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Introduction 11 

 12 

A wide range of parasites can infect poultry, including multiple protozoans, cestodes, nematodes, 13 

trematodes and arthropods. As the global chicken population undergoes dramatic expansion, 14 

production systems are increasingly moving towards drug-free and/or extensive systems in much of 15 

Europe and North America, as well as greater intensification in many tropical regions, posing a series 16 

of new challenges to pathogen control. Parasites such as Ascaridia galli, Capillaria obsignata and 17 

Heterakis gallinarum, Davainea proglottina and Raillietina cesticullus, and a range of mites and other 18 

ectoparasites are returning to significance. Others, such as the Eimeria species, remain consistently 19 

challenging. Changes in legislation and husbandry systems are driving increased problems with 20 

Histomonas meleagridis, while genetic resistance to existing control measures is exacerbating 21 

difficulties with parasites such as Dermanyssus gallinae. Increased parasite occurrence affects the 22 

performance and welfare of poultry production. Here, we focus on three of the most widespread and 23 

economically relevant parasites, outlining current understanding and introducing recent advances 24 

with implications for detection, control and prevention.  25 

 26 

Eimeria - coccidiosis 27 

 28 

Target populations, Incidence and economic relevance 29 

All livestock and poultry can be infected by multiple Eimeria species (Taylor et al., 2007). Most Eimeria 30 

are strictly limited to a single host-species, although examples such as Eimeria innocua can replicate 31 

successfully in domestic turkeys, grey partridge and bobwhite quail (Vrba and Pakandl, 2015). Eimeria 32 

that infect chickens are considered to be most economically important, primarily due to the large 33 

number of chickens that are produced every year and their rapid population turnover. More than 72 34 

billion chickens were produced in 2019 (FAOSTAT, 2021), and production cycles lasting just five to 35 

seven weeks are common for broilers. Seven Eimeria species are widely recognised to infect chickens, 36 

all of which have been detected on every continent where chickens are farmed (Clark et al., 2016). 37 

Eimeria acervulina, E. maxima and E. tenella usually are most common (Haug et al., 2008, Clark et al., 38 

2016, Hauck et al., 2019, Kumar et al., 2014), although highly pathogenic species such as E. necatrix 39 

can pose significant risks when an outbreak occurs (Sawale et al., 2018). Globally, between 2% and 40 

80% of chicken flocks require therapeutic intervention to control coccidiosis, with between 1.5% and 41 

7.5% of individuals expected to die during an outbreak if an appropriate intervention is available (Blake 42 

et al., 2020a). Despite the significance of losses due to mortality, the cost attributed to coccidiosis is 43 
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primarily associated with morbidity, were reduced weight gain is the biggest single loss (Blake et al., 44 

2020a). The global cost incurred by Eimeria in chickens has recently been estimated to have exceeded 45 

UK£ 10.4 billion in 2016, equivalent to EU€ 11.9 billion or US$ 14.2 billion at the time of writing 46 

(February, 2021).  47 

 48 

Host-pathogen interactions 49 

Clinical signs, pathology and welfare 50 

The seven Eimeria species that infect chickens can all cause disease with distinct, albeit overlapping 51 

pathognomonic characteristics. Each species follows an oral-faecal life cycle involving three phases of 52 

replication: asexual (schizogony, also known as merogony) and sexual (gametogony) within the host, 53 

followed by sporulation (sporogony; Figure 1) in the environment (Shirley et al., 2005). All seven 54 

species replicate within epithelial cells of the chicken intestine, although the precise site of infection 55 

varies from the duodenum (e.g. E. acervulina) to the caeca (E. tenella) and lower intestine (e.g. E. 56 

brunetti). Eimeria brunetti, E. necatrix and E. tenella are most pathogenic, causing a haemorrhagic 57 

form of coccidiosis in the mid (E. necatrix) or lower gastrointestinal tract (Reid et al., 2014). Pathology 58 

is most closely related to the asexual phase of replication (schizogony), when the large and relatively 59 

invasive schizonts rupture resulting in deep erosions and haemorrhage in the intestinal wall. Eimeria 60 

acervulina, E. maxima, E. mitis and E. praecox tend to be less pathogenic, causing a malabsorptive 61 

form of coccidiosis associated with replication of the sexual lifecycle stages during gametogony and 62 

subsequent oocyst development, although disease can still be severe in the event of a high-level 63 

challenge. Eimeria maxima is most pathogenic of the malabsorptive species, in part due to it large 64 

size. Eimeria praecox has been considered by some to be non-pathogenic, although evidence of 65 

pathogenic strains circulating in chicken populations has dispelled this view (Williams et al., 2009).  66 

 67 

The clinical signs of coccidiosis, including both the location of gross pathology and the appearance of 68 

lesions, have been used to develop several lesion scoring systems to identify the infecting Eimeria 69 

species and describe the severity of an infection (e.g. (Johnson and Reid, 1970)). Less specific signs of 70 

infection include a hunched posture, ruffled feathers, lethargy, reduced body weight gain (BWG), and 71 

increased food conversion ratio (FCR). Water consumption can also be used as a non-specific indicator 72 

of ill health. 73 

 74 

Host immune responses 75 

A protective anti-Eimeria immune response is primarily reliant on T lymphocytes. Treatment of 76 

chickens with cyclosporin A to prevent T-lymphocyte proliferation confirmed their necessity for 77 

control of secondary infection (Lillehoj, 1987), while transfer of cell mediated immunity (CMI) to E. 78 

maxima has also been possible (Rose and Hesketh, 1982). In studies with mice, chosen due to the 79 

availability of a more comprehensive immunological toolbox, CD4+ T cells appear to be most important 80 

in controlling primary Eimeria infection, supplemented by a smaller role for CD8+ T cells (Rose et al., 81 

1992). CD8+ T cells appear to play a more significant role in secondary infections in the same study. 82 

However, several studies in chickens have suggested notable differences (Trout and Lillehoj, 1996, 83 

Cornelissen et al., 2009). A more recent study identified higher proportions of cytotoxic CD8+ cells 84 

following primary infection (Wattrang et al., 2016). CD8+ intraepithelial lymphocytes (IELs) are also 85 

increased following secondary E. acervulina infection, while genetic resistance to infection has been 86 

linked to increased CD8+ IEL proportions (Lillehoj, 1994). It has been suggested that CD8+ cells may 87 

function by killing infected epithelial cells (Lillehoj and Trout, 1994).  88 
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 89 

Studies of cytokines produced by T cells have indicated a key role for interferon-gamma (IFN-γ) in the 90 

immune response to primary, but possibly not secondary Eimeria infection. For example, blocking 91 

endogenous IFN-γ using a monoclonal antibody during E. vermiformis infection in mice increased 92 

susceptibility to primary but not secondary infection (Rose et al., 1989). In chickens, E. maxima 93 

infection has been shown to upregulate both Th1 and Th2 cytokine transcription in primary, but not 94 

secondary infection (Hong et al., 2006). The contribution from other cytokines has also been assessed. 95 

