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A B S T R A C T   

Leptospirosis is an important global zoonotic disease that affects a wide range of mammalian species. Canine 
leptospirosis outbreaks have been reported after metereological events such as flooding (eg. in Brazil and the 
United States of America) suggesting an environmental association, but there has been no such study in Great 
Britain (GB). The distribution of cases across GB is also unreported. Objectives of this study were to: (1) assess the 
spatio-temporal variation of leptospirosis test submissions (2) explore associations between agroecological risk 
factors and distribution of different canine leptospirosis serogroups in GB, and (3) generate probability of 
presence maps for the different serogroups. Data analysed comprised laboratory submissions (n = 3986) to 
IDEXX laboratories between 1st January 2009 and 31st December 2018 for PCR or MAT leptospirosis testing. 
Spatial and seasonal scan statistics were used to investigate spatial and temporal clustering of positive tests, 
logistic regression was used to identify significant agroecological risk factors for positive tests, and the Maxent 
algorithm was used to model the environmental niche of four serogroups. There was an increased risk of a 
positive test result in the West Midlands of England (relative risk = 2.16) and between October and January 
(relative risk = 1.54). Logistic regression identified season and region to be significantly associated with a 
positive diagnosis,with higher odds of a positive test in Autumn (OR = 1.86 95 %CI 1.29− 2.69) and Winter (OR 
= 1.51, 95 %CI 1.02− 2.23) and in the East (OR = 2.20, 95 %CI = 1.31− 3.71) and West Midlands (OR = 2.32, 95 
%CI 1.45− 3.71). The increased test-positive proportion in Autumn together with the increased odds of a positive 
diagnosis in Autumn suggests there may be a seasonal pattern to the canine leptospirosis in GB. The most 
important variable associated with higher leptospirosis presence in all ecological niche models was higher 
average annual temperature. The importance and retention of other variables differed between serogroups. 
Overall, a higher probability of leptospirosis presence was predicted in southern England and a low probability in 
Scotland and northern England. Although leptospirosis vaccine usage provides protection against the majority of 
serogroups identified here, one is not represented in the currently licensed vaccine formulations and therefore 
leptospirosis should remain a differential diagnosis in vaccinated dogs demonstrating consistent clinical signs of 
the disease.   

1. Introduction 

Leptospirosis is an important zoonotic disease with a global distri-
bution generally of greatest importance in tropical and developing areas 
of the world. However, the incidence of leptospirosis in temperate areas 
will likely increase in the coming years as a result of climate change 
leading to more frequent extreme weather events such as flooding and 
rising temperatures, and continued expansion of urban areas leading to 
increased contact with wildlife (Lau et al., 2010; Wasiński and Dutkie-
wicz, 2013). Leptospira are a complex family comprising 250 serovars 

grouped into 24 serogroups on the basis of their antigenic similarity 
(Adler and de la Peña Moctezuma, 2010). Leptospirosis infection occurs 
largely due to indirect transmission through contact with urine 
contamination of the environment (Levett, 2001). Survival of leptospires 
in the environment is influenced by factors such as temperature, pre-
cipitation, water quality, soil dampness and pH (Azócar-Aedo and 
Monti, 2016; Bierque et al., 2020; Lau et al., 2010). Additionally, 
leptospiral shedding in the environment is dependent on the presence of 
reservoir hosts such as rodents, dogs and livestock (Adler and de la Peña 
Moctezuma, 2010; Barragan et al., 2017), although maintenance host 
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specificity to different serovars appears to vary and the mechanisms for 
this host/pathogen interaction are not clear (Adler and de la Peña 
Moctezuma, 2010). 

Several associations between leptospirosis occurrence and agroeco-
logical factors have been proposed (Dhewantara et al., 2019; Lau et al., 
2010; Mwachui et al., 2015a; Wasiński and Dutkiewicz, 2013) including 
increasing temperature (Zhao et al., 2016), areas with high rainfall 
(Sumi et al., 2017; Ward, 2002), outbreaks preceded by flooding (Bar-
cellos and Sabroza, 2001; Gaynor et al., 2007; Dechet et al., 2012; 
Raghavan et al., 2012), and proximity to livestock (Mwachui et al., 
2015a). Furthermore, a Brazilian study found relationships with envi-
ronmental variables such as rainfall and temperature varied between 
serovars (Jara et al., 2019). However, there appears to have been no 
exploration of environmental factors at a serogroup or serovar level in 
temperate climates and therefore it is unclear if associations identified in 
previous research and focussed on tropical regions remain relevant in 
other areas of the world. Understanding the relationship between lep-
tospira and the environment at a serovar or serogroup level has the 
potential to better inform control strategies, especially in areas where 
leptospirosis might become an emerging problem as a result of changing 
environmental conditions. 

Currently, the important leptospira serogroups for dogs in Great 
Britain (GB) are not known, as the most recent serological survey took 
place 30 years ago (van den Broek et al., 1991). In this survey of dogs in 
Glasgow and Edinburgh, Canicola and Icterohaemorrhagiae serogroups 
were most frequently identified (van den Broek et al., 1991). For the past 
fifty years, control of canine leptospirosis in GB and continental Europe 
has centred around use of a bivalent vaccine containing Icterohaemor-
rhagiae and Canicola. More recently, in response to serological data 
from continental Europe, tetravalent vaccines were released, providing 
additional protection against two further serogroups: Australis and 
Grippotyphosa (Ellis, 2010; European Medicines Agency, 2017; Klaasen 
et al., 2013). Leptospirosis vaccine uptake appears to be high, with one 
study of dogs attending veterinary practices indicating that 81.5 % of 
dogs were vaccinated and of those vaccines administered, leptospirosis 
was the most frequent (Sánchez-Vizcaíno et al., 2018). However, it is 
currently unclear what the most important serogroups in GB are, where 
they are distributed and whether the composition of the tetravalent 
vaccine is representative of the serogroups prevalent in GB. Objectives of 
this study were therefore to (1) Determine serogroups of greatest 
important in GB (2) assess the spatio-temporal variation of leptospirosis 
test submissions and the three leptospirosis serogroups across GB, (3) 
explore associations between agro-environmental risk factors and dis-
tribution of different canine leptospirosis serogroups in GB, and (4) 
generate probability of presence maps for the different serogroups. 

2. Materials and methods 

2.1. Ethical approval 

Ethical approval for the study was granted by the RVC Social Science 
Research Ethical Review Board (SR2019− 0445). 

2.2. Study area, population and disease data 

The study area comprised GB and the study population consisted of 
all Microscopic Agglutination Test (MAT) and Polymerase Chain Reac-
tion (PCR) test submissions for suspected leptospirosis in dogs to IDEXX 
laboratories between 1 January 2009 and 31 December 2018. PCR 
testing was performed on blood and/or urine and MAT was performed 
on serum. In accordance with European College of Veterinary Internal 
Medicine (ECVIM) guidelines (Schuller et al., 2015), a positive sub-
mission was defined as either a single MAT titre >1:800, paired titres 
with a four-fold increase in serology, or a PCR result reported as positive. 
The PCR and MAT results were recorded by IDEXX as either positive or 
negative but the MAT results additionally recorded antibody titres to 

each serovar represented in the panel. MAT and PCR test sensitivity and 
specificity is variable, however PCR generally exhibits higher sensitivity 
in early stages of the disease than the MAT due to the time required for 
seroconversion. One study using the same MAT cut-off threshold 
(>1:800) as our study on single samples reported 50 % sensitivity and 
100 % specificity (Fraune et al., 2013). PCR test sensitivity has been 
reported at 91.6 % and specificity at 100 % in one study (Miotto et al., 
2018), although performance varies depending on target gene and 
sample type (Schuller et al., 2015). Although MAT results are often re-
ported as titre to serovars this has poor sensitivity due to cross-reactivity 
(44–46 %) whereas serogroup level reporting has much higher sensi-
tivity (94 %) (Blanco et al., 2016; Levett, 2003; Public Health England, 
2017). Therefore, dogs positive for the MAT test had the serogroup of 
the highest titre recorded as their primary infecting serogroup, rather 
than serovar. 

