the total number of observations was less than 20% and the ratio of the most 171 

frequent value to the second most frequent one was greater than 20) were removed (Kuhn, 172 

2008). A final check for the presence of linear dependencies was also carried out using QR 173 

matrix decomposition (Kuhn, 2008).  174 

2.4.3 Random forest 175 

Random forest models (Breiman, 2001), based on an ensemble of classification trees 176 

(Breiman et al., 1984; Therneau and Atkinson, 2018), were implemented (Liaw and Wiener, 177 

2002) using training datasets resulting from randomly splitting the original datasets using an 178 

80:20 (training: testing) split (Fei et al., 2017; Kassambara, 2018; Kawamura et al., 2012; 179 

Yang et al., 2016). Models were created for England and each surveillance risk area using 180 

training datasets with complete-case or with multiple imputation of missing values. 181 

Bootstrapped samples of herds drawn with replacement from each training dataset and a 182 

random sample of predictors were selected before each split to create the trees in the 183 

ensemble using the Gini index (Genuer et al., 2010; Hastie et al., 2017; Maimon and Rokach, 184 

2010). The final trees were tuned for the number of trees in the forest (500 initially) and the 185 

fixed number of input variables chosen at random before each split (eight initially) (Hastie et 186 

al., 2017; Liaw and Wiener, 2002).  187 

Variable importance was calculated by first recording the OOB prediction accuracy to get an 188 

unbiased estimate of the misclassification error (Genuer et al., 2010; Strobl, 2010). This 189 

calculation was then repeated after permuting each predictor variable, with the difference 190 

between the two accuracies being averaged over all trees and normalized by the standard 191 

deviation of the differences (Hastie et al., 2017; Liaw and Wiener, 2002). The predictions for 192 
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a given herd having an incident or not were assigned by aggregating the results from all trees 193 

using majority voting (Boulesteix et al., 2012; Hastie et al., 2017; Maimon and Rokach, 2010) 194 

(Figure 2).  195 

To alleviate the problem of imbalanced class proportions of the outcome, the analyses were 196 

repeated using a down-sampling approach within the training datasets, independent of the 197 

cross-validation process. Down-sampled datasets were created by selecting a random sample 198 

of non-incident herds matching the number of incident ones (Chawla et al., 2002; Garcia, V.; 199 

Mollineda, R.A.; Sanchez, 2009; Kuhn, 2008; Mostafizur Rahman and Davies, 2013).  200 

2.4.4 Regularized logistic regression 201 

To provide an alternative predictive model for comparison, regularized logistic regression was 202 

applied to the same data. Three regularized regression models were developed using the same 203 

training datasets (Friedman et al., 2010): Ridge regression (Hoerl and Kennard, 1982) that 204 

shrinks the predictors’ regression coefficients towards zero but keeps all variables in the 205 

model, LASSO (Least Absolute Shrinkage and Selection Operator) that shrinks to the point of 206 

deselecting some coefficients by reducing them to zero (Tibshirani, 2011) and Elastic net, a 207 

combination of the two and generalization of the LASSO (Zou and Hastie, 2005). The models 208 

were developed and tuned using leave-one-out cross-validation (James et al., 2014), with the 209 

choice of model being set by selecting the mixing parameter (α): “0” for Ridge, “1” for 210 

LASSO or unspecified for Elastic net (the best value between 0 and 1 is selected from a grid 211 

by the statistical package) (Friedman et al., 2010; Kassambara, 2018). All models were 212 

developed using multiple imputation and complete-case, original and down-sampled datasets 213 

in each area, as before. The model’s predictive performance and best model’s selection was 214 
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carried out as before. Output variables were chosen from the best models’ regression 215 

coefficients, excluding predictors that had a null value. 216 

2.4.5 Comparison of model performance  217 

The models’ predictive performance was assessed on the testing datasets (Khun et al., 2014; 218 

Kuhn, 2008) using: accuracy (a property of classification models, based on the number of 219 

correctly classified observations in the confusion matrix), sensitivity, specificity, positive and 220 

negative predictive values, balanced accuracy (i.e. average between sensitivity and 221 

specificity) and area under the ROC (AUC) (Fei et al., 2017). The models with the highest 222 

balanced accuracy were chosen for each area. Output variables were chosen  from the 223 

coefficient ranking excluding variables without a coefficient value (LASSO) and from the 224 

variable importance ranking (OOB accuracy) excluding variables with values of zero, 225 

negative or positive up to the same value as the negative ones (random forest) (Strobl, 2010). 226 

2.4.6 Receiver Operating Characteristic (ROC) analysis 227 

We carried out an ROC analysis based on these calculated probabilities (Sing et al., 2005) to 228 

discriminate between three mutually-exclusive risk categories of herds by selecting two 229 

thresholds,  informed by defined sensitivity and specificity values. Specificity was first 230 

calculated from the false positive ROC analysis outputs, which were ordered in descending 231 

value of cut-off values. A requirement of 99% sensitivity and specificity yielded two different 232 

cut-offs in England, HRA and EA. In the LRA, 97% sensitivity and specificity values were 233 

used due to the lack of incidents. The cut-off values chosen represented the predicted 234 

probabilities of an incident in the training datasets for each area that classified herds into low-, 235 

medium- and high-risk groups. The predicted probability of an incident was then calculated 236 
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for the testing dataset in each area (R_Core_Team, 2020) and the same cut-off values were 237 

applied to inform risk-based classification of herds in the testing datasets. 238 

Within each area (i.e. England and each surveillance risk area), complete-case vs imputed 239 

data datasets (to evaluate the influence of missing data) and down-sampled vs not down-240 

sampled datasets (to evaluate influence of imbalanced data) were analysed. Statistical 241 

analyses were performed using the R statistical software version 3.6.0. and manipulation of 242 

spatial data was carried out in ESRI ArcMap 10.6.1.  243 

3. Results 244 

3.1 Summary of data 245 

There were 52 668 active cattle herds in England in 2016; 392 or 0.74% government-246 

approved finishing units, 109 or 0.21% herds without a value of herd size and 11 983 or 247 

22.75% herds without a chance of an incident being detected were removed, leaving 40 184 248 

herds to be included in the analysis. The variable with the highest percentage of missing 249 

values was Prevalence in 100 nearest neighbours (2.42%). Nine percent of herds (3 561 out 250 

of 37 723 in complete-case and 3 639 out of 40 184 in multiple imputation datasets) had had a 251 

new incident in 2016: 86% (3 067 and 3 134) in the HRA, 10 % (367 and 374) in the EA and 252 

4 % (127 and 131) in the LRA. These proportions mimic the proportions reported for 2016 in 253 

all active herds, although HRA herds are over-represented due to data reduction (APHA, 254 

2017b). 255 
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3.2 Variable selection 256 

Sixty-five of the 141 variables remained in the analysis, following removal at different stages 257 

(nine after univariable logistic regression analysis; 59 after correlation analysis and eight after 258 

near-zero variance analysis). No linear dependencies were detected at the final check and so 259 

no additional variables were removed at this stage. The manual selection of categorical 260 

variables in highly-correlated pairs was carried out prioritising ease of extraction (Movement 261 

on 2014-2016 chosen over Movement on 2012-2016; Incident in 2015 chosen over Reactors 262 

at incident disclosure in 2015; and Surveillance risk area chosen over County) and 263 

information value (Time since last confirmed incident chosen over Previous confirmed 264 

incident resolved (yes/no) and Previous confirmed incident (yes/no)). Eight near-zero variance 265 

variables were removed, two categorical binary (most frequent class in 99% and 98% of 266 

observations, respectively) and six numerical (ratio of most frequent to second most frequent 267 

value ranging from 22.69 to 43.60).  268 

3.3. Data analysis 269 

3.3.1 Random forest 270 

The best models were tuned with between 94 trees in the EA and 403 trees in the HRA, with 271 

16 variables tried at each split in all areas except the EA area (32 variables). The estimated 272 

OOB error rates were 16% in England, 21% in the HRA and 22% in the EA and LRA areas. 273 

The predictor with the highest variable importance in England was Time since the last 274 

confirmed incident was resolved, in the HRA and EA was the Number of slaughterhouse 275 

destinations, whereas in the LRA it was Surveillance tests (Table 2).  276 
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3.3.2. Regularised regression 277 

The best LASSO models had a mixing parameter (λ) of between 0.0013 in England and 278 

0.0327 in the LRA. The predictor with the largest coefficient in absolute value in England, the 279 

HRA and the EA was Time since the last confirmed incident was resolved (0-2 years), 280 

whereas in the LRA it was Inconclusive reactors only (yes) (Table 2).  281 

3.3.3 Predictive performance comparison 282 

The best random forest and regularized regression models used down-sampled datasets in all 283 

areas, with non-down-sampled equivalents showing a 19-41% and a 22-29% reduction in 284 

balanced accuracy, respectively, mainly due to a marked drop in sensitivity (Supplementary 285 

materials S2). LASSO models performed best in all areas except England as a whole, but this 286 

was chosen over the best one (Ridge) for ease of presentation; having only two centesimal 287 

points’ lower sensitivity (equal accuracy, balanced accuracy, specificity and AUC). The best 288 

models were developed using down-sampled multiple imputation datasets, which had higher 289 

balanced accuracy compared to their complete-case equivalents in all areas except the EA. 290 

The best random forest models had one centesimal higher balanced accuracy compared to the 291 

best LASSO models in all areas except the EA (two centesimal points higher). These models 292 

showed excellent discrimination ability in all areas (AUC>=0.80 and <0.90) (Hosmer et al., 293 

2013), with the random forest models in England and the LRA and the LASSO ones in the 294 

EA and the LRA being outstanding (AUC>=0.90: Hosmer et al., 2013) in this respect (Table 295 

1).   296 

Time since the last confirmed incident was resolved was the only variable in the top-ten 297 

rankings by variable importance in the random forest model and by absolute value of 298 

coefficients in the LASSO model (ten unique variables in decreasing order were selected 299 
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among the predictors’ ranking) in all areas (Table 2). Two further variables were common to 300 

all areas in random forest models (Number of slaughterhouse destinations and Prevalence in 301 

100 nearest neighbours) and three further ones were common to all areas in LASSO models 302 

(Surveillance tests (yes/no), Inconclusive reactors only (yes/no) (i.e. in the study year or 2016) 303 

and Inconclusive reactors only in 2015 (yes/no)). Among the full rankings of selected 304 

variables, nine were common to both types of models in all areas (nine out of 13 common to 305 

all areas in random forest models and all nine common in LASSO models): Number of 306 

slaughterhouse destinations, Maximum residence time, Prevalence in 100 nearest neighbours, 307 

Low- and High-risk neighbours in 1 km radius, Inconclusive reactors only (yes/no) and in 308 

2015 (yes/no), Time since last confirmed incident was resolved and Surveillance tests (yes/no) 309 

(Supplementary materials S3).  310 

3.3.4. Receiver Operating Characteristic analysis 311 

The training datasets from the best models: random forest using down-sampled multiple 312 

imputed data in England, HRA and LRA, and LASSO using down-sampled complete-case 313 

data in the EA, were used in ROC analysis (Figure 3). The 99% threshold values for 314 

sensitivity and specificity chosen in England, HRA and EA resulted in one percent false 315 

negative (i.e. incidents in the low-risk group) (29, 26 and three, respectively) and false 316 

positive (i.e. non-incidents in the high-risk group) (28, 25 and two, respectively) herds (Table 317 

3). The 97% thresholds chosen in the LRA yielded 4 % (four herds) of false negatives in the 318 

low-risk group of herds and 3% (three herds) of false positives in the high-risk group of herds. 319 

In England and the HRA the same threshold values of predicted probabilities in the testing 320 

dataset yielded 94 and 84 (13%) high-risk incident herds. Eight and five incident herds (1%) 321 
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were missed in the low-risk groups and 62 and 42 non-incident herds (1%) were included in 322 

the high-risk group, respectively (Table 3). In the EA testing dataset ten (14%) incident herds 323 

were classified as high-risk, whereas five (7%) incident herds were missed in the low-risk 324 

group and ten non-incident herds (1%) were included in the high-risk group. In the LRA, 325 

eight out of 26 incident herds (31%) were classified as high-risk. No incident herds were 326 

missed due to inclusion in the low-risk group but seventy-five non-incidents herds (3%) were 327 

present in the high-risk group. 328 

4. Discussion  329 

Random forest and regularized regression predictive models for a bTB incident herd in 330 

England were developed and compared, and their outputs used to classify cattle herds within a 331 

multiclass system (high, medium and low) according to risk. This was based on several risk 332 

factors, hence achieving very good levels of accuracy (McLaren et al., 2010). However, the 333 

aim was not to substitute population-level measures (e.g. background surveillance testing 334 

regime, default protocol of intervention in incident herds) but to supplement them in a cost-335 

effective way (Rose, 2001). 336 

The best predictive models had even higher AUC values than the classification tree analysis 337 

models developed using the same datasets in all areas (Romero et al., 2020). This was 338 

expected in the case of random forest -an improved algorithm of the same methodology 339 

(Breiman, 2001; Liaw and Wiener, 2002)- but LASSO-informed regression models also 340 

performed better, according to this metric.  341 

The ranking of predictors provided by model-specific variable importance measures in the 342 

case of random forest -or by a coefficient list in regularized regression LASSO- provided 343 

important outputs which may also be used to support disease control decisions (Verikas et al., 344 
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2011). Both predictive models included Time since last confirmed incident was resolved in 345 

the top-ten ranking of variables in all areas. bTB history is one of the most consistently 346 

identified risk factors for bTB in cattle herds (Broughan et al., 2016) and LASSO regression 347 

outputs narrowed the timespan of higher risk to 0-2 years.  348 

The detection of Inconclusive reactors only (i.e. in absence of reactors) in surveillance tests 349 

was among the top-ten variables according to both models in England, the EA and LRA (in 350 

England and the LRA inconclusive reactors only in the previous year was also a top-ten 351 

variable in both models). These findings support the high-risk status of these animals 352 

(Brunton et al., 2018; Clegg et al., 2011a, 2011b; May et al., 2019), which are subject to 353 

lifetime movement restrictions in England since 2017 (APHA, 2017c). 354 

Neighbouring cattle herds (high- and low-risk) in a 1 km radius are considered contiguous 355 

neighbours and they are among the top-ten variables list of both models in the HRA and EA. 356 

In the LRA, the Prevalence in 100 nearest neighbours is a top-ten variable according to both 357 

models. A review of bTB risk factors found that the occurrence of bTB on contiguous 358 

premises and/or the level of bTB in surrounding areas (infection pressure) was one of the 359 

most consistently-identified herd-level risk factors (Skuce et al., 2012). The presence of low-360 

risk neighbours decreased the risk (negative LASSO coefficient) whereas the presence of 361 

high-risk ones increased it (positive LASSO coefficients) in all areas (Supplementary 362 

materials S4). The mechanism by which contiguous neighbours exert their influence is not 363 

investigated in this paper but bTB could spread between such holdings via direct (cattle 364 

break-ins or nose-to-nose contact over fences) or indirect contact (fomites or infected wildlife 365 

reservoir accessing both herds) (Phillips et al., 2003).  366 
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An open incident at the end of the previous year was a top-ten variable according to both 367 

models in the HRA and found to be protective (negative LASSO coefficient). This has been 368 

reported previously (Romero et al., 2020) and could be due to a lack of time to detect a new 369 

incident the following year due to the 60-day within-incident testing interval and a six-month 370 

interval until the first post-incident test is applied.  371 

The density of reactors where the herd was located and the number of different 372 

slaughterhouse destinations were among the top-ten variables according to both models and 373 

increased the risk of an incident in the EA. The presence of reactors in the area could be a 374 

proxy for proximity of incidents. An increasing risk with the number of different 375 

slaughterhouse destinations (positive LASSO coefficient) could be the result of new 376 

destinations recorded due to the slaughter of reactors following incident disclosure in APHA-377 

contracted slaughterhouses (if different from the herd’s usual one/s). It could also imply an 378 

increased probability of detection by passive surveillance in non-incident herds, as different 379 

slaughterhouses have different performance (McKinley et al., 2018). In the LRA, the only 380 

other variable among the top-ten according to both models is Surveillance test (Yes/No) in the 381 

study year, increasing the risk of an incident if a surveillance test took place. The relevance of 382 

having a surveillance test with regards to the risk of an incident is consistent with the fact that 383 

only 19% of incidents were detected using passive surveillance in slaughterhouses in the LRA 384 

in 2016; the rest being detected with active surveillance using tests in cattle (APHA, 2017b). 385 

The predicted probability of an incident was calculated using all variables that contributed to 386 

the model since taking a few risk factors in isolation would only provide a partial view of the 387 

risk profile of herds. There are some limitations to this study, like not elucidating 388 
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transmission pathways leading to a bTB incident in different herds, which is the subject of 389 

field disease investigation visits (TBhub, 2020). 390 

The thresholds or cut-off values that control how predicted probabilities are converted into 391 

risk categories using ROC analysis were chosen arbitrarily to be high but of equal sensitivity 392 

and specificity. The same methodology can be applied using different cut-off points to 393 

maximise either parameter depending on the relative cost of false positives compared to false 394 

negatives.  However, the optimal cut-off values for classification would involve clinical and 395 

other considerations, like costs, benefits and risks that affect stakeholders (Godfray et al., 396 

2013). 397 

In practice, the predictive model’s algorithms and subsequent classification methodology 398 

could be automated enabling the deployment of suitable measures in a risk-based targeted 399 

approach. For example, non-incident high-risk herds could be subject to prevention measures 400 

such as additional advisory visits to the farmer, increased engagement with local vet practices, 401 

or spot-check surveillance tests. Seemingly, if a high-risk herd is involved in a bTB incident, 402 

enhanced interventions could be introduced proactively to mitigate the extent of the incident. 403 

These measures are introduced by default when an incident continues beyond 18 months, at 404 

which point it is declared persistent (AHVLA, 2014). The enhanced management of persistent 405 

incidents that ensues includes, for example, a more thorough disease investigation visit, 406 

drawing individual action plans and allowing more flexibility to carry out additional tests 407 

beyond the ones prescribed, to prioritise the detection of infected cattle. Introducing these 408 

measures in the small percentage of high-risk incident herds could have a positive effect in 409 

the epidemic beyond the benefits to the individual herds. 410 
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We have demonstrated a methodology to inform a risk-based approach to enhance the bTB 411 

disease control in England, supplementing existing population-level or blanket measures. 412 

With this information, strategies for deploying adequate prevention and/or disease control 413 

interventions can also be designed at both primary (i.e. prior to an incident, based on the 414 

herds’ risk factors) and secondary (i.e. once an incident is declared in a targeted herd) level 415 

(Platt et al., 2017). 416 

4. Conclusion 417 

The application of two of the most well-known machine learning predictive classification 418 

algorithms to the prediction a bTB incident in one of the highest-incidence areas in the 419 

developed world resulted in high-performing output models.  Random forest models were 420 

better in terms of balanced accuracy than LASSO equivalents in England, HRA and LRA but, 421 

nonetheless, there was a degree of overlap in the most important variables selected by both 422 

models; strengthening their relevance as risk factors for the disease. Outputs from the best 423 

predictive models in each area were used to classify herds according to risk in a multi-class 424 

system (high-, medium- and low-risk). This demonstrated their application to inform the 425 

targeted deployment of disease control and prevention measures, supplementing current 426 

population-level measures. This methodology can be adapted to a wide variety of disease 427 

control scenarios in humans, animals or multi-host systems like bTB, as long as sufficient 428 

data on risk factors is available. A single or more predictive models can be used to calculate 429 

the predicted probability of a case. A multi-class or an alternative risk classification 430 

framework, like the more traditional binary one, is also possible. Finally, the outputs of our 431 

predictive models may help identify the likely reduction in risk following the deployment of 432 

targeted bTB prevention and control measures.  433 
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Tables 434 

Table 1 Predictive performance indicators of the best random forest and LASSO models in England and its surveillance risk areas on their respective testing 435 

datasets. The model with the highest balanced accuracy in each area is shaded grey. CC= Complete-case, MI= Multiple Imputation, PPV=Positive Predictive 436 

Value, NPV=Negative Predictive Value, AUC=Area Under the ROC, HRA=High-risk area and EA= Edge area and LRA= Low-risk area. 437 

Random forest  Accuracy Sensitivity Specificity PPV NPV 
Balanced 

accuracy 
AUC 

England (downsampled MI) 0.81 0.86 0.80 0.30 0.98 0.83 0.91 

HRA (downsampled MI) 0.78 0.84 0.77 0.39 0.96 0.80 0.88 

EA (downsampled CC) 0.71 0.90 0.70 0.16 0.99 0.80 0.85 

LRA (downsampled MI) 0.81 0.92 0.81 0.05 1.00 0.87 0.93 

LASSO Accuracy Sensitivity Specificity PPV NPV 
Balanced 

accuracy 
AUC 

England (downsampled MI) 0.81 0.82 0.81 0.30 0.98 0.82 0.89 

HRA (downsampled MI) 0.78 0.80 0.77 0.38 0.96 0.79 0.86 

EA (downsampled CC) 0.81 0.84 0.80 0.21 0.99 0.82 0.90 

LRA (downsampled MI) 0.85 0.88 0.85 0.05 1.00 0.86 0.94 

 438 

 439 

 440 

 441 
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Table 2 Top-ten ranking (R) of selected variables from the best random forest models, and predictors (up to ten distinct variables) from the best LASSO 442 

models (variables common to both models for an area appear in bold print). Variables are ranked by variable importance (for random forest) and by 443 

coefficient absolute value (for LASSO). A fill colour indicates their distribution, with the England column showing only if a variable is in all areas: All areas,  444 

HRA, EAand LRA,  HRA and EA, HRA and LRA, EA and LRA. Predictors with duplicated variables in LASSO models are shown in italics.  445 

Model R England HRA EA LRA 

Random 

forest 

1 Time since last confirmed incident was 

resolved 
Number of slaughterhouse destinations Number of slaughterhouse destinations Surveillance tests   

2 
Number of slaughterhouse destinations 

Time since last confirmed incident was 

resolved 
Inconclusive reactors only (yes/no) Surveillance tests (yes/no) 

3 
Prevalence in 100 nearest neighbours Surveillance tests 

Time since last confirmed incident was 

resolved 
Prevalence in 100 nearest neighbours 

4 Surveillance tests High-risk neighbours in 1 km radius Prevalence in 100 nearest neighbours Inconclusive reactors only (yes/no) 

5 Inconclusive reactors only (yes/no) Open incident in 2015 (yes/no) Low-risk neighbours in 1 km radius Inconclusive reactors only in 2015 (yes/no) 

6 High-risk neighbours in 1 km radius Low-risk neighbours in 1 km radius High-risk neighbours in 1 km radius Reactor density 

7 
Inconclusive reactors only in 2015 (yes/no) Number of deaths Number of deaths 

Time since last confirmed incident was 

resolved 

8 Number of deaths Prevalence in 100 nearest neighbours 36 month-old or over cattle in November Number of slaughterhouse destinations 

9 Low-risk neighbours in 1 km radius 24-35 month-old cattle in November Proportion of 6-23 month-old cattle in November 24-35 month-old cattle in November 

10 Surveillance tests in 2015 36 month-old or over cattle in November Reactor density Number of cattle on 

LASSO 

1 Time since last confirmed incident was 

resolved=1 

Time since last confirmed incident was 

resolved=1 

Time since last confirmed incident was 

resolved=1 
Inconclusive reactors only (yes/no)=1 

2 Surveillance tests (yes/no)=1 Open incident in 2015 (yes/no)=1 Inconclusive reactors only (yes/no)=1 Surveillance tests (yes/no)=1 

3 
Land class=22 

Inconclusive reactors only in 2015 

(yes/no)=1 
Inconclusive reactors only in 2015 (yes/no)=1 

Time since last confirmed incident was 

resolved=1 

4 Open incident in 2015 (yes/no)=1 Short residence time (yes/no)=1 Land class= 3 Inconclusive reactors only in 2015 (yes/no)=1 

5 Inconclusive reactors only in 2015 (yes/no)=1 Surveillance tests (yes/no)=1 Land class=20 High-risk neighbours in 1 km radius 

6 Reactor density=5 Incident in 2015 (yes/no)= 1 High-risk neighbours in 1 km radius Larger herd size in 2016 than 2015 (yes/no)=1 

 Reactor density=4 Movements off (yes/no)=1 Surveillance tests (yes/no)=1 Mean relative humidity 2011-2014 

7 
Inconclusive reactors only (yes/no)=1 

Time since last confirmed incident was 

resolved=3 
Low-risk neighbours in 1 km radius Prevalence in 100 nearest neighbours 

 
Reactor density=3 

Time since last confirmed incident was 

resolved=2 
Recurrent incident in 2015 (yes/no)=1 Land class=10 

8 Movements off (yes/no)=1 High-risk neighbours in 1 km radius Reactor density=3 Movements on 2014-2016 (yes/no)=1 

 Time since last confirmed incident was 

resolved=5 
Inconclusive reactors only (yes/no)=1  Number of slaughterhouse destinations 

9 Short residence time (yes/no)=1 Low-risk neighbours in 1 km radius 
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LASSO 

(additions) 

10 

Nearest incident in 2015=2 

 446 

  447 
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Table 3 Receiver Operating Characteristic (ROC) analysis outputs classifying herds into high- (H), medium- (M) and low-risk (L) categories in the training 448 

and testing datasets within each area considered (HRA=High-risk area and EA= Edge area and LRA= Low-risk area). Cut-off values of 99% sensitivity and 449 

specificity were arbitrarily chosen in England, HRA and EA areas, leading to a one percent misclassified herds either as false negatives (low-risk category) or 450 

false positives (high-risk category) in the former two areas. In the EA, the proportion of false negatives increased to seven percent in the testing dataset. A 451 

97% cut-off value for sensitivity and specificity was chosen in the LRA, leading to 4% false negatives and 3% false positives in the training dataset but only 452 

3% false positives in the testing dataset (no incident herds were classified in the low-risk group). 453 

Training dataset England HRA EA LRA 

Incident (2016) L M H L M H L M H L M H 

No 1320 1564 28 784 1699 25 146 146 2 57 45 3 

Yes 29 2421 462 26 2125 357 3 262 29 4 74 27 

No 0.45 0.54 0.01 0.31 0.68 0.01 0.50 0.50 0.01 0.54 0.43 0.03 

Yes 0.01 0.83 0.16 0.01 0.85 0.14 0.01 0.89 0.10 0.04 0.70 0.26 

Testing dataset England HRA EA LRA 

Incident (2016) L M H L M H L M H L M H 

No 3397 3850 62 1158 2301 42 552 575 10 1481 1053 75 

Yes 8 625 94 5 537 84 5 58 10 0 18 8 

No 0.46 0.53 0.01 0.33 0.66 0.01 0.49 0.51 0.01 0.57 0.40 0.03 

Yes 0.01 0.86 0.13 0.01 0.86 0.13 0.07 0.79 0.14 0.00 0.69 0.31 

  454 
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Figures 455 

Figure 1. Map of Great Britain (GB) showing bTB surveillance risk areas that applied in 456 

England from 2013 to 2017 (inclusive).  457 

Figure 2. Random forest algorithm schematic representation. The algorithm combines random 458 

subsets of n predictors from many classification trees using bootstrapped samples from the 459 

original training dataset. The final output class is derived using majority voting from the 460 

committee of classification trees used. 461 

Figure 3. Receiver Operating Characteristic (ROC) analysis outputs in the training dataset by 462 

area (HRA=High-risk area, EA= Edge area and LRA= Low-risk area). The primary (left) 463 

y-axis represents the values of false positive rate (i.e. 1-specificity) and the secondary 464 

(right) y-axis represents the values of true positive rate (i.e. sensitivity); both are plotted 465 

against the predicted probability of an incident in the x-axis.  This variation of a ROC 466 

curve has been presented to illustrate better the process followed for the selection of cut-467 

off points in the predicted probability distribution, together with the resulting low-, 468 

medium- and high-risk groups in the bar at the bottom. The different distribution of herds 469 

into risk categories is shown in each area, relative to the two cut-offs or thresholds chosen 470 

(discontinued vertical lines). This was based on a 99% true positive (dark cyan line) and 471 

1% false positive (dark blue line) thresholds in all areas except the LRA (97% and 3% 472 

values chosen, respectively). 473 

 474 

 475 

 476 
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