For example, increased tumour necrosis factor alpha (TNF-α) is induced by primary but not secondary 96 

E. tenella infection (Zhang et al., 1995), although it has been suggested that this may increase 97 

pathology (Byrnes et al., 1993).  98 

 99 

A limited role has been suggested for B lymphocytes in the natural immune response to Eimeria 100 

infection. Surgical bursectomy removes the ability to generate an antibody response in chickens, but 101 

does not significantly reduce immune protection against secondary infection (Long and Pierce, 1963). 102 

However, it has been shown that antibodies can inhibit Eimeria replication under controlled 103 

circumstances, providing passive and maternal immunity against challenge and suggesting an 104 

alternative immune mechanism that is not usually induced during eimerian infection (Wallach, 2010).  105 

 106 

Considerable variation has been described in the outcome of Eimeria infection by individual chickens. 107 

Distinct susceptible and resistant profiles have been described in terms of performance and pathology 108 

for E. maxima (Boulton et al., 2018b, Hamzic et al., 2015) and E. tenella (Boulton et al., 2018a). 109 

Interestingly a third resistance profile, considered to be tolerant of infection as defined by good 110 

performance despite significant pathology, has been reported in commercial broiler chickens (Boulton 111 

et al., 2018a). 112 

 113 

Impact on enteric dysbiosis 114 

Beyond the direct consequences of coccidosis, Eimeria can also induce enteric dysbiosis. Eimeria 115 

infection has been linked to poor litter quality, indirectly contributing to footpad dermatitis as well as 116 

reducing overall welfare and technical performance (Abd El-Wahab et al., 2012, de Jong et al., 2014). 117 

Microbiome sequencing enteric microbial populations has revealed notable differences in beta but 118 

not alpha diversity (i.e. variation in the levels, not presence or absence, of distinct bacterial 119 

populations), with significant variation for genera such as Bacteroides and Lactobacillus in association 120 

with E. tenella lesion score (Macdonald et al., 2017). Well known interactions with specific bacteria 121 

include Clostridium perfringens, combining to cause necrotic enteritis (NE) (Van Immerseel et al., 122 

2016). Less well known interactions include increased colonisation and faecal shedding of bacterial 123 

zoonoses such as Salmonella Typhimurium and Campylobacter jejuni (Macdonald et al., 2019, 124 

Arakawa et al., 1981). 125 

 126 

Eimeria population dynamics 127 

All seven Eimeria species widely recognised to infect chickens have a global occurrence (Clark et al., 128 

2016), but very little is known of their population structure or genetic diversity. It is clear from studies 129 

of antigenic diversity, using escape from strain-specific protective immunity as a phenotype, that 130 

genetic variation exists for several species including E. acervulina (Joyner, 1969), E. mitis (McDonald 131 

et al., 1985), E. maxima (Smith et al., 2002) and E. tenella (Awad et al., 2013). However, very few 132 

genetics-led studies have been undertaken. One of the most detailed studies focused on E. tenella, 133 
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assessing variation at the apical membrane antigen 1 locus (AMA1, an anticoccidial vaccine candidate 134 

(Pastor-Fernández et al., 2020)) and a genome-wide panel of single nucleotide polymorphisms (SNPs) 135 

(Blake et al., 2015). Comparison of SNP profiles revealed notable variation between countries and 136 

regions, supporting the suggestion that variables such as climate or husbandry system shape Eimeria 137 

population dynamics (Blake et al., 2015, Pegg et al., 2016). 138 

 139 

The majority of genetics-led studies for Eimeria have focused on single loci within the nuclear or 140 

mitochondrial genomes (e.g. the ribosomal repeat unit including internal spacer sequences, and 141 

cytochrome C oxidase subunit I; (Blake et al., 2020b)). One such study described unexpected variation 142 

between Internal Transcribed Spacer (ITS)-2 sequences, suggesting the presence of diverse strains or 143 

cryptic species (Cantacessi et al., 2008). Recent studies including measures of oocyst morphology, 144 

pathology, genome sequencing and genetics suggest that all three, previously termed Operational 145 

Taxonomic Units (OTUs) X, Y and Z, are indeed new Eimeria species (Blake et al., 2021, Morgan and 146 

Godwin, 2017). The new species, tentatively been named E. lata, E. nagambie and E. zaria, have 147 

already been detected in parts of Africa, Asia, Australasia, North and South America, indicating a new 148 

challenge for control of coccidiosis (Clark et al., 2016, Hauck et al., 2019). 149 

 150 

Current methods of detection for Eimeria 151 

A range of techniques and tools are available for the detection and species-specific identification of 152 

Eimeria infection. Routine monitoring commonly relies on microscopy to detect oocysts in faecal or 153 

litter samples (Kumar et al., 2014). Flotation using saturated saline or sucrose solutions can be used 154 

to increase sensitivity. Detection and enumeration of total eimerian oocysts is relatively 155 

straightforward, but species-specific differentiation is much more challenging and can be highly 156 

subjective (Haug et al., 2008). For example, E. necatrix and E. praecox, species defined by extremes of 157 

pathogenicity, are very difficult to differentiate by variables such as oocyst morphology alone (Long et 158 

al., 1976). Attempts to automate species identification using microscopy by systems such as 159 

COCCIMORPH offer promise (Castañón et al., 2007), although uptake has been limited. Practically, 160 

post-mortem assessment of gross pathology (lesion scoring) remains an important technique for 161 

detection and species identification. The lesion scoring system published by Johnson and Reid for five 162 

of the seven recognised species (excluding E. mitis and E. praecox) is most widely cited (Johnson and 163 

Reid, 1970). Neither of these latter species routinely result in intestinal lesions during infection. 164 

 165 

Advances in molecular biology have improved diagnosis of many veterinary pathogens, but have 166 

proven challenging for Eimeria. Accessing genomic DNA for use as template has often been limiting, 167 

requiring a laboratory for effective and reproducible extraction. Genus and species specific detection 168 

using polymerase chain reaction (PCR) was established nearly 30 years ago (Stucki et al., 1993) with a 169 

variety of multiplex and nested options developed to improve throughput and sensitivity (Fernandez 170 

et al., 2003, Lew et al., 2003, Schwarz et al., 2009), but none have been widely adopted by industry 171 

(Figure 2). The appearance of quantitative PCR assays specific for all recognised Eimeria species has 172 

had a greater impact (Vrba et al., 2010), with several companies offering qPCR as a diagnostic service. 173 

A panel of loop-mediated isothermal amplification (LAMP) assays have been published for the species-174 

specific detection of Eimeria that infect chickens (Barkway et al., 2011), although accessing genomic 175 

DNA as template remains a challenge for routine application under field conditions. 176 

 177 

Current methods of control for Eimeria 178 
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Control of Eimeria relies upon on good husbandry, including consideration of stocking density, 179 

ventilation rate and choice of substrate. lower stocking densities can reduce environmental 180 

contamination with oocysts. Dry, high quality litter can reduce oocyst sporulation, limiting infectivity 181 

(Figure 1). However, husbandry alone is insufficient to prevent coccidiosis. Anticoccidial drugs have 182 

long dominated control of coccidiosis, including a range of synthetic or chemical anticoccidials and 183 

ionophores, which are products of fermentation (Chapman, 1997). Ionophores have been especially 184 

successful since their use permits a low level of parasite replication, even in naïve field populations, 185 

supporting induction of a complementary protective immune response (Chapman, 1999). Importantly, 186 

ionophores are classified as antibiotics in some regions such as the USA. While ionophores are not 187 

used in human medicine and have limited direct relevance to human health, the appearance of “no 188 

antibiotics, ever” markets for chicken products has indirectly increased demand for alternatives (Blake 189 

et al., 2020a). Increasing reports of drug resistance and consumer concerns around drug use in 190 

livestock production have reinvigorated attempts to develop cost-effective, scalable anticoccidial 191 

vaccines. Where anticoccidial drugs remain in use, it is common to rotate between different 192 

anticoccidial drugs within and between flocks to limit and respond to selection for resistance. 193 

 194 

The first anticoccidial vaccine was marketed in 1952 (Williams, 2002). Based upon live, unmodified E. 195 

tenella oocysts, the vaccine was quickly followed by other live anticoccidial vaccines including a range 196 

of different Eimeria species. Controlled infection using these parasite formulations induces a natural 197 

immune response and protection against subsequent challenge. Such “wild-type”, or non-attenuated 198 

vaccines are highly effective and relatively cheap to produce, but risk compromising flock performance 199 

and occurrence of clinical disease if managed incorrectly (Shirley et al., 2005). The risk associated with 200 

live anticoccidial vaccines was recognised and addressed by development of a second generation of 201 

live vaccines using attenuated parasite lines. With few exceptions, attenuation has been achieved by 202 

selection of stable precocious lines from populations of virulent parasites. Attenuation results in 203 

shorter lifecycles and reduced replication, accompanied by lower pathogenicity whilst retaining 204 

immunogenicity (Shirley et al., 2005). Attenuated anticoccidial vaccines have become popular in the 205 

layer and breeder chicken sectors, but their relative cost and inherently limited production capacity 206 

has hindered application in the much larger broiler sector. However, demand for antibiotic free 207 

poultry products is now prompting a significant shift in anticoccidial control, with ~40% of broilers sold 208 

in the USA now vaccinated using a non-attenuated product (Blake et al., 2020a). A major selling point 209 

for live anticoccidial vaccines has been the use of drug-sensitive parasite strains, with evidence that 210 

vaccination of three or more successive flocks can significantly reduce the occurrence of drug 211 

resistance in field parasite populations (Chapman and Jeffers, 2015). The relative risk posed by these 212 

virulent vaccines can be managed using a bioshuttle approach, where vaccination of chicks at day of 213 

hatch is followed by anticoccidial supplementation of grower and finisher diets (Kimminau and Duong, 214 

2019). Challenges in vaccine management include ensuring effective vaccine recycling, especially for 215 

less immunogenic species such as E. tenella and E. necatrix, where multiple rounds of infection can be 216 

required to induce a robust protective immune response. 217 

 218 

A wide range of alternatives to drugs and vaccines has been suggested to improve control of Eimeria. 219 

Examples include natural herbs and botanicals or their extracts, essential oils, organic acids, 220 

immunomodulators and complex carbohydrates, probiotics and prebiotics (Khater et al., 2020). 221 

Probiotic formulations based upon Bacillus, Lactobacillus or Saccharomyces are becoming increasingly 222 

popular, with multiple commercial providers.  223 
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 224 

Challenges and conclusions 225 

Control of Eimeria and the disease coccidiosis remains a major ongoing challenge to poultry producers. 226 

Increasing public and legislative pressure to reduce the use of drugs in livestock production has 227 

prompted renewed interest in existing and novel vaccines, a range of diet-based alternatives and 228 

selective breeding of chickens for genetic resistance. It is likely that the range of drugs available to 229 

control Eimeria will be reduced in the future, voluntarily in some sectors and by law in others. As the 230 

industry migrates away from drugs, new challenges will emerge. Differentiation of vaccinal from 231 

virulent field Eimeria strains is a significant gap that affects management and application of live 232 

vaccines. The recent description of three new Eimeria species that infect chickens and are capable of 233 

escape from current vaccines indicates an immediate problem for vaccination-led control of 234 

coccidiosis, with new vaccine formulations anticipated (Blake et al., 2021). Future opportunities for 235 

genetic and genomic characterisation are becoming increasingly accessible as costs diminish and 236 

expertise more readily available. It is likely that the coming decade will see a notable evolution in 237 

anticoccidial control for poultry. 238 

 239 

Histomonosis 240 

 241 

Target populations, incidence and economic relevance 242 

Histomonosis is a disease of poultry with worldwide occurrence. The disease is caused by the 243 

protozoan Histomonas meleagridis, a flagellated parasite (Tyzzer, 1920). Gallinaceous birds can be 244 

infected with the parasite and turkeys and chickens are the most affected hosts (Hess et al., 2015). In 245 

turkeys, histomonosis can cause severe morbidity and mortality, whereas in chickens clinical disease 246 

is less prominent (Tyzzer, 1934). Nevertheless, in both species the clinical outcome of infection can be 247 

variable, from absent clinical signs to high mortality. 248 

 249 

Poultry production is economically affected by histomonosis as a result of retarded growth, loss in egg 250 

production and mortality. Animal welfare and economic constraints became more relevant after 251 

prophylactic and therapeutic drugs were banned for use in poultry in many countries worldwide for 252 

reasons of consumer protection (Liebhart et al., 2017). Until the 21st century, histomonosis could be 253 

controlled by antihistomonal drugs in Europe. However, the only applicable chemicals, nitroimidazoles 254 

and nitrofurans, were withdrawn in 1996 and 2003, respectively (CEC, 1995, CEC, 2002). In the USA, 255 

arsenicals were the last remaining compounds that could be used for control prior to a ban in 2015 256 

(FDA, 2015). In many other countries similar regulations have been applied that now preclude 257 

prophylaxis and therapy against histomonosis. Consequently, the ban of drugs effective against 258 

histomonosis has resulted in an increase in the number of cases, some of them incurring high 259 

economic losses (Hess et al., 2015, Clark and Kimminau, 2017). Severe outbreaks of the disease in 260 

turkey flocks are characterized by distinct clinical signs and pathological lesions, whereas infected 261 

chickens show less pathognomonic changes (Liebhart and Hess, 2020). However, economic aspects in 262 

chicken production might be underestimated as indicated in a report investigating several outbreaks 263 

in chicken flocks, especially breeder and layer flocks (Dolka et al., 2015). 264 

 265 

In the USA, more than 100 cases of histomonosis were reported in 2016. The economic cost incurred 266 

by H. meleagridis worldwide is yet to be calculated, but has been estimated that the economic 267 

relevance of the disease for poultry production is similar to that of coccidiosis (McDougald, 2005). 268 
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 269 

Host-pathogen interactions 270 

Clinical signs and pathology 271 

Histomonas meleagridis can cause clinical signs like apathy, ruffled feathers and drooping wings. In 272 

turkeys, diarrhoea and sulphur coloured faeces can be observed as characteristic signs of the disease. 273 

In chickens, parameters like growth, weight and egg production can be the only clinical outcome. 274 

 275 

The clinical status of birds suffering from histomonosis reflects the specific pathological changes. The 276 

caeca are the primary infected organs showing necrosis and inflammation, typically with fibrinous 277 

exudate in the lumen (Figure 3). Following tissue destruction in this part of the intestinal tract, the 278 

parasite can reach the liver via the portal vein resulting in necrosis and inflammation as indicated in 279 

figure 3. In chickens, lesions in the liver are less common than in turkeys but the parasite can be 280 

distributed throughout several organs in both host species (Grabensteiner et al., 2006). However, the 281 

genotype of H. meleagridis has an impact on the severity of clinical signs and lesions, as outlined 282 

below. 283 

 284 

Host immune responses 285 

Variability in the clinical outcome of histomonosis in chickens and turkeys underlines differences in 286 

the immune response of each host species against H. meleagridis. In turkeys, which are more 287 

susceptible to histomonosis than chickens, it was shown that circulating antibodies do not have a 288 

protective effect against the disease (Clarkson, 1963, Bleyen et al., 2009b). Consequently, immune 289 

protection induced by exposure to killed histomonads was not successful (Bleyen et al., 2009b, Hess 290 

et al., 2008). These studies indicate that the systemic humoral immune response does not have a 291 

substantial impact on protection. The effect of the local humoral response against H. meleagridis is 292 

not elucidated, but increased IgM, IgY and IgA in the caeca and other parts of the intestine in chickens 293 

has been reported (Windisch and Hess, 2010). 294 

 295 

In contrast, the cellular immune response has been found to be crucial against histomonosis based on 296 

several studies using attenuated H. meleagridis to induce protective immune responses in turkeys and 297 

chickens, as outlined below (see “Vaccination”). 298 

 299 

Recently, it was shown that chickens mount a faster immune response following H. meleagridis 300 

infection than turkeys, resulting in earlier defence mechanisms that can restrict the parasite to the 301 

caeca of infected individuals (Powell et al., 2009). In another study, flow cytometry (FCM) analyses 302 

revealed that histomonosis caused more severe changes in B cells and T-cell subsets of turkeys than 303 

chickens that may induce immunopathogenic effects (Mitra et al., 2017). Differences in the cellular 304 

immune response of chickens and turkeys have been further investigated by determining cytokine 305 

producing cells using in situ hybridization (ISH) (Kidane et al., 2018). In this work, chickens showed a 306 

higher presence of IFN-γ producing cells in the caeca than turkeys that may influence the nature of 307 

the immune response. Studies on the mentioned immune traits against H. meleagridis have been 308 

summarized by Mitra and colleagues (Mitra et al., 2018). 309 

 310 

In a recent study, it was concluded that H. meleagridis infection induces a type-1 differentiation of 311 

CD4+ T cells, but also of non-CD4+ cells, in chickens based on histomonad-specific immune cells (Lagler 312 

et al., 2019). Furthermore, FCM analyses revealed significant increments of IFN-γ-producing cells 313 
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within major T-cell subsets (CD4+, CD8α+ and CD3ε+CD4−CD8α−) of the spleen and liver in infected 314 

turkeys compared to infected chickens (Lagler et al., 2021). 315 

 316 

Impact on enteric dysbiosis 317 

The growth of H. meleagridis is known to be highly dependent on the presence of live bacteria (Bilic 318 

and Hess, 2020). It has been shown that the parasite is unable to cause disease in gnotobiotic turkeys, 319 

requiring the presence of specific bacterial species including Escherichia coli (Doll and Franker, 1963, 320 

Bradley and Reid, 1966). A recent study on protection in turkeys revealed that co-cultivated bacteria 321 

like E. coli, Staphylococcus aureus and Salmonella Enteritidis influence the colonization of monoxenic 322 

attenuated H. meleagridis (Liebhart et al., 2013a). 323 

 324 

In the chicken host, the consequences of co-infection with H. meleagridis and avian pathogenic E. coli 325 

(APEC) have been investigated on enteric pathology, microbiota and bacterial translocation 326 

(Abdelhamid et al., 2020). It was found that such a co-infection caused caecal typhlitis and severe 327 

dysbiosis defined by a severe reduction in microbial species richness and diversity, with a relatively 328 

higher abundance of the Escherichia genus, Helicobacter and Bacteroides revealed by 16S rRNA gene 329 

amplicon sequencing. Furthermore, lux-tagged APEC introduced into the caeca were tracked and 330 

found to be significantly increased and distributed outside of the intestine in co-infected birds, 331 

indicating the role of H. meleagridis to support E. coli in the pathogenesis of colibacillosis in chickens. 332 

 333 

Histomonas meleagridis population dynamics 334 

Molecular studies on histomonads/genotypes and differences in clinical signs and pathology 335 

In recent years, several studies focused on molecular identification of H. meleagridis. Initially, the 18S 336 

rDNA sequence was determined and used as a target for taxonomic identification of H. meleagridis 337 

(Gerbod et al., 2001). Taxonomically, the parasite belongs to the order Tritrichomonadida and family 338 

Dientamoebidae, showing greatest genetic similarity to Dientamoeba fragilis, a parasite of humans 339 

and several other mammals. Subsequently, several studies have focused on genetic differences 340 

between isolates of H. meleagridis (van der Heijden et al., 2006, Hauck and Hafez, 2009, Munsch et 341 

al., 2009, Reis et al., 2009, Hauck et al., 2010, Hauck and Hafez, 2010, Gerhold et al., 2011, Lollis et al., 342 

2011, Lynn and Beckstead, 2012). 343 

 344 

Genetic differences in the ITS1-5.8S-ITS2 region have been detected in a clonal H. meleagridis line, 345 

highlighting the occurrence of sequence degeneracy between genomic copies and emphasising the 346 

requirement for appropriate interpretation of sequence analysis using this genetic region (Hauck et 347 

al., 2010). More recently, Multi-Locus typing using the 18S rRNA, α-actinin1 and rpb1 genes from 348 

different H. meleagridis isolates demonstrated the existence of two different genotypes (Bilic et al., 349 

2014). Importantly, differences in the outcome of infection by genotypes 1 or 2 could be observed in 350 

a flock of turkeys by clinical and pathological outcomes, suggesting genotype-specific pathogenesis 351 

(Grafl et al., 2015). In contrast to genotype 1, which has been well investigated in several experimental 352 

studies (Hess et al., 2006a, Liebhart and Hess, 2009), turkeys naturally infected with genotype 2 show 353 

reduced involvement of the liver. However, infection with genotype 2 compromised growth and 354 

resulted in more than 30% mortality (Grafl et al., 2015). Experimental infection of turkeys with 355 

genotype 2 have confirmed clinical and pathological differences to genotype 1 (unpublished data). 356 

 357 

Introduction to a flock and patterns of transmission 358 
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The introduction of H. meleagridis into a poultry flock can occur via the intermediate vector, H. 359 

gallinarum using earthworms as a paratenic host (Graybill and Smith, 1920, Lund et al., 1966). 360 

Following introduction, direct transmission from bird to bird is effective and appears to play an 361 

important role (Hess et al., 2006a, Liebhart and Hess, 2009). While cyst-like stages of H. meleagridis 362 

have been described (Zaragatzki et al., 2010), prolonged viability of the parasite in the environment 363 

has not been reported. In vitro cultivated histomonads can only survive for a few hours on different 364 

materials or in media like water and faeces (Lotfi et al., 2012). However, direct transmission between 365 

individuals within a flock is rapid, supposably below this threshold. Based on an experimental infection 366 

and the detection of H. meleagridis in faeces by qPCR, the basic reproduction number (R0) was 367 

estimated to be 8.4 (Landman et al., 2015). This finding might explain the rapid dissemination reported 368 

within flocks, recognising that the study detected H. meleagridis DNA and not infective histomonads. 369 

Furthermore, as outlined above for mortality and morbidity, other factors such as parasite genotype 370 

are likely to influence transmission. 371 

 372 

Current methods of detection for Histomonas meleagridis 373 

In recent years, diagnostic tools to detect H. meleagridis have improved in terms of sensitivity and 374 

specificity. However, older detection methods still remain widely used, depending on the specific 375 

diagnostic demand. 376 

 377 

Histomonas meleagridis can be observed by microscopic examination, either in native samples from 378 

intestinal contents or in histological preparations (Tyzzer, 1934). The viability of histomonads in 379 

preparations from caecal content or following in vitro propagation is crucial, since morphology (Figure 380 

4) and motility is characteristic for the parasite. In histological tissue samples the flagella cannot be 381 

observed due to morphological changes of tissue stages of the parasite. However, size, shape and the 382 

formation of a gap between the parasite and the host tissue indicate the presence of histomonads. 383 

Conventionally, Periodic Acid-Schiff (PAS) staining has been found to be most suitable to identify H. 384 

meleagridis in tissue sections (Kemp and Reid, 1966). However, the occurrence of other protozoans 385 

such as trichomonads or blastocysts in host birds may impede an accurate diagnosis (Hess et al., 386 

2006b). 387 

 388 

Several molecular detection systems have been established in response to challenges posed to 389 

microscopy, mainly focusing on the 18S rRNA gene using conventional PCR to detect parasite DNA 390 

(Hafez et al., 2005, Huber et al., 2005, Grabensteiner and Hess, 2006, Bleyen et al., 2007). 391 

Subsequently, qPCR assays have been developed to allow the detection and quantification of H. 392 

meleagridis in samples (Hussain et al., 2015, Landman et al., 2015). A LAMP assay has also been 393 

published, providing high sensitivity and specificity (Xu et al., 2014). Histological examination has been 394 

improved by access to reagents for specific staining of H. meleagridis based on genomic sequences 395 

(in-situ hybridisation; ISH) or antigen-antibody reactions (immunohistochemistry) in tissue sections 396 

(Figure 5) (Liebhart et al., 2006, Singh et al., 2008). For indirect detection, a sandwich ELISA and a 397 

blocking ELISA have been set-up to measure antibodies against H. meleagridis (Windisch and Hess, 398 

2009, van der Heijden et al., 2010). 399 

 400 

Monitoring of flocks 401 

The introduction of H. meleagridis into poultry flocks and its spread from bird to bird can be monitored 402 

by direct or indirect detection systems, as described above. In experimental settings, necropsy and a 403 
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combination of diagnostic tools including PCR, histology and re-isolation of H. meleagridis from cloacal 404 

swabs have been shown to give substantial results on the progression of infection (Grabensteiner et 405 

al., 2006, Hess et al., 2006a). For detailed monitoring of flocks in the field the same methods should 406 

be applied, as described in a survey of histomonosis outbreaks in turkey flocks (Sulejmanovic et al., 407 

2017). Additionally, the detection of specific antibodies can be used to identify infected birds by their 408 

immune response (Grafl et al., 2011, van der Heijden and Landman, 2011), although the appearance 409 

of antibodies can take at least two weeks in chickens and turkeys (Windisch and Hess, 2009). For 410 

example, a combination of PCR applied to faeces and dust samples with serology confirmed the 411 

infection of turkey hens and their resilience to histomonosis in barns equipped with both sexes 412 

following high mortalities in toms (Sulejmanovic et al., 2019a).  413 

 414 

Another approach has been to monitor flocks exclusively by examination of environmental samples 415 

using PCR, as described in a recent study (Sulejmanovic et al., 2019b). Here, parasite DNA could be 416 

detected in dust samples collected from 15 of 65 investigated turkey flocks. Nine of the flocks found 417 

to be positive by PCR presented with no signs of histomonosis, indicating a high epidemiological value 418 

for histomonad detection using DNA in dust samples when negative controls are robust. 419 

 420 

Current methods of control for Histomonas meleagridis 421 

Limitations of current prophylaxis and therapy 422 

The most effective drugs against histomonosis are nitroimidazoles, nitrofurans and arsenicals, all of 423 

which have been used for therapeutic and/or prophylactic purposes (Liebhart et al., 2017). However, 424 

as outlined above, these chemicals came under public and legislative pressure due to concerns around 425 

consumer health and have been banned from use in poultry production in many countries. In their 426 

absence, no effective prophylaxis or therapy is available. The antibiotic paromomycin has shown a 427 

prophylactic effect against histomonosis in turkeys (Lindquist, 1962, Bleyen et al., 2009a), but in 428 

several countries antibiotics are not licensed to be administered prophylactically. Further, application 429 

of paromomycin after diagnosing histomonosis in commercial turkey flocks has not shown promising 430 

results when compared to untreated flocks (Sulejmanovic et al., 2017). Biosecurity and hygiene are of 431 

high importance to prevent the introduction and spread of the parasite in poultry flocks. However, 432 

the value of such measures is limited based on reports of histomonosis outbreaks in breeder birds, 433 

where high biosecurity can be presumed (Dolka et al., 2015, Aka et al., 2011). 434 

 435 

Recent experimental approaches to control for Histomonas meleagridis 436 

Plant derived substances 437 

The lack of available chemotherapeutics that are effective against histomonosis in poultry argued for 438 

intensification of research into alternative substances with anti-histomonal effects (Liebhart et al., 439 

2017). In response, several plant-derived essential oils, extracts in ethanol and water, lypholisiates, 440 

alkaloids and sesquiterpene lactones have been examined for this purpose. Several compounds have 441 

been found to reduce or suppress the propagation of H. meleagridis in vitro, including essential oils 442 

from cinnamon, lemon, rosemary, garlic and thyme, but confirmation in vivo remains to be shown 443 

(Zenner et al., 2003, Grabensteiner et al., 2007, Hauck and Hafez, 2007, van der Heijden and Landman, 444 

2008a, van der Heijden and Landman, 2008b). Similarly, ethanol and water extracts from Thymus 445 

vulgaris, Vitis vinifera, Olea europaea, Peganum harmala, Ginkgo biloba and Aesculus hippocastanum, 446 

the alkaloids saponin, harmane, harmalol, harmaline and harmine, as well as artemisinin, a 447 
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sesquiterpene lactone, have all shown promising results in vitro without equivalent results in vivo 448 

(Grabensteiner et al., 2007, Grabensteiner et al., 2008, Arshad et al., 2008, Thøfner et al., 2012). 449 

 450 

Commercial plant-based products tested for an effect against histomonosis in turkeys include 451 

Enteroguard™ and Aromabiotic™, but neither protected against disease (van der Heijden and 452 

Landman, 2008a, van der Heijden and Landman, 2008b). Application of the product Protophyt™ could 453 

not prevent clinical signs and lesions of histomonosis in infected turkeys (van der Heijden and 454 

Landman, 2008b, Hafez and Hauck, 2006). Similarly, suggestions of protection against disease using 455 

Natustat™ in turkeys kept in commercial farms are currently unconfirmed by standardized infection 456 

experiments (Duffy et al., 2005). 457 

 458 

Vaccination including data on immune response following vaccination 459 

Vaccination as a strategy to prevent histomonosis was first investigated more than 80 years ago, but 460 

attenuation of virulent H. meleagridis was described to be inhomogeneous and administration 461 

routines for poultry flocks have not been developed (Tyzzer, 1934).  462 

 463 

A prerequisite for a well-defined live-vaccine was to establish a monoclonal culture of H. meleagridis 464 

(Hess et al., 2006b). Following prolonged culturing (295 passages in vitro), the clonal parasite became 465 

attenuated and could be used as a vaccine, inducing protection against severe challenge (Hess et al., 466 

2008). Attenuated histomonads were restricted to the caecal lumen and several in vivo passages did 467 

not lead to a reversion to virulence, confirming the safety of the vaccine candidate (Liebhart et al., 468 

2011, Sulejmanovic et al., 2016). Cross-protection against different isolates of the homologous 469 

genotype 1 has been demonstrated (Sulejmanovic et al., 2016) and a pilot study indicated protection 470 

against the heterologous genotype 2 (unpublished data). In chickens, vaccinated layers were shown 471 

to be protected against a significant reduction in egg production caused by histomonosis (Liebhart et 472 

al., 2013b). Optimization of experimental vaccination against histomonosis could be achieved by 473 

administration of the vaccine via the oral route in day-old turkeys (Liebhart et al., 2010), and by 474 

establishing a monoxenic vaccine candidate (Ganas et al., 2012). 475 

 476 

Beside attenuation in vitro, it has been shown that serial in vivo passage in turkeys reduces the 477 

virulence of histomonads whilst retaining the ability to protect turkeys from a subsequent severe 478 

challenge (Nguyen Pham et al., 2013). In contrast, application of killed histomonads does not result in 479 

protection for challenged turkeys (Hess et al., 2008, Bleyen et al., 2009b). 480 

 481 

Investigations to define those immune mechanisms that are relevant for protection against 482 

histomonosis have included flow cytometry, demonstrating that vaccination with attenuated 483 

histomonads induced a lower cellular immune response than virulent histomonads, inducing 484 

protective immunity without an immunopathogenic effect (Mitra et al., 2017). Furthermore, 485 

vaccination of turkeys led to increased IFN-γ producing cells in the caeca to levels comparable to naïve 486 

chickens that are innately less affected to histomonosis (Kidane et al., 2018). In studies using 487 

intracellular cytokine staining, it was found that vaccinated turkeys produce significant more IFN-γ-488 

producing cells by all major T-cell subsets of the spleen and liver compared to vaccinated chickens 489 

(Lagler et al., 2021). Based on these results it can be concluded that the vaccine causes more intense 490 

systemic immune responses in turkeys, whereas in chickens protection might be driven by the local 491 

immune response. 492 
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 493 

Challenges and conclusions 494 

The absence of effective prophylactic and therapeutic options to control histomonosis urgently 495 

requires new and improved approaches. Recent studies have focused on a wide range of plant-derived 496 

substances, but it is clear that any future product will be subject to increasingly strict regulations 497 

designed to protect consumer health. New products must be carefully selected for their safety and 498 

independence from existing or proposed products that are used in human medicine. To date, plant-499 

derived substances have not shown substantial effects against histomonosis, but these substances 500 

may be refined and other active components may yet prove effective. Cultured H. meleagridis are 501 

highly suitable for efficacy tests and can be used to improve screening capacity, but it should be 502 

mandatory to confirm positive results in vivo. 503 

 504 

Studies focused on vaccine development have highlighted in vitro attenuated histomonads as a 505 

promising new approach. Work to develop live attenuated vaccines further will require strategies for 506 

up-scaling, storage, transportation and application under field conditions. Histomonads are highly 507 

sensitive to environmental conditions, demanding innovative solutions for vaccine application to 508 

address these challenges. 509 

 510 

Dermanyssus gallinae – the poultry red mite 511 

 512 

Target populations, incidence and economic relevance 513 

Dermanyssus gallinae (the poultry red mite; PRM) is an obligatory blood feeding ectoparasite (Chauve, 514 

1998). The PRM lifecycle includes five distinct stages: egg, larva, protonymph, deutonymph and adult 515 

(Figure 6.A), and can be completed within just seven days under optimal conditions (i.e. temperature: 516 

20-25oC, humidity >70%) (Koziatek and Sokół, 2015, Immediato et al., 2015, Maurer and Baumgartner, 517 

1992). Consumption of blood is required for maturation of the protonymph, deutonymph and adult 518 

lifecycle stages, as well as development of viable eggs. PRM have been described from a broad host 519 

range, including horses, rodents and humans (Valiente Moro et al., 2009), but avian hosts are most 520 

common. PRM have been reported to infest at least 28 different avian species, most notably the 521 

domestic chicken but also canaries, pigeons and doves (Roy et al., 2009b). While all chickens can be 522 

targeted by PRM, laying and breeding stock are at greatest risk, primarily due to their extended flock 523 

duration compared to the faster turnaround time associated with broiler chickens, providing longer 524 

opportunities for infestation and mite replication. PRM spend the majority of their life cycle living 525 

separately from their hosts, sheltering in cracks and crevices, nests and cages (Fiddes et al., 2005) 526 

(Figure 6.B), emerging to feed when dark for approximately 30-90 minutes (Chauve, 1998).  527 

 528 

The poultry red mite has a global distribution although occurrence is reported most frequently in 529 

Europe and Asia, where up to 90% of layer hen farms can be infested (Cencek, 2003, Sparagano et al., 530 

2009, Hoglund et al., 1995, Guy et al., 2004, Marangi et al., 2012, Fiddes et al., 2005, Oh et al., 2019). 531 

Other mites such as the northern fowl mite (Ornithonyssus sylviarum) are commonly considered to be 532 

more important in North America. PRM are responsible for significant economic losses from the 533 

European poultry industry with estimates in excess of ~EU€ 230 million lost every year (Price et al., 534 

2019). This cost has primarily been attributed to production losses (increased mortality, decreased 535 

egg production and quality, abbreviated laying cycle), higher feed conversion ratios, and the costs of 536 

control (Sparagano et al., 2009, Wojcik et al., 2000, Sleeckx et al., 2019). Costs estimated from 537 
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individual countries range from EU€ 3 million to EU€ 66.8 million for the UK, the Netherlands and 538 

Japan (Sparagano et al., 2009). 539 

 540 

Host-pathogen interactions 541 

Clinical signs, pathology and welfare 542 

PRM infestation can impact on production parameters. Direct interaction between PRM and the host 543 

is usually restricted to feeding, when infestations in excess of 50,000 mites per hen are not uncommon 544 

(Kilpinen et al., 2005). Infestation levels of ~150,000 mites per hen have been found to result in 545 

increased restlessness, irritation, feather pecking and cannibalism, as well as anaemia and increased 546 

hen mortality (Kilpinen et al., 2005). Extended periods of infestation have also been linked with 547 

decreased body weight (Wojcik et al., 2000). Weekly mortality and laying rates, as well as egg weight, 548 

have all been shown to improve following effective anti-mite (acaricidal) treatment (Temple et al., 549 

2020).  550 

 551 

PRM infestation can also severely compromise hen welfare. Laying hens have been shown to change 552 

their resting and sleeping locations in response to infestation, possibly attempting to evade or reduce 553 

mite challenge (Maurer, 1993). Effective acaricidal treatment has been associated with reduced 554 

nighttime activity, including preening, head scratching and headshaking, in addition to severity of 555 

feather peaking and aggressive behaviour during the daytime (Temple et al., 2020). Measures of comb 556 

quality, including colour and the presence of wounds, were also improved. Physiological assessments 557 

have shown that indicators of stress, such as corticosterone levels, increase in hens exposed to PRM 558 

(Kowalski and Sokol, 2009).  559 

 560 

Host immune responses 561 

Dermanyssus gallinae demonstrate minimal host interference during feeding, incurring few significant 562 

immune responses (Harrington et al., 2010b). Humoral immune responses such as serum IgY and IgM 563 

increase with the occurrence and intensity of PRM exposure (Harrington et al., 2010b). There is some 564 

evidence for an early Th1 and pro-inflammatory cytokine response, but this is short lived and might 565 

be down-regulated after subsequent feeding (Harrington et al., 2010a). The limited nature of the 566 

immune response induced by host-mite interaction poses a major challenge to development of anti-567 

PRM vaccines. Attempts have primarily focused on development of hidden antigen vaccines, targeting 568 

mite proteins such as cathepsin-D that are not naturally exposed to the hen but can inhibit mite 569 

feeding, development or replication when targeted by antibodies (Price et al., 2019). 570 

 571 

Vector capacity 572 

It has been suggested that PRM can serve as a vector for transmission of several viral and bacterial 573 

pathogens (De Luna et al., 2008). PCR has been used to detect specific pathogen nucleic acids as an 574 

indication of possible transmission, recognising that detection is not evidence of viable organisms or 575 

their transmission, including Newcastle disease virus, Mycoplasma synoviae and M. gallisepticum 576 

(Huong et al., 2014, Arzey, 1990). Mycobacterium species DNA has also been detected in PRM eggs 577 

and unfed larvae (De Luna et al., 2008). Transmission has been demonstrated for fowlpox virus and 578 

Pasturella multocida (Petrov, 1975, Shirnov et al., 1972), as well as Salmonella Enteritidis (Valiente 579 

Moro et al., 2009). In the latter study PRM carrying Salmonella Enteritidis were found to transmit 580 

infection between chickens and to persist after cleaning and disinfection, indicating a source of 581 
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transmission between individuals and flocks. Transovarial transmission was also documented, 582 

demonstrating vertical transmission between PRM generations (Valiente Moro et al., 2009). 583 

 584 

Dermanyssus gallinae population dynamics 585 

Little has been published describing population structure and dynamics for PRM. In a series of papers 586 

Roy and colleagues have suggested that D. gallinae may represent a species complex and not a single, 587 

discrete species. The complex may represent at least two morphologically indistinguishable, but 588 

genetically distinct cryptic species (Roy et al., 2010, Roy et al., 2009a, Roy and Buronfosse, 2011). 589 

Importantly, the seemingly true (i.e. sensu stricto) D. gallinae has been detected infecting chickens 590 

and a range of other avian hosts, while the D. gallinae L1 lineage may be specific to pigeons. 591 

Complementary genetics-led studies have revealed distinct D. gallinae genotypes circulating in wild 592 

and domestic host populations in Sweden (Brännström et al., 2008). Findings that suggest distinct PRM 593 

populations in domestic and wild avians are important, since they can inform on likely sources of 594 

infestation and the dissemination of unfavourable phenotypes such as acaricide resistance. More 595 

recent studies focusing on D. gallinae sampled from populations in domestic chicken environments 596 

demonstrated the presence of multiple lineages in Europe (Karp-Tatham et al., 2020). Multiple genetic 597 

types were discovered, representing three haplogroups with six sub-haplogroups. Considerable 598 

variation was detected within and between countries, possibly reflecting movement of poultry or 599 

contaminated equipment and variation in husbandry practices.  600 

 601 

Current methods of detection for Dermanyssus gallinae 602 

Adult PRM can be visible to the human eye, but accurate enumeration for purposes such as 603 

assessment of risk or efficacy of control requires low-magnification microscopy. Importantly, PRM are 604 

only located on their host during feeding, hiding in the environment for the majority of the time. A 605 

wide range of traps have been described to facilitate environmental sampling for PRM, including 606 

fabric, corrugated cardboard or plastic traps that seek to create an environment that attracts mites 607 

(Kirkwood, 1965, Nordenfors and Chirico, 2001). An automated mite counting technique has been 608 

described (Mul et al., 2015), although uptake has not been high. Positioning of mite traps is key, 609 

recognising the importance of PRM feeding and aggregation behaviour (Mul et al., 2015) 610 

 611 

Current methods of control for Dermanyssus gallinae 612 

Acaricides 613 

Control of PRM is challenging. A wide range of organophosphates, carbamates, formamidines and 614 

pyrethroids have been used to control PRM in the past (Abbas et al., 2014, Beugnet et al., 1997, 615 

Chauve, 1998), but public and legislative pressure have combined to limit the availability of many 616 

products. The widespread development of acaricide resistance and the scarcity of new products has 617 

added further complications (Sparagano et al., 2014, Katsavou et al., 2020). Very few products remain 618 

available and licenced for use with poultry, exceptions including the fluralaner-based Exzolt® solution 619 

(MSD Animal Health) (Temple et al., 2020). Reports of acaricide residues in poultry and poultry 620 

products for human consumption have added further pressure, with examples including carbaryl in 621 

the skin and fat of chickens (Marangi et al., 2012) and, more recently, the scandal around fipronil 622 

residues in chicken eggs (Tu et al., 2019). 623 

 624 

A major limitation to the use of acaricides has been the rapid emergence and dissemination of 625 

acaricide resistance (Marangi et al., 2009, Marangi et al., 2012). The emergence of genetic (i.e. 626 
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heritable) resistance to acaricides has commonly been mediated by point mutations in genes that 627 

encode proteins with key metabolic functions, contributing to metabolism of the acaricide before it 628 

can achieve its target or enzymatic detoxification (e.g. glutathione-S-transferases and P450 629 

monooxygenases) (Wang et al., 2021, Wang et al., 2020).   630 

 631 

Desiccant dusts 632 

Alternatives to chemical control include desiccant, silica or inert dusts (Steenberg and Kilpinen, 2014). 633 

It is believed that desiccant and equivalent dusts desiccate and kill PRM and other arthropods, possibly 634 

due to cuticle abrasion and absorption of cuticular lipids (Ebeling, 1971), acting within 24 hours 635 

(Kilpinen and Steenberg, 2009). Examples of desiccant dusts include synthetic silica products and 636 

diatomaceous earth (Kilpinen and Steenberg, 2009). Comparison of a range of desiccant products 637 

revealed the importance of cation exchange, where increased capacity improved efficacy, and water 638 

absorption, emphasising the importance of a dry environment (Schulz et al., 2014, Kilpinen and 639 

Steenberg, 2009). Challenges associated with the use of desiccant dusts include health and safety 640 

provision for workers active in the area. 641 

 642 

Alternatives for control of PRM 643 

The scale of the challenge posed by PRM, and the paucity of the controls available, have prompted 644 

development of several alternatives. The use of high heat/low humidity conditions between flocks can 645 

reduce residual PRM presence, although the approach can be costly and inappropriate for some older 646 

or extensive poultry accommodation. Predatory mites such as Cheyletus eruditus have been found to 647 

feed on PRM, especially larvae (Maurer, 1993). Several predatory mite species are being developed 648 

for use in biocontrol strategies (Zriki et al., 2020). Entomopathogenic fungi have also been considered. 649 

Several fungal species have been identified with known efficacy against arthropod pests and are 650 

currently used in agriculture and forestry (de Faria and Wraight, 2007). Laboratory experiments of 651 

PRM susceptibility to fungi such as Beauveria bassiana and Metarhizium anisopliae have suggested 652 

utility, although the process can be relatively slow (Tavassoli, 2011). Several vaccines are in 653 

development for use against PRM, including vaccine candidates such as cathepsin-D (Price et al., 654 

2019), but none are close to commercialisation (Bartley et al., 2017, Xu et al., 2020).  655 

 656 

Conclusions 657 

 658 

Control of parasites that target poultry remains a major challenge. These antigenically complex 659 

pathogens are commonly adept at evolving to escape conventional control based on husbandry and 660 

routine prophylaxis. Increasing public and legislative demands for the replacement of drugs and 661 

chemicals in livestock and poultry production is exacerbating the situation, with few or no effective 662 

products left available for control. Improved understanding of genetic diversity and population 663 

structure is beginning to support development of novel controls, revealing previously unknown new 664 

genotypes and, in some examples, species. Attempts to modify or develop new vaccines for the three 665 

parasite groups discussed here are ongoing, offering considerable promise for management of poultry 666 

flock health in the near future. 667 

 668 
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 1225 

Figures 1226 

Figure 1. Eimeria brunetti oocysts. Bottom left = unsporulated and uninfectious. Top and right = 1227 

sporulated and infectious. Scale bar = 10 µm. 1228 

 1229 

Figure 2. Example of Eimeria species and genus specific PCR assays. PCR amplicons resolved for four 1230 

different Eimeria species-specific assays targeting the internal transcribed spacer 1 (ITS1) repeat 1231 

region and one Eimeria genus-specific assay targeting the 18S rRNA locus (all as described by (Schwarz 1232 

et al., 2009)). DNA templates used as indicated. The lack of cross-reactivity with the chicken host 1233 

demonstrated by inclusion of an assay targeting the chicken glyceraldehyde-3-phosphate 1234 

dehydrogenase locus (Blake et al., 2006). 1235 

E. ace = E. acervulina; E. bru = E. brunetti, E. max = E. maxima, E. mit = E. mitis, E. nec = E. necatrix, E. 1236 

pra = E. praecox, E. ten = E. tenella.  1237 

 1238 

Figure 3. Lesions in liver and caeca of a turkey caused by H. meleagridis 1239 

 1240 

Figure 4. Cultured histomonads. Intracellular objects represent incorporated rice starch particles. 1241 

 1242 

Figure 5. Immunohistochemistry for the detection and localization of H. meleagridis in tissues sections. 1243 

(A) Section of caecum with histomonads in all layers of the organ. (B) Liver sample showing specifically 1244 

stained histomonads in the parenchyma at a higher magnification. 1245 

 1246 

Figure 6. Dermanyssus gallinae, the poultry red mite (PRM). (A) Examples of a D. gallinae protonymph 1247 

(bottom, white colouration), two deutonymphs (right) and three adults. (B) A typical hiding place for 1248 

D. gallinae within poultry accommodation. PRM spend most of their lives in the environment, only 1249 

infesting chickens when taking a blood meal. Photographs taken by Eleanor Karp-Tatham. 1250 
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