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Abstract
Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can 
also infect humans. Zebu cattle are considered more resistant to some infectious 
diseases compared with Holstein-Friesian (HF) cattle, including BTB. However, epi-
demiological studies may not take into account usage differences of the two types 
of cattle. HF cattle may suffer greater metabolic stress due to their more or less 
exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In ex-
periments conducted so far, the number of animals has been too small to draw statis-
tically robust conclusions on the resistance differences between these cattle breeds. 
Here, we used a BCG challenge model to compare the ability of naïve and vaccinated 
Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with 
similar ages were housed in the same accommodation for the duration of the experi-
ment. After correcting for multiple comparisons, we found no difference between 
naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF 
cattle to have lower cfu numbers than non-vaccinated HF cattle (ρ = 0.057); no such 
trend was observed between vaccinated and non-vaccinated Zebu cattle (ρ = 0.560). 
Evaluation of antigen-specific IFNγ secretion by PBMC indicated that Zebu and HF 
cattle differed in their response to mycobacteria. Thus, whilst there may be differ-
ence in immune responses, our data indicate that with the number of animals included 
in the study and under the conditions used in this work, we were unable to measure 
any differences between Zebu and HF cattle in the overall control of mycobacteria. 
Whilst determination of different susceptibilities between Zebu and HF cattle using 
the BCG challenge model will require larger numbers of animals than the number of 
animals used in this experiment, these data should inform future experiments.
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1  | INTRODUC TION

Bovine tuberculosis (BTB) is a zoonotic disease caused mainly by 
Mycobacterium bovis. BTB results in productivity loss in cattle, im-
position of trade barriers and risk of spread of infection to other 
domestic livestock, wildlife and humans. The current annual world-
wide cost of BTB is estimated at US$3 billion (Maggioli et al., 2015). 
Conventionally, in developed countries, control of BTB is based on 
‘test-and-slaughter’ policies, in which tuberculin skin test positive 
cattle are deemed to be infected with M. bovis and killed. However, 
this approach is not applied universally, particularly not in many low- 
and middle-income countries (LMIC), in which this type of control 
is either deemed unaffordable or societally unacceptable (https://
www.oiebu lletin.com/wp-conte nt/uploa ds/bulle tins/panor ama-
2019-1-en.pdf). In these countries, vaccination could be used as a 
sustainable supplementary tool to control policies based on test 
and slaughter. The lead candidate vaccine against BTB is the live at-
tenuated M. bovis bacillus Calmette-Guerin (BCG), which is widely 
used to vaccinate humans against tuberculosis. As in humans, BCG 
has also shown variable efficacy in cattle, both at population and 
individual animal levels (Vordermeier et al., 2016). The reasons for 
this variability are largely unknown; however, presensitization of the 
adaptive immune response with environmental mycobacteria inter-
fering with BCG-induced immunity is proposed as a plausible expla-
nation (Brandt et al., 2002; Buddle et al., 2002; Hope et al., 2005).

Humped cattle (Zebu, Bos taurus ssp. indicus) are considered to 
be more genetically resistant to some infectious diseases, includ-
ing BTB, than non-humped cattle (B. taurus ssp taurus) (Murray 
et al., 2013). Indeed, studies in Ethiopia have shown that Zebu cattle 
have a lower prevalence of BTB skin test positivity under similar hus-
bandry settings compared with Holstein-Friesian (HF) cattle (Ameni 
et al., 2007). There are also preliminary results indicating that Zebu 
(Boran) cattle were more resistant to a low dose experimental 
M. bovis infection than Holstein cattle (Vordermeier et al., 2012). 
However, these preliminary data using relatively small numbers of 
animals, six Zebu and six Holstein, need to be confirmed.

Therefore, in the present study we compared the protective 
efficacy of BCG in Zebu and HF cattle in an experimental setting. 
We used an established BCG challenge model (Villarreal-Ramos 
et al., 2014) to compare the relative innate (in naïve animals) and 
adaptive (in vaccinated animals) immune response capabilities of 
Zebu and HF cattle with control mycobacteria in vivo using age- and 
gender-matched animals housed at the same location for the dura-
tion of the experimental period.

2  | MATERIAL S AND METHODS

2.1 | Ethical statement

The experiment was approved by UNAM’s Facultad de Medicina 
Veterinaria y Zootecnia ethical review panel as # Protocolo 53; and 
APHA’s AWERB committee under ASUF303 336/2017/002.

2.2 | Cattle

Thirty-two Zebu cattle and 31 Holstein-Friesian (HF) cattle were 
sourced from farms free of BTB. Due to their nature, Zebu cattle were 
sourced from the southern subtropical regions of Mexico (State of 
Veracruz) and Holstein-Friesian cattle were sourced from the central re-
gion of Mexico (State of Mexico). The age of Zebu cattle varied between 
2 and 8 months, with a median age of 3 months, whilst the age of HF 
cattle varied between 4 and 7 months, with a median age of 6 months.

2.3 | Mycobacteria

The live attenuated strains M. bovis BCG SSI1331 and M. bovis 
BCG Tokyo were used for vaccination and challenge, respectively. 
Mycobacteria were grown to mid-log phase in 7H9 medium contain-
ing 0.05% Tween 80 and OADC; bacteria were aliquoted and frozen 
at −70°C until further use. Titre of the frozen aliquots was determined 
by thawing an aliquot and plating serial dilutions on 7H11 agar plates.

2.4 | Vaccination and challenge experiments

Sixteen Zebu cattle and 16 Holstein-Friesian cattle were vaccinated 
subcutaneously with 1 × 106 BCG SSI cfu/animal at week 0. Eight 
weeks after vaccination, 16 control and 16 vaccinated Zebu cat-
tle, as well as 15 control and 16 vaccinated Holstein-Friesian cattle 
were challenged intranodally with BCG Tokyo, as indicated previ-
ously (Villarreal-Ramos et al., 2014), with 1 × 107 cfu each. Three 
weeks after challenge, all animals euthanized to recover prescapular 
lymph nodes for evaluation of protection conferred by vaccination 
with BCG, in vaccinated animals, and potential differences in the in-
nate response to mycobacteria in the two breeds in non-vaccinated 
animals. The number of animals per group was determined based 
on previously published (Villarreal-Ramos et al., 2014) and non-pub-
lished experimental data, which indicated that a comparisons be-
tween vaccinated and non-vaccinated HF cattle required 12 animals 
to reach a statistical power of 70.7%, whilst another experiment, 
using 17 animals, reached a statistical power of 96.7%.

2.5 | Determination of bacterial load in lymph nodes

Left and right prescapular lymph nodes (LN) were dissected from 
each animal at post-mortem. One of these LNs was used for eval-
uating bacterial load as previously described (Villarreal-Ramos 
et al., 2014). Briefly, LNs were trimmed and submerged briefly in 70% 
ethanol prior to weighing and slicing for processing in a stomacher 
(Seward) for 2 min with 7 ml of PBS. One hundred µl of LN macer-
ate was spread in each of 2 7H11 plates, as well as preparing serial 
dilutions for plating on 7H11 agar plates (Gallagher & Horwill, 1977). 
Results are presented as counts per organ. The limit of detection of 
this assay in each individual plate is 70 cfu/organ; since we plated 
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two plates, the limit of detection for this assay could be considered 
to be 35 cfu/organ; the discontinuous line in the graph in Figure 1 
indicates the limit of detection. Animals for which no cfu were de-
tected in any of the two plates were placed below this line.

2.6 | Evaluation of secretion of IFNγ responses

Immune responses were evaluated as production of interferon gamma 
(IFNγ) in supernatants of peripheral blood cells incubated overnight at 
37°C in a 5% CO2 and 95% humidity atmosphere with purified protein 
derivative (PPD) from Mycobacterium avium (PPD-A, control antigen) 
or M. bovis (PPD-B, BTB-specific antigen), or medium alone as negative 
control (Villarreal-Ramos et al., 2014). Levels of IFNγ were determined 
using the Bovigam™ assay (Prionics) according manufacturer's recom-
mendation. Data are expressed as mean O.D.450nm ± SEM.

2.7 | Statistical analysis

Graph drawing and statistical analysis were carried out using GraphPad 
Prism v 5.02 (GraphPad Software, San Diego, CA) and GraphPad Instat 
v 3.06; for analysis of bacterial counts, a Kruskal–Wallis with Dunn's 
correction for multiple comparisons was carried out. For IFNγ secre-
tion, results were analysed using a Mann–Whitney ANOVA.

3  | RESULTS

3.1 | Bacterial load in lymph nodes is not impacted 
on by breed

Figure 1 shows the bacterial load in LN of control and vaccinated cat-
tle recovered at 3 weeks after challenge. Statistical analysis correct-
ing for multiple comparisons indicated that there was a strong trend, 
almost reaching statistical significance (p = .057), for a reduced re-
covery of mycobacteria from BCG-vaccinated HF cattle compared 

with naive HF cattle. However, no such trend was observed in the 
number of mycobacteria recovered from vaccinated or naive Zebu 
cattle (p = .5606). Furthermore, no significant difference was seen 
in the number of recovered mycobacteria isolated from naive HF and 
naive Zebu cattle (p = .8622).

3.2 | Secretion of IFNγ

Figure 2 shows the antigen-specific IFNγ by peripheral blood cells 
stimulated with either PPD-A or PPD-B. Blood samples were taken 
prior to and after vaccination at weeks 0, 4 and 8, as well as after 
intranodal BCG Tokyo challenge (weeks 9 and 10). No statistically 
significant difference was observed between the responses to 
PPD-A and responses to PPD-B in any of the animal groups at week 
0. Similarly, there was no statistically significant difference in the 
response to PPD-B detected at weeks 4 and 8 compared with re-
sponses at week 0 in any of the animal groups regardless of their 
vaccination status. In HF cattle, vaccinated or not, responses to 
PPD-A were higher than responses to PPD-B all through the experi-
mental period, and the response to PPD-A and PPD-B, even though 
there was no significant difference, was slightly higher in vaccinated 
HF cattle compared with naïve HF cattle.

In Zebu cattle, the response to PPD-A and PPD-B was in general 
higher in vaccinated animals compared with naïve animals. In Zebu 
cattle, there was also a trend for responses to PPD-A to be higher 
than responses to PPD-B at weeks 4 and 8 after vaccination; how-
ever, this trend was less striking when compared to the trend in HF 
cattle. After challenge, responses to PPD-B and to PPD-A in Zebu 
cattle were very similar. Interestingly, responses to PPD-A or PPD-B 
observed in vaccinated HF were indistinguishable from responses 
observed in unvaccinated HF calves.

Eight weeks after subcutaneous vaccination with BCG, all cattle 
were inoculated intranodally with 107 cfu of BCG Tokyo in the chal-
lenge phase of the experiment. Responses to intranodal inoculation 
were also evaluated by measuring the production of IFNγ responses 
by peripheral blood cells stimulated with PPD-A and PPD-B at 1 and 

F I G U R E  1   Evaluation of bacterial load 
in the prescapular LN of HF (  and )  
and Zebu (  and ) cattle. HF ( ) and 
Zebu ( ) cattle were vaccinated or not 
(  and ) as described in materials and 
methods. Prescapular lymph nodes were 
harvested at post-mortem, three weeks 
post-intranodal challenge. Organs were 
macerated and an aliquot of the tissue 
macerate was plated in 7H11 plates. 
Counts are presented as cfu/organ; the 
limit of detection for this assay is 50 cfu 1
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2 weeks post-intranodal challenge (weeks 9 and 10 after the initial 
BCG vaccination, respectively) (Figure 2). The data indicated that, 
following challenge with BCG, the responses to PPD-A or PPD-B 
detected at weeks 9 and 10 in vaccinated or naive HF cattle were 
not different from the responses detected at week 8, prior to chal-
lenge; this was similar to what was observed in vaccinated Zebu cat-
tle, that is no difference in responses at weeks 9 and 10 compared 
with responses observed in week 8. In non-vaccinated Zebu cattle, 
intranodal challenge induced a statistically significant increase in re-
sponses to PPD-B at weeks 9 (ρ < 0.001) and 10 (ρ < 0.05).

4  | DISCUSSION

The present study was designed to determine the potential differ-
ences in resistance to mycobacterial infection between Zebus and 
HF cattle, and to evaluate the potential differences in the immune 
response between HF and Zebu cattle using the recently in HF cattle 

developed BCG challenge model (Villarreal-Ramos et al., 2014). The 
premise of the model is that cattle which have been successfully vac-
cinated against, or which are naturally resistant to M. bovis, should 
be able to control the live attenuated M. bovis BCG strain better 
compared with cattle that have not been vaccinated or which are 
naturally susceptible to infection with M. bovis. However, being an 
attenuated mutant, it would also be expected that an immunocom-
petent host that has not been vaccinated or which would be suscep-
tible to M. bovis would, with time, also be able to control BCG. Thus, 
in this model, any potential differences in the ability to control BCG 
between resistant and susceptible cattle, or between vaccinated or 
not vaccinated cattle would occur in the first 2 or 3 weeks after chal-
lenge, which shortens the possibility of performing long-term immu-
nological post-challenge studies. Therefore, we evaluated bacterial 
recovery as well as the immune responses of Zebu and HF cattle fol-
lowing vaccination with BCG and 2 weeks after intranodal challenge.

In terms of bacterial recovery, the data indicated that there was a 
strong trend, which almost reached statistical significance, for lower 

F I G U R E  2   Longitudinal immune responses in HF and Zebu cattle to mycobacterial antigens. Immune responses were evaluated as the 
secretion of IFNγ by peripheral blood cells from HF (a and c) and Zebu (b and d) cattle that had been vaccinated (filled symbols) with c 106 
BCG SSI cfu subcutaneously or not (empty symbols). Cells were stimulated with PPD-A (a and b) or PPD-B (c and d). Vaccination occurred at 
week 0 and all animals were challenged in both prescapular lymph nodes with c 107 BCG Tokyo cfu each lymph node at week 8 (arrow). For a 
closer description of statistics, please see text in results and discussion
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numbers of mycobacteria recovered from BCG-vaccinated HF cat-
tle than from non-vaccinated HF cattle. The data indicated that the 
BCG challenge model could, to a large extent, differentiate between 
HF-vaccinated and non-vaccinated groups. The data also indicated 
that there was no statistically significant difference in the number 
of mycobacteria recovered from vaccinated Zebu cattle compared 
with non-vaccinated Zebu cattle. No difference was observed be-
tween the number of mycobacteria recovered from non-vaccinated 
HF and non-vaccinated Zebu cattle or between vaccinated HF and 
vaccinated Zebu cattle.

With regard to the immunological response, we used PPD-A 
and PPD-B as antigens that would permit detection of BCG-
specific induced responses. PPD-A, derived from M. avium, was 
used as an antigen representative of environmental mycobacteria. 
Although responses to PPD-B and PPD-A were low in all groups 
at week 0, peripheral blood responses to mycobacterial anti-
gens after vaccination with BCG exhibited a bias towards PPD-
A, rather than towards PPD-B in BCG-vaccinated HF and Zebu 
cattle; these results could indicate that cattle had been and/or 
were concomitantly being exposed to either M. avium or cross-re-
acting environmental mycobacteria. Whilst it was not possible to 
observe differences in the responses to PPD-B induced by BCG 
vaccination or challenge, it is clear that the two breeds of cattle 
responded differently to PPD-A following inoculation with BCG. 
HF cattle showed higher IFNγ responses to PPD-A than Zebu cat-
tle (Figure 2). Thus, differences in the immune response to PPD-A 
could be an indication that Zebu cattle handle mycobacteria in 
different ways to the way HF cattle handle mycobacteria. Indeed, 
in a study aimed at determining the prevalence of M. avium infec-
tion in Uganda cattle, M. avium could be found in both breeds; 
however, despite examining almost twice as many Zebu cattle 
as HF cattle, the number of HF cattle determined as positive 
for M. avium was greater than the number of Zebu cattle (Okuni 
et al., 2013). These data suggest that indeed, HF cattle may be 
more susceptible to M. avium than Zebu cattle.

It is possible that a prior exposure to environmental mycobacte-
ria may have conferred a degree of protection to BCG vaccination, 
similar as described before (Hope et al., 2005; Howard et al., 2002). 
This protection may have reduced the expected difference in bacil-
lary recovery between the vaccinated and unvaccinated HF calves 
and, thus, the power of the BCG challenge model to differentiate 
between vaccinated and non-vaccinated HF cattle. Similar to our 
results, studies have shown that exposure of cattle to environmen-
tal mycobacteria prior to vaccination with BCG or infection with 
M. bovis has the effect of biasing the ensuing immune response 
towards PPD-A (Hope et al., 2005; Howard et al., 2002) (Coad 
et al., 2013; Jones et al., 2012). It is pertinent to state that under 
the conditions in this study, increasing the number of experimental 
animals may have provided the necessary numbers with which to 
obtain statistically significant data, compared with the number of 
animals used in the present experiment, which was based on results 
obtained in European cattle. Given that this is the first time that the 
model has been carried out under field conditions in Mexico, this is 

an important datum to bear in mind for future trials under similar 
conditions.

Nevertheless, our data indicate that under conditions in which 
exposure to environmental mycobacteria is suspected, the BCG 
challenge model could be a useful tool provided the number of ani-
mals per group being tested is increased. We have also established 
that the responses to mycobacteria induced by BCG vaccination 
are different, at least in terms of secretion of IFNγ by mycobacte-
ria-stimulated peripheral blood cell between Zebu and HF cattle.
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