In addition to test result, data on submitting clinic postcode and 
submission date were also extracted from the IDEXX database. Twenty 
submissions did not have postcodes and were therefore excluded from 
the spatial analysis but were retained for calculation of proportion of 
positive tests and exploration of the temporal distribution of disease. 
The remaining 1140 clinic postcodes were assigned cartesian co-
ordinates and NUTS level 1 United Kingdom region codes (Office of 
National Statistics, 2017). As Northern Ireland had both the least cases 
(4, 1.3 %) and overall submissions (61, 1.6 %) these observations were 
removed from all further analyses leaving a total of 3759 observations. 
Submission date was categorised into seasons as follows: Spring (March, 
April, May), Summer (June, July, August), Autumn (September, 
October, November) and Winter (December, January, February). 

2.3. Spatial analysis 

2.3.1. Visualisation of disease distribution 
Point maps were created to show the spatial distribution of sub-

missions, all leptospirosis cases, and individual serogroups. Kernel- 
smoothed maps of positive tests and all submissions were individually 
generated using the kernel density estimation function with a quartic 
kernel shape at a range of bandwidths (25− 75 km), and the optimal 
bandwidth (30 km) chosen based on visual inspection. A kernel- 
smoothed ratio map showing density of cases adjusted for the underly-
ing distribution of submissions was then obtained by dividing the kernel- 
smoothed surface of cases by that of submissions. 

2.3.2. Spatial and temporal cluster detection 
Kulldorff’s spatial scan statistic was used to identify clusters of high 

or low risk for a positive diagnosis of leptospirosis amongst submissions, 
using SaTScan v9.6 (Kulldorff, 1997). Analysis was performed using 
three different models: the purely spatial Bernoulli model, purely spatial 
multinomial model and the seasonal scan statistic. In addition, to 
explore any potential differences in the location of clusters between the 
two types of test performed (PCR and MAT) the spatial scan statistic was 
applied to three different datasets: all submissions (n = 3986), only PCR 
submissions (n = 2270) and only MAT submissions (n = 1715). 
Furthermore, since different leptospira serogroups may have varied 
geographical distributions, the multinomial model (Jung et al., 2010) 
was used to differentiate clustering by serogroup. The seasonal scan 
statistic was used to identify temporal clusters of leptospirosis cases 
overall and for each serogroup individually, using month as the tem-
poral unit and ignoring year of submission. Each analysis used a circular 
scanning window with maximal cluster size of less than 50 % of the 
population and Monte Carlo randomisation with 999 permutations 
(Kulldorff, 2015, 1997). 

2.4. Sources and preparation of agroecological spatial data 

All shapefiles and raster maps were generated and manipulated in 
QGIS v3.40 (Open Source Geospatial Foundation Project, 2020). 
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Agroecological variables examined in this study were chosen on the 
basis of plausible biological mechanisms of transmission of the lep-
tospira bacterium, previous research and the availability of open-source 
spatial datasets (Table 1), and included livestock density (cattle, sheep, 
pig, horse), rural-urban classification, land cover, temperature, rainfall, 
flooding and soil pH. Spatial layers were sourced for all variables 
(Table 1), converted to raster format if necessary before being clipped to 
the required extent using a GB shapefile (https://www.eea.europa. 
eu/data-and-maps/data/eea-reference-grids-2/gis-files/great-britain- 
shapefile), projected using the British National Grid (BNG) projection, 
and resampled to a resolution of 5 km2. 

The livestock density, dog density, flood hazard, soil pH and land-
cover maps were used ‘as is’. The original rural-urban categories were 
mainly rural (1), largely rural (2), rural with significant urban (3), urban 
with city and town (4), urban with minor conturbation (5) and urban 
with major conturbation (6). These original categories were compressed 
further into predominantly rural (>80 % of population is classified as 
rural, classification codes 1 and 2), urban with significant rural (>50 - 
<80 % of the population is classified as urban, classification codes 3 and 
4) and predominantly urban (>80 % urban population, classification 
codes 5 and 6) (DEFRA and Office of National Statistics, 2016; Eurostat, 
2018). 

For each year of the study (2009–2018), annual and monthly tem-
perature and precipitation raster datasets were downloaded from the 
Met Office’s Had-UK gridded estimates (Dobson, 2020; Meterological 
Office et al., 2018). Rainfall and temperature data for each 5 km2 cell 
was averaged for each year over the study period to obtain average 
annual temperature and rainfall maps. Rainfall was also manipulated to 
compare monthly precipitation values against the standardised precip-
itation index (SPI). SPI measures how extreme precipitation is for a 
given location at a given time of year, relative to the historic conditions 
of that location (Mckee et al., 1993) thus providing a scale-independent 
comparison of the dryness or wetness over a specified time-period. To 
calculate SPI in this study, a gamma distribution was fitted to the lagged 
(accumulated precipitation over a 50-year historic period on any given 
month for any given location (i.e. the 5 km2 grid cells). The SPI of a 
given accumulation period was thus the inverse normal probability 
density of that amount of precipitation occurring. The dryness or 
wetness of a month was then categorised based on the SPI value into 
extreme wet (>2), severe wet (1.5 to − 1.99), moderate wet (1.00 to 
− 1.49), mild wet (0 to 0.99), mild drought (0 to -0.99), moderate 
drought (-1 to -1.49), severe drought (-1.50 to -1.99) and extreme 
drought (>-2) as defined by (McKee, et al., 1993). For this study the SPI 
categories were further grouped as severe & extreme wet, mild & 
moderate wet, mild & moderate drought and severe & extreme drought. 

The SPI was calculated for lag periods of 2 (SPI_Lag2), 3 (SPI_Lag3) and 
12 months (SPI_Lag12) (Dobson, 2020). The Point Sampling Tool in 
QGIS v3.10 was used to extract the raster values of all variables to all 
positive and negative point locations (Open Source Geospatial Foun-
dation Project, 2020). 

2.5. Agroecological variable selection 

Multicollinearity of all variables was assessed using the raw raster 
data for use in the ecological niche models by calculating the variance 
inflation factor (VIF) and correlation coefficients. A VIF of <10 and 
correlation coefficient of <0.7 was required for a variable to be retained 
for progression to the models (Pallant, 2010). Once variables were 
recategorized into quartiles, VIF and collinearity were then re-assessed 
with the same criteria, prior to inclusion in the regression model. 

2.6. Approaches for exploring agroecological risk factors 

Two separate modelling approaches were used to explore agroeco-
logical risk factors and leptospirosis. A multivariable logistic regression 
model was first used to explore agroecological and temporal risk factors 
associated with a positive test result amongst suspect cases. Due to the 
restricted and heterogenous sampling distribution of the laboratory 
submissions, ecological niche modelling (ENM) was then used to explore 
agroecological risk factors associated with leptospirosis presence, with a 
wider study background of the whole of Great Britain. Serogroup- 
specific agroecological preferences were then explored in MaxEnt as it 
is able to produce models of high predictive accuracy with small 
numbers of samples, which logistic regression would not be able to 
achieve (Wisz et al., 2008). 

2.6.1. Identification of agroecological risk factors 
Multivariable binary logistic regression modelling was used to 

quantify the association between the spatial distribution of leptospirosis 
test submissions and the following agro-ecological variables: NUTS re-
gion, season, average annual temperature, average annual rainfall, SPI 
at 2-month, 3-month and 12-month lags, estimated dog density, live-
stock density (cattle, sheep, pig and horse), land-cover, urban-rural 
classification and soil pH. For the logistic regression model all variables 
were recategorized as follows: temperature, rainfall, dog density and soil 
pH were categorised based on quartiles while livestock density variables 
(cow, horse, sheep and pig) were categorised first as absent in an area 
corresponding to the submission (0-<1), and then submissions with 
livestock present were categorised based on terciles to create a total of 
four categories. Appropriate summary statistics were calculated for all 

Table 1 
Description and source of the agroecological variables included in the logistic regression and Maxent models of Leptospirosis distribution in Great Britain.  

Variable Description Source 

Cattle density Density of cattle (heads/km2) 

FAO Gridded Livestock of the World (2010) (FAO, 2018) (http://www.fao.org/livestock-systems/en/) 
Sheep density Density of sheep (heads/km2) 
Pig density Density of pigs (heads/km2) 
Horse density Density of horses (heads/km2) 

Dog density Estimated density of dogs per postcode 
district 

Animal and Plant Health Agency (Aegerter et al., 2017) https://data.gov. 
uk/dataset/ec8fc820− 2e36− 49d0-a09c-e2901e10b2e4/dog-population-per-postcode-district 

Rural-urban 
classification 

Rural-urban classification of Lower 
Super Output Areas (LSOA) of GB (6 
classes) 

Office of National Statistics (2012) (https://www.ons.gov.uk/methodology/geography/geographicalproducts/ruralu 
rbanclassifications) 

Land cover 
classification 

Land cover of the UK (10 classes) Centre for Ecology and Hydrology (2017) (https://www.ceh.ac.uk/services/land-cover-map-2015) 

Temperature Average annual temperature (oC) 
(2009− 18) Met Office HadUK-GridTM (Meterological Office et al., 2018; Hollis et al., 2019) (https://www.metoffice.gov.uk/resea 

rch/climate/maps-and-data/data/haduk-grid/haduk-grid) 
Rainfall 

Average annual rainfall (mm) 
(2009− 18) 

Flooding 
Flood hazard map of maximum flood 
depth based on streamflow from past 
10 years (m) (2006− 16) 

European and Global Flood Awareness Systems (EFAS and GloFAS) (Dottori et al., 2016) (https://www.globalfloods. 
eu) 

Soil pH Soil pH in water at 0 cm depth International Soil Reference and Information Centre (2020) https://www.isric.org/explore/soil-geographic-databases  
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variables included in the regression model. Due to the extent of some of 
the agroecological rasters, data was missing for some submissions: 
urban-rural classification (4.4 %,n = 165), soil pH (2.7 %, n = 100), 
cow, sheep and pig density (all 0.8 %,n = 30). These submissions were 
not retained for multivariable binary logistic regression. 

Univariable logistic regression was used to quantify the association 
between each variable and a positive leptospirosis test result (either a 
MAT or PCR positive result). All variables with a p-value of <0.2 at the 
univariable level were taken forward to a multivariable logistic regres-
sion model. For the multivariable model, a manual backwards selection 
process was used whereby all variables carried forward from the uni-
variable analyses were entered into the model and removed sequentially 
starting with the variable that was least significant. Likelihood ratio tests 
were used to compare models with and without the variables, and var-
iables were retained if p < 0.05 from the likelihood ratio test (LRT). 
Confounding was assessed by comparing crude and adjusted odds ratios 
(ORs), and biologically plausible interactions between variables in the 
final model were assessed for significance and retained if the LRT result 
suggested they improved model fit (p < 0.05). Final model fit was 
assessed by the Hosmer-Lemeshow test, McFadden’s pseudo R2 and 
predictive ability assessed using area under the AUROC (Area Under the 
Receiver Operating Curve). Statistical significance was set at p < 0.05. 
Logistic regression was performed in R Studio v3.5.1 (R Core Team, 
Vienna, Austria) and model performance was evaluated with the pROC 
(Robin et al., 2021) and ResourceSelection (Lele et al., 2019) packages. 

2.6.2. Ecological niche modelling and predictive mapping 
The maximum entropy algorithm, implemented in the MaxEnt soft-

ware, was used to define the fundamental niches and estimate proba-
bility distributions of different leptospiral serogroups in GB (Phillips 
et al., 2017). MaxEnt uses location where a species has been recorded 
and the values of environmental variables at those locations to create a 
probability distribution of the environment in which a species has been 
found. This is compared with a probability distribution of the whole 
study area using randomly-generated background data points which 
characterise the environment of the full study area. Both probability 
distributions are built using the principles of maximum entropy (i.e. the 
most spatially different distribution that is possible). Ratios between 
these two probability distributions are calculated and used to build 
models quantifying the relative suitability of an area for the species 
(Elith et al., 2011). Multiple models are generated and the final model is 
chosen based on greatest similarity between the probability distribution 
of the species environment relative to the distribution of the environ-
ment of the study area (i.e. minimal relative entropy due to maximum 
entropy in their separate probability distributions) (Elith et al., 2011; 
Phillips et al., 2006). 

As MaxEnt’s unit of analysis is the raster cell rather than individual 
point locations, all raster cells in the study area were classified as either 
positive (at least one positive submission) or negative (no positive 
submissions) resulting in 242 unique positives sites retained for analysis. 
In total, four distinct MaxEnt models were built: an AllCases_model and 
separate models for the Australis, Icterohaemorrhagiae and Sejroe 
serogroups. TheAllCases_model was built using the 242 unique 
geographic locations of positive MAT tests (titres ≥1:800) and PCR tests 
while the Australis (n = 23), Icterohaemorrhagiae (n = 24) and Sejroe 
models (n = 25) were built using positive MAT tests submissions which 
reported a single highest titre of ≥1:800. Many of the samples had titres 
>1:800 to multiple serogroups but since the relationship between 
highest titre and it being the infecting serogroup is unclear these were 
not retained. The following variables were included in the model: 
average annual temperature, average annual rainfall, livestock den-
sities, soil pH, land cover classification, urban-rural classification and 
flooding. SPI and season were not included due to the temporal nature of 
these variables. 

For each model, background points (n = 10,000) were randomly 
generated within the boundary of GB The model was run with ten 

replicates and 500 iterations at a convergence threshold of 0.00001, 
with each replicate using ten-fold cross-validation with random parti-
tioning into training and test datasets, in order to obtain estimates of 
uncertainty around the fitted functions. MaxEnt’s built-in regularization 
method, which has been shown to be reliable and perform well (Hastie 
et al., 2009), was set to one to prevent over-fitting and lack of gener-
alization (Phillips and Dudík, 2008). All feature classes of the algorithm 
were used to build the predictor variable response curves, and optimised 
models were generated using the jack-knife method which determines 
the predictive performance of the model with and without inclusion of a 
variable. If exclusion of the variable improved model predictive per-
formance then the variable was removed from the final model. Perfor-
mance of models built through the jack-knife method were evaluated 
through Aikake’s Information Criterion with small sample correction 
(AICc). The predictive performance of all final models was evaluated 
using threshold dependent assessment methods. Final model perfor-
mance was assessed through AUCTEST (maximum Area under Curve of 
Test data value), the True Skill Statistic (TSS) and Kappa Statistic. TSS 
and Kappa Statistic were calculated using the prevalence threshold. 

3. Results 

3.1. Test positive proportion and temporal distribution of leptospirosis 

The test-positive proportion was 7.8 % (315/3986), with 9.4 % of 
PCR submissions positive (213/2270) compared with only 5.9 % of MAT 
submissions positive (102/1715). Of the MAT results with a high titre to 
a single serogroup (87.3 %, n = 89/102), the most frequently identified 
serogroups were Icterohaemorrhagiae (32.6 %, n = 30), Sejroe (28.3 %, 
n = 26) and Australis (27.2 %, n = 25). 

The temporal distributions of positive tests and all submissions were 
similar (Fig. 1a), and the test-positive proportion was highest in the 
Autumn months of November (11.8 %, 48/407) and October (11.0 %, 
45/410); more than double that of the Spring months of April (5.6 %, 
18/320) and May (4.7 %, 15/316; Fig. 1a). Moreover, the seasonal scan 
statistic identified a significant temporal cluster of increased relative 
risk of (RR) a positive result from October to January, during which a 
submission was 1.5 times more likely to have a positive result than the 
rest of the year (RR = 1.54, p = 0.004). Serogroup proportions appeared 
to differ seasonally between individual serogroups with Australis and 
Sejroe comprising a higher proportion of positive MAT results in the first 
half of the year, while Icterohaemorrhagiae comprised a higher pro-
portion of positive MAT results in the latter half of the year, with the 
proportion of positive MAT tests 4 times higher in September, November 
and December than the rest of the year (Fig. 1b). Moreover, the seasonal 
scan statistic identified a significantly increased risk of Icterohaemor-
rhagiae serogroup being associated with positive tests from September 
to December (RR = 3.58, p = 0.01). No significant temporal clusters 
were identified for the other two serogroups. 

3.2. Spatial distribution of leptospirosis 

Although the South East (17.4 %, n = 693) and South West England 
(14.1 %, n = 563) reported the highest proportion of submissions, the 
test-positive proportion was highest in the West (12.5 %, n = 43/344) 
and East Midlands (11.5 %, n = 26/226) (Table 1). Distribution of 
submissions was spatially heterogeneous being largely concentrated in 
south and central England with patchy submissions in northern England, 
Scotland and Wales (Fig. 2a). However, after adjusting for the distri-
bution of submissions, the kernel-smoothed ratio map showed areas 
with the highest ratio of positive tests to submissions included areas in 
western Scotland, the Wales/England border and northern and south- 
western England (Fig. 2b). Moreover, these high-density areas seldom 
coincided with large numbers of referral hospitals (Fig. 2b). Three sig-
nificant spatial clusters of positive tests amongst PCR submissions were 
identified – one high- and two low-risk - but no clusters among MAT 
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submissions. The high-risk cluster was centred in the county of Shrop-
shire and submissions from within this cluster were roughly twice as 
likely to be positive for leptospirosis than submissions outside the cluster 
(RR = 2.16, p = 0.005, Fig. 2b, red circle A). The two low-risk for 
positive tests clusters were centred on north-eastern Scotland and South 

East England where submissions from these areas included no cases (RR 
= 0, p = 0.01 and 0.03 respectively, Fig. 2b, blue circles B and C). 

The Sejroe serogroup predominated in Scotland and northern En-
gland (Fig. 3a), while both the Icterohaemorrhagiae (Fig. 3b) and Aus-
tralis (Fig. 3c) serogroups were most commonly seen in central England. 

Fig. 1. Leptospirosis MAT (Microscopic Agglutination Test) and PCR (Polymerase Chain Reaction) test submissions to IDEXX laboratories between 2009-18 showing 
(a) monthly test-positive proportion of leptospirosis (bars) and submissions (line), and (b) monthly proportion of individual serogroups (as identified by MAT testing 
as a proportion of MAT submissions that had only a single infecting serogroup identified). 

Fig. 2. (a) Point map showing location of positive (red dots) and negative submissions (black dots). (b) Kernel density ratio surface displaying the kernel-smoothed 
density of leptospirosis cases after adjusting for the distribution of all submissions (bandwidth 30 km; resolution 5km2) overlaid with the location of four significant 
spatial clusters of leptospirosis cases: a single high-risk cluster (A; p < 0.001) and two low-risk clusters (B; p < 0.001 and C; p = 0.03). Cluster D) indicates 
significantly higher proportions of Canicola, Grippotyphosa and Australis serogroup cases (p = 0.013). Black dots indicate location of referral veterinary hospitals. 
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Australis was additionally the main serogroup identified in Wales. 
Furthermore, the multinomial spatial scan statistic identified one sig-
nificant cluster of serogroups (p = 0.013) centred over southern Wales 
and the Devon-Somerset area (Fig. 2b, circle D in cyan). Compared to 
submissions outside this cluster, positive submissions from within the 
cluster were ten times more likely to be Canicola (RR = 10.19), almost 
four times as likely to be Grippotyphosa (RR = 3.82) and just over twice 
as likely to be Australis (RR = 2.29). 

3.3. Agroecological risk factors for leptospirosis 

Cow and pig density exhibited collinearity (correlation = 0.8); all 
other variables were not correlated (correlation = 0− 0.4). All 14 were 
included in the univariable analyses (Table 2). Six variables were taken 
forward to the multivariable model: season (p = 0.002), region (p =
0.003), urban-rural classification (p = 0.06), average annual tempera-
ture (p = 0.12), dog density (p = 0.12) and SPI_Lag12 (p = 0.12) 
although only three of these remained in the final multivariable model: 
season (p < 0.001), region (p = 0.004) and urban-rural classification (p 
= 0.04) (Table 3). The final model showed that a positive leptospirosis 
test result was nearly twice as likely to occur in Autumn (OR = 1.86, p <
0.001) and one and a half times as likely to occur in Winter (OR = 1.51, p 
= 0.03), than in Spring. Compared to South East England, submissions 
were more than twice as likely to be positive in the West (OR = 2.32, p <
0.001) and East Midlands (OR = 2.20, p = 0.002). When compared to 
urban areas, submissions from areas with an intermediate urban-rural 
area had increased odds of a positive test result (OR = 1.52, p =
0.02). There were no significant interactions in the model and the final 
model showed acceptable goodness-of-fit (Hosmer-Lemeshow chi- 
square test = 7.97, p = 0.44) and moderate predictive ability (AUROC 
0.64, 95 % CI 0.61− 0.70, McFadden’s Psuedo-R2 = 0.02). 

3.4. Ecological niche models of leptospirosis 

All four models had AUROC values in the good to excellent range 
(0.80− 0.86). The Australis model had the best predictive ability, with 
the highest AUROC (0.86), high sensitivity and specificity (0.85 and 
0.63), while the Sejroe model had the lowest AUROC (0.80) and TSS 
value (TSS = 0.44). The Icterrohaemorrhagiae model had the highest 
TSS value (0.53). Sensitivity was higher than specificity in all models 
suggesting all models were all better at identifying where disease 
occurred rather than where it did not occur. All models had a moderate 
TSS (>0.4) (Landis and Koch’s (1977) (Table 4). 

Variable retention and importance varied between the models 
although average annual temperature was the most important variable 
across all four models (Table 5) and accounted for almost half (47.8 %) 
the variation in distribution of all cases (AllCases_model). However, its 
contribution varied widely between the serogroup models from ac-
counting for 58.5 % of the variation in distribution of Sejroe cases to 
only 35.9 % in the Icterohaemorrhagiae model. The second most 
important variable was different for each of the models: landcover (29.1 
% AllCases_model and 29.0 % Icterohaemorrhagiae), horse density 
(22.8 % Australis) and soil pH (24.8 %, Sejroe). The AllCases_model and 
Australis models retained the most variables (5) of all the models, 
whereas the Sejroe model kept the least (3). Land cover, average annual 
rainfall and dog density were retained in three of the models, while pig 
density and soil pH were only retained in one model each (Icter-
ohaemorrhagiae and Sejroe models, respectively). None of the final 
models retained flooding or sheep density. 

Fig. 4 shows the response curves for the different agroecological 
variables retained in each of the final models. In all models, as average 
annual temperature increased, probability of presence increased up to a 
maximum probability at 11 ◦C, although the average annual tempera-
ture with highest probability of presence varied amongst serogroup 

Fig. 3. Point maps showing distribution of all Leptospirosis-positive submissions (grey dots) in Great Britain (2009-2018) together with the distribution of the three 
most common serogroups (coloured circles): (a) Sejroe (n = 26), (b) Icterohaemorrhagiae (n = 30) and c) Australis (n = 25). 
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Table 2 
Descriptive statistics of leptospirosis positive and negative submissions and environmental variables examined in univariable analysis. Leptospirosis positive dogs (n =
290) had a positive MAT or PCR test result from IDEXX Laboratories 2009-18. Negative dogs (n = 3469) had a negative PCR or MAT test result from IDEXX Laboratories 
submissions between 2009-18. Variables are listed from most to least significant.  

Variable Category Submissions (n = 3986) OR (95 %CI) P-value   

Positive ((%) n) Negative ((%) n)  Wald LRT 

Season 

Spring 15.9 (46) 23.6 (819) 1  

0.002 
Summer 23.1 (67) 24.9 (864) 1.38 (0.94− 2.03) 0.10 
Autumn 36.2 (105) 27.8 (965) 1.94 (1.35− 2.77) <0.001 
Winter 24.8 (72) 23.7 (821) 1.56 (1.07− 2.29) 0.02 

NUTS Region 

South East England 14.5 (42) 17.8 (618) 1  

0.02 

North East England 2.1 (6) 2.7 (94) 0.95 (0.39− 2.30) 0.89 
North West England 12.8 (37) 12.7 (441) 1.23 (0.78− 1.95) 0.37 
Yorkshire & Humber 5.2 (15) 5.6 (194) 1.14 (0.62− 2.09) 0.67 
East Midlands 9.0 (26) 5.3 (185) 2.07 (1.23− 3.44) 0.006 
West Midlands 13.4 (39) 7.8 (272) 2.11 (1.33− 3.46) 0.001 
East of England 11.0 (32) 13.0 (451) 1.10 (0.69− 1.75) 0.69 
London 4.1 (12) 5.9 (208) 0.90 (0.47− 1.74) 0.76 
South West England 14.5 (42) 14.3 (495) 1.25 (0.80− 1.95) 0.33 
Wales 8.6 (25) 8.1 (280) 1.31 (0.79− 2.20) 0.30 
Scotland 4.8 (14) 6.7 (231) 0.89 (0.45− 1.56) 0.72 

Urban-rural 
Predominantly urban 63.4 (184) 69.0(2394) 1  

0.06 Urban with significant rural 18.3 (53) 13.8 (480) 1.44 (1.04− 1.98) 0.03 
Predominantly rural 14.8 (43) 12.7 (440) 1.27 (0.90− 1.80) 0.18 

Average annual temperature (oC) 

0− 9.99 24.5 (71) 23.4 (812) 1  

0.12 
9.99− 10.4 31.7 (92) 26.8 (930) 1.13 (0.82− 1.56) 0.46 
10.4− 10.7 25.2 (73) 25.9 (900) 0.93 (0.66− 1.30) 0.67 
10.7− 11.53 18.6 (54) 23.8 (827) 0.75 (0.52− 1.08) 0.12 

SPI_Lag12 

Mild & moderate wet 42.8 (124) 40.2 (1394) 1  

0.12 Severe & extreme wet 16.6 (48) 15.2 (527) 1.02 (0.72− 1.45) 0.89 
Mild & moderate drought 36.6 (106) 42.3 (1467) 0.81 (0.62− 1.06) 0.13 
Severe & extreme drought 4.1 (12) 2.3 (81) 1.67 (0.88− 3.14) 0.11 

Estimated dog density (dogs/km2) 

0- 413 23.8 (69) 25.1 (871) 1  

0.12 
413- 692 20.0 (58) 25.3 (878) 0.83 (0.58− 1.20) 0.33 
692- 1143 27.0 (79) 24.8 (859) 1.16 (0.83− 1.63) 0.39 
1143- 2700 29.0 (84) 24.8 (861) 1.23 (0.88− 1.72) 0.22 

Average annual rainfall (mm) 

0- 562.8 26.6 (77) 27.9(969) 1  

0.34 562.8- 658.3 26.2 (76) 22.5 (780) 1.23 (0.88− 1.71) 0.23 
658.3- 745.4 20.7 (60) 23.9 (828) 0.91 (0.64− 1.29) 0.61 
745.4- 2174 26.6 (77) 25.7 (892) 1.09 (0.78− 1.51) 0.62 

Horse density (heads/km2) 

Absent 27.9 (81) 24.2 (841) 1  

0.27 
1− 2 29.0 (84) 24.7 (858) 1.02 (0.74− 1.40) 0.92 
2− 4 23.4 (68) 25.5 (885) 0.80 (0.57− 1.12) 0.19 
4− 16 19.7 (57) 25.0 (868) 0.68 (0.48− 0.97) 0.03 

Soil pH 

4.6− 5.7 26.6 (77) 26.8 (930) 1  

0.36 5.7− 6.0 24.8 (72) 23.4 (812) 1.20 (0.88− 1.65) 0.26 
6.0− 6.4 24.8 (72) 27.6 (958) 0.89 (0.64− 1.23) 0.48 
6.4− 7.4 20.0 (58) 19.6 (680) 1.07(0.76− 1.51) 0.69 

Cow density (heads/km2) 

Absent 41.7 (121) 42.4 (1471) 1  

0.46 
1− 54 6.9 (20) 7.3 (253) 0.96 (0.59− 1.57) 0.87 
54− 313 22.1 (64) 25.0 (868) 0.90 (0.65− 1.23) 0.49 
313− 555 28.3 (82) 24.5 (850) 1.17 (0.88− 1.57) 0.29 

SPI_Lag3 

Mild & moderate wet 45.5 (132) 46.6 (1617) 1  

0.53 
Severe & extreme wet 9.0 (26) 6.8 (235) 1.36 (0.87− 2.11) 0.18 
Mild & moderate drought 40.0 (116) 41.4 (1436) 0.99 (0.76− 1.28) 0.94 
Severe & extreme drought 5.5 (16) 5.2 (181) 1.08 (0.63− 1.86) 0.77 

Land cover 

Broadleaf woodland 0.0 (0) 0.7 (23) 0 (0-infinity) 0.97 

0.57 
Built up areas, gardens 68.6 (199) 68.7(2383) 1  
Arable 6.9 (20) 7.6 (262) 0.91 90.57− 1.47) 0.71 
Improved grassland 24.5 (71) 22.8 (791) 1.07 (0.81− 1.42) 0.62 
Coastal 0.0 (0) 0.3 (9) 0(0-inf) 0.99 

SPI _Lag2 

Mild & moderate wet 48.6 (141) 48.7 (1688) 1  

0.70 
Severe & extreme wet 7.2 (21) 5.6 (195) 1.29 (0.80− 2.09) 0.30 
Mild & moderate drought 39.0 (113) 39.9 (1383) 0.98 (0.76− 1.27) 0.87 
Severe & extreme drought 5.2 (15) 5.9 (203) 0.88 (0.51− 1.54) 0.66 

Pig density (heads/km2) 

Absent 41.7 (121) 42.3 (1469) 1  

0.80 1− 62 7.2 (21) 7.4 (255) 0.80 (0.55− 1.16) 0.23 
62− 304 23.1 (67) 25.0 (867) 1.25 (0.90− 1.75) 0.19 
304− 557 26.9 (78) 24.5 (851) 1.13 (0.81− 1.59) 0.44 

Sheep density (heads/km2) 

Absent 41.7 (121) 42.3 (1468) 1  

0.86 
1− 61 6.6 (19) 7.5 (259) 0.89 (0.54− 1.47) 0.75 
61− 305 24.1 (70) 24.8 (860) 0.99 (0.73− 1.34) 0.94 
305− 556 26.6 (77) 24.6 (855) 1.09 (0.81− 1.47) 0.56 

SPI= standardised precipitation index. 
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models (Fig. 4a). The Sejroe model had the lowest average annual 
temperature peak of probability (9 ◦C) whereas the Australis and 
Icterohaemorrhagiae models both had a similar and warmer average 
annual temperature peak (11 ◦C: Fig. 4a). For the 3 models that retained 
land coverage (AllCases, Australis and Icterohaemorrhagiae) built up 
areas/gardens was the most important class (Fig. 4b). Improved grass-
land also had high probability of presence for the AllCases_model. The 
association between rainfall and the three models that retained it as a 
variable differed (Fig. 4c). In the Icterohaemorrhagiae model probabil-
ity increased up to a peak of annual rainfall at 750 mm and decreased 
sharply beyond that (Fig. 4c). For the Australis model higher annual 
rainfall was associated with a high probability of presence whereas for 
the AllCases_model the relationship with rain appeared to be a combi-
nation of these two models with a sharp rise in probability at 750 mm 
per year and then gradually decreasing at higher levels of rainfall 
(Fig. 4c). 

In the AllCases_model as horse density increased up to about 20 
heads/km2 probability rose but then decreased at higher densities 
(Fig. 4d). However, in the Australis model, as horse density increased, 
probability of Australis presence increased and remained high (Fig. 4d). 
In both the Australis and Sejroe models these serogroups were absent in 
areas of high cattle density, beyond their initial high probability be-
tween 0–50 cows/km2, although cattle density did not contribute sub-
stantially to the Australis model (Fig. 4e). Low pig density was 
associated with a moderate probability of Icterohaemorrhagiae presence 
(~25 pigs/km2) (Fig. 4f) but at higher pig densities (>100 heads/km2) 
Icterohaemorrhagiae was not present. Finally, as acidity of soil pH 
decreased towards an optimal pH of 5.5–6.0, probability of Sejroe 
presence increased, but as soil pH approached a neutral pH of 7 prob-
ability of presence dropped (Fig. 4g). The AllCases_model, Australis and 
Icterohaemorrhagaie models all had increased probability of presence as 
density of dogs per kilometre increased. For the Australis model, highest 
probability was seen at the highest dog density (3000 dogs/km2) 
whereas for the other models highest probability of presence was at 
approximately 2500 dogs/km2 (AllCases_model) and 1200 dogs/km2 

(Icterohaemorrhagiae model). 
Although predicted distribution varied between the different 

serogroups each model followed a general pattern of lower probability 
(blue/green colours) in Scotland and northern and eastern England, and 
higher probability in the south-east of England (red/orange) (Fig. 5). 
TheAllCases_model (Fig. 5a) and Australis model (Fig. 5b) additionally 
found large areas in Kent/Sussex areas to be of high probability also. The 
Australis probability map (Fig. 5b) suggested that Australis cases 
appeared to be associated with coastal areas, or cities with rivers, more 
so than other serogroups. This can be seen in the areas of high proba-
bility for Australis present along coastal southern Wales and England. 
Most of Wales appeared unsuitable for all serogroups, with the exception 
of Australis in coastal southern Wales (Fig. 5b). From the map generated 
by the Icterohaemorrhagiae model (Fig. 5c), it is apparent that all of 
Wales had a low probability of Icterohaemorrhagiae presence. In the 
Icterohaemorrhagiae (Fig. 5c) and Sejroe maps (Fig. 5d) there were 

Table 3 
Final multivariable logistic regression model of variables associated with a 
positive diagnosis of leptospirosis amongst laboratory submissions between 
2009 and 2018. Only dogs with complete records were retained for the multi-
variable model (n = 3594).  

Variable Category OR (95 %CI) P-value 

Season 

Spring 1  

Summer 
1.32 
(0.89− 1.96) 0.17 

Autumn 
1.86 
(1.29− 2.69) <0.001 

Winter 
1.51 
(1.02− 2.23) 

0.04 

NUTS region 

South East England 1  

North East England 1.09 
(0.45− 2.67) 

0.85 

North West England 
1.22 
(0.76− 1.94) 0.41 

Yorkshire and Humber 
1.26 
(0.68− 2.35) 

0.46 

East Midlands 2.20 
(1.31− 3.71) 

0.003 

West Midlands 2.32 
(1.45− 3.71) 

<0.001 

East of England 
1.21 
(0.75− 2.00) 0.41 

London 
0.99 
(0.50− 1.94) 

0.97 

South West England 1.18 
(0.75− 1.89) 

0.49 

Wales 1.34 (0.802.25) 0.27 

Scotland 
1.09 
(0.56− 2.12) 0.81 

Urban-rural 
classification 

Predominantly urban 1  
Urban with significant 
rural 

1.52 
(1.08− 2.14) 

0.02 

Predominantly rural 1.31 
(0.92− 1.93) 

0.13  

Table 4 
Performance parameters of four Maxent models of canine leptospirosis distri-
bution in Great Britain. Models were based on the distribution of all positive 
samples (AllCases), and the distribution of the Australis, Icterohaemorrhagiae 
and Sejroe serogroups.  

Model performance 
index 

AllCases Australis Icterohaemorrhagiae Sejroe 

Area Under Curve 
Reciever Operator 
Curve (AUROC) 

0.81 0.86 0.84 0.80 

Threshold value 
(prevalence) 

0.24 0.15 0.16 0.28 

Kappa statistic max 0.27 0.29 0.25 0.27 
Sensitivity 0.89 0.85 0.90 0.86 
Specificity 0.50 0.63 0.63 0.58 
True Skill Statistic 

(TSS) 
0.41 0.48 0.53 0.44  

Table 5 
Percentage contribution of the agroecological variables retained in the AllCases_model and three individual serogroup Maxent models of leptospirosis in GB built 
Shaded cells indicate variables not retained in the final model.  
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isolated areas of high probability of presence in the Midlands and lower 
northern regions of England. The probability map for the presence of 
Sejroe serogroup (Fig. 5d) appeared most patchy of all, with small areas 
of high probability in south-eastern, central and north-eastern England 
and lowland Scotland. However, the Sejroe serogroup was the only one 
to have a high probability of presence in Scotland. 

4. Discussion 

Understanding the spatial distribution of leptospirosis at the 

serogroup level together with environmental factors associated with 
disease is important, due to direct dog-dog transmission being rare and 
environment-acquired infections being of greater significance (Pic-
ardeau, 2013). This study explored variation in the spatial and seasonal 
patterns, and the agroecological risk factors of canine leptospirosis for 
laboratory submissions in GB, particularly focussing on the serogroup 
level. There was a significantly increased risk of a diagnosis of lepto-
spirosis in Autumn and Winter, and around the England-Wales border; 
although the highest predicted probability of presence for leptospirosis 
was identified in southern to central England. The Australis, 

Fig. 4. Response curves describing probability of presence of of canine leptospires over the range of values of each predictor variable in four maximum entropy 
(MaxEnt) models (i.e., values of other variables kept constant values) for the environmental variables retained in each of the final models. The x-axis displays the 
range of the agroecological variable, and the y-axis indicates probability of presence (scale: 0-1). (a) Annual average temperature, (b) landcover, (c) annual average 
rainfall, (d) horse density, (e) cow density, (f) pig density, (g) soil pH and (h) dog density. Colours shown in top left-hand corner indicate the model: AllCases_model =
black, Australis model = red, Icterohaemorrhagiae model = blue and Sejroe = yellow. Land cover classifications are 1=broadleaf woodland, 2=coniferous woodland, 
3=arable, 4=improved grassland, 5=seminatural grassland, 6=mountain heath, 8=coastal and 10=built up areas and gardens. 

Fig. 5. Maps illustrating probability of presence of canine leptospirosis in Great Britain, for all cases (a) and individual serogroups (b-d) as determined by a maximum 
entropy (MaxEnt) model with cross-validation and averaged across ten model replicates. a)AllCases_model, b) Australis serogroup, c) Icterohaemorrhagiae serogroup 
and d) Sejroe serogroup. 
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Icterohaemorrhagiae and Sejroe serogroups displayed different spatial 
and temporal distributions, and the agroecological factors associated 
with the presence of canine leptospirosis and the relationship with these 
factors also varied between serogroups, suggesting that different 
serogroups have different ecological preferences. Possibly of greatest 
importance though is that the serogroup with the second highest prev-
alence (Sejroe, 28.3 %, n = 26) is not included in the tetravalent vac-
cines currently used by GB veterinarians. 

4.1. Spatial and temporal distribution 

In this study, the number of submissions and the proportion of pos-
itive tests varied between months and regions. This spatio-temporal 
variation could be attributed to agroecological risk factors and/or 
increasing awareness of the disease by veterinarians and/or owners, 
potentially due to recent outbreaks. Increased awareness of the disease 
could manifest as veterinarians undertaking leptospirosis testing more 
widely in dogs with a varying index of suspicion. More widespread use 
of testing could then lead to a decrease in the test-positive proportion for 
a region. Potentially this pattern is seen in South West England, where 
an outbreak of canine leptospirosis was reported in Somerset in 2014 
(Wilson et al., 2015). In this region the number of leptospirosis sub-
missions was high, yet the test-positive proportion was lower than other 
regions in this study. 

The test-positive proportion, number of submissions and risk of a 
positive result were increased in this study in Autumn. Despite the 
number of submissions being higher in Autumn the test-positive pro-
portion increased and these findings suggest that canine leptospirosis 
might exhibit seasonal variation, with increased disease in Autumn; a 
pattern identified in previous studies (Alton et al., 2009; Hennebelle 
et al., 2010; Lee et al., 2014; Major et al., 2014; Raghavan et al., 2011; 
Smith et al., 2019; Ward, 2002). 

The test-positive proportion varied regionally in this dataset ranging 
from 5.2 (London) to 12 % (East and West Midlands) and this heterog-
enous spatial distribution was supported by the locations of a high-risk 
cluster for positive tests centred on Shropshire and two low-risk clusters 
identified in South East England and eastern Scotland (Fig. 2). Diag-
nostic tests may be more likely to be submitted by referral hospitals than 
primary care clinics, and as there are more referral centres located in the 
high-risk clusters than the low-risk clusters, this could suggest that these 
clusters may simply be an artefact of the distribution of such hospitals. 
However, the fact that the areas of high density of positive test rate 
shown on the kernel-smoothed ratio surface seldom coincide with areas 
where there are more referral hospitals suggests that the clustering of 
positive tests observed in this study was unlikely to be the result of 
clustering around referral centres. Serogroup distribution varied 
spatially, with the Sejroe serogroup being the predominant serogroup in 
Scotland and northern England (Fig. 2 circle D and Fig. 3). However, this 
dataset represents laboratory submissions only rather than a random 
sample across the dog population of GB, spatial and seasonal distribu-
tion should be interpreted with this in mind. 

4.2. Risk factors and ecological niches 

This study used two different modelling algorithms to explore the 
relationship between a range of agro-ecological variables and disease 
distribution. Although the regression model described in Section 3.3 was 
used to identify risk factors for a positive test result there were limita-
tions associated with this approach. Firstly, as the submissions dataset 
used for the regression model was heterogeneously distributed with a 
focus on south and central England, the risk factors for a positive test 
identified in the regression model would have likely been biased to-
wards these areas, despite positive submissions being identified in Wales 
and Scotland. Additionally, robust regression models could not be 
generated for individual serogroups owing to the comparatively few 
samples with this information (<30 for each serogroup). Therefore, in 

addition to the regression model, ecological niche models were devel-
oped using the maximum entropy algorithm, as implemented in the 
Maxent software. The benefits of this combined approach were three- 
fold. Firstly, the logistic regression model allowed for the exploration 
of variables with a temporal nature (season and SPI) – something which 
could not be achieved in the Maxent model. Secondly, the Maxent model 
allowed for the exploration of risk factors associated with the distribu-
tion of specific serogroups as, unlike regression models, MaxEnt has 
been shown to have good predictive accuracy even with small samples; 
as few as ten in some studies (Wisz et al., 2008). And lastly, distribution 
of submissions was spatially heterogeneous being largely concentrated 
in south and central England with a lack of submissions in Scotland, 
Wales and northern England despite cases being observed in these re-
gions. Using this biased distribution of negative submission as the 
comparison could potentially lead to truncated or incorrect modelling of 
the ecological niche. Instead, modelling the agroecological associations 
of leptospirosis and individual serogroups with randomly generated 
background data points that cover the entire study area homogenously 
as the comparison rather than heterogeneously distributed negative 
submissions ensures that agroecological conditions in under-represented 
areas are included in the analysis. However, although Maxent allows for 
inclusion of under-represented areas in the background study area it 
cannot compensate for the heterogenous and biased distribution of 
positive submissions and this caveat should be borne in mind when 
interpreting the models. Although background data could have be 
generated with use of a bias grid from distribution of submissions this 
would not have allowed us to determine if there are additional areas in 
GB that are suitable for leptospirosis but not reported yet. 

The regression model identified region, season and urban-rural 
classification as being significantly associated with a positive test 
result, while the Maxent models suggest that, in general, leptospira 
transmission favoured regions of GB with a warmer average annual 
temperature (south and central England) and urban/suburban land 
types, with serogroup-specific relationships to livestock densities and 
soil pH. Risk factors identified in the logistic regression of submissions 
represent risk factors associated with a positive test result amongst 
suspect cases. This differs from the outputs of ENM which identify areas 
across GB with similar agroecological conditions to areas where cases 
have been located. Associations with agroecological variables should be 
interpreted in this light. 

The lack of agreement between variable retention between these two 
different aspects of the study is likely multifactorial. Firstly, temporal 
variables (season and SPI) were not suitable for inclusion in the ENM 
because MaxEnt uses spatial data only, in the form of a gridded dataset 
that uses either information averaged across the whole study period (eg. 
Average annual temperature) or from a single time point (eg. Livestock 
density). Therefore, variables used in logistic regression models that are 
associated with the date of submission cannot be used in MaxEnt. 
Additionally, season and region are both very broad variables that 
encompass information from multiple agroecological variables (e.g., 
within a region livestock densities and climatic conditions will vary) and 
the regression model will likely have identified broad variation while 
the Maxent model may have been able to differentiate between finer 
variation. The seasonal component to the disease, suggested through 
spatial scanning statistic results, is not accounted for in the MaxEnt 
models and this may be why temperature is the most important variable 
in MaxEnt. Temperature may partially encapsulate some of the seasonal 
effect. A logistic regression model built with only the variables available 
for the MaxEnt model was attempted, to facilitate more direct compar-
isons, but variables were not significant at the multivariable level. 

Comparison between the two models is limited largely because the 
background points generated by MaxEnt span the whole of GB whereas 
logistic regression used the more restrictive or artificial distribution of 
laboratory submissions which, in this instance were biased towards 
South and central England. Furthermore, all variables in the regression 
model were included as categorical variables while only two of the 
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variables in the MaxEnt model were categorical. The use of continuous 
variables in the MaxEnt model likely allowed the algorithm to identify 
fine-scale differences that were lost when variables were categorised and 
allowed a more detailed picture of the agroecological associations to 
emerge. 

All leptospira ENMs identified increased probability of presence as 
average annual temperature increased, the peak was highest for Aus-
tralis and Icterohaemorrhagiae serogroups (11 ◦C) and lowest for the 
Sejroe serogroup (9 ◦C). The temperature range preference for leptospira 
identified here suggests that the ecological niche of the Australis and 
Icterohaemorrhagiae serogroups is mostly restricted to the southern half 
of GB (Fig. 5). However, the slightly lower temperature and acidic soil 
pH ecological preferences reported in the Sejroe model suggest that 
northern England and Scotland are suitable for the Sejroe serogroup as 
indicated by the fact that Sejroe was the predominant serogroup seen in 
northern England and Scotland in this study (Fig. 3).Warmer tempera-
tures have been associated with leptospirosis in previous MaxEnt studies 
(Zhao et al., 2016) and preferential temperature ranges have reportedly 
varied between serovars (Jara et al., 2019). A preference for warmer 
annual temperatures likely reflects increased leptospire survival time in 
warmer weather but additionally higher temperatures can lead to 
increased water-based activities, thereby facilitating increased trans-
mission (Lau et al., 2010). Climate projections for the UK indicate rising 
temperatures and also increased extreme weather events such as heavy 
rainfall, flooding and droughts. The annual average temperature for 
2019 for all countries in the UK was 0.5 ◦C warmer versus the 
1981− 2010 average (Kendon et al., 2020). The lower bound estimate on 
average annual temperature increase is 0.5 ◦C rise by 2050 (Met Office, 
2019). Although these predictions from these ENMs have not been 
explored versus different climate scenarios, based on our finding of 
higher probability for leptospirosis presence in areas with warmer 
temperatures, increasing temperatures may result in a more widespread 
distribution of leptospirosis in GB and variation in serogroup 
distribution. 

Increased probability in urban/suburban areas (identified in both 
MaxEnt and binary logistic regression models) could reflect increased 
contact between dogs and rodents or other reservoir hosts and increased 
usage of same shared walking spaces (Lau et al., 2010; Raghavan et al., 
2011). Meta-analysis by Mwachui et al. (2015a), 2015b identified 
conflicted study findings over urban-rural leptospirosis risk. In regres-
sion analyses increased odds of a positive test result amongst suspect 
cases in urban with significant rural areas was identified, and when 
agroecological risk factors across GB were explored in MaxEnt urban/-
suburban areas had increased risk. Since most submitting veterinary 
practices were in urban/semi-urban areas (~75 % submissions) this will 
likely have impacted these results. Therefore, due to the underlying 
biases of submissions from urban/semi-urban areas we consider the 
inclusion of this variable to be for the purpose of hypothesis generation 
rather than confirmation of urban/rural associations. 

This study showed that individual serogroups were associated with 
distinct livestock species. The Australis model found increased horse 
density to be associated with higher probability. L. Bratislava, part of the 
Australis serogroup, is the serovar most frequently identified in horses 
and is host-adapted with high rates of asymptomatic carriage reported 
previously (Houwers et al., 2011; Verma et al., 2013). As it is a clinically 
important serovar for dogs, identified in an outbreak in dogs in Somerset 
(Wilson et al., 2015), the role of horses in transmission of leptospirosis in 
GB merits further exploration. Additionally, low densities of pigs (up to 
100 heads/km2) in the Icterohaemorrhagiae model was associated with 
high probability of presence. Lower densities of pigs may reflect areas 
with small holdings or smaller commercial farms predominating. Bio-
security and vaccination may be less commonplace in smaller scale 
production and therefore increased environmental shedding of lepto-
spires may occur. Indeed, a recent outbreak on a pig farm in England was 
attributed to L. Icterohaemorrhagiae (Animal Plant Health Agency, 
2018). Areas with high dog densities were associated high probability of 

presence in the AllCases_model, Icterohaemorrhagiae and Australis 
models. This could reflect increased indirect transmission opportunity 
by a higher density of dogs frequenting shared spaces such as parks and 
popular walking routes. 

Knowledge of serogroup-specific niches may improve understanding 
of local disease transmission and implementation of control strategies. 
The composition of the existing tetravalent vaccines provide coverage 
for only two of the three most prevalent serogroups identified here 
(Icterohaemorrhagiae and Australis) and omits the Sejroe serogroup 
which seems to have the widest range in GB. For areas with high 
probability of Sejroe transmission there is no existing leptospirosis 
vaccine that offers protective immunity, as cross-serogroup protection is 
rarely conferred (Klaasen and Adler, 2015). The variability between 
serogroup niches highlights the importance of ongoing disease surveil-
lance, ensuring that the coverage provided through vaccination is in 
alignment with locally relevant field strains. One such example of this is 
inclusion of L. Pomona in the US version of the leptospirosis tetravalent 
vaccine, due to its importance in the US (Ghneim et al., 2007), replacing 
the Australis serogroup which is included in the European version of the 
vaccine due to its prevalence there (Ellis, 2010; Francey et al., 2020; 
Renaud et al., 2013). 

4.3. Limitations 

Use of retrospective laboratory submission datasets have several key 
limitations. There are likely to be several biases underlying the dogs 
chosen for testing. These dogs are more likely to be either severely 
affected by the disease or have a more classical leptospirosis presenta-
tion of hepatic or renal dysfunction. Dogs with milder disease or more 
obscure presentations may not be considered for diagnostic testing, yet 
dogs with less severe or absent clinical signs are likely to be significant 
contributors to the environmental transmission of the disease and would 
present a zoonotic risk to pet owners if they are not being treated 
appropriately. Indeed, surveys of healthy dogs identified 1.5–7 % were 
shedding leptospires in their urine (Llewellyn et al., 2016; Rojas et al., 
2010). Additionally, diagnostic tests are expensive, so higher-income 
clients or insured pets are more likely to be tested (O’Neill et al., 
2014). This means that areas found to be of increased or reduced risk 
may be partially attributable to socio-economic factors, rather than only 
true disease/environmental reasons. The effect of socio-economic status 
is possibly reflected in this work with more frequent testing, higher 
test-positive proportions and increased probability of presence of 
leptospirosis seen in less deprived, more affluent southern and central 
England versus further north in England (Department for Communities 
and Local Government, 2015; Legatum Institute, 2016). 

The test locations are the submitting clinic’s postcodes and not the 
dog owner’s home postcode. Submissions were largely from practices in 
urban areas which may have led to a false increase in the importance of 
urban/suburban areas for leptospira transmission. Clients will some-
times travel varying distances to seek veterinary treatment, which might 
have impacted our ability to assess for highly localised risk factors. 
However, climate and livestock variables were explored using 5 km2 

resolution and submissions classified by region to minimise this impact 
to some extent. Other studies have used IDEXX leptospirosis test sub-
missions (in America) and therefore used location information at the 
clinic postcode level only (Lee et al., 2014; Smith et al., 2019; White 
et al., 2017). Furthermore, given that the onset of clinical signs from 
infection ranges between 7–14 days, dogs are likely to be walked across 
a wide range of environments, so therefore even home postcode data 
would not be ideal for determination of localised risk factors without 
being able to collect further information on location of walks and po-
tential risk factor activities Ghneim et al. (2007). 

The diagnosis of leptospirosis remains a challenge especially as result 
interpretation and sample timing remains a limitation in the diagnosis of 
leptospirosis across all species (Limmathurotsakul et al., 2012; Pic-
ardeau, 2013). MAT titres can be challenging to interpret, in light of 
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potential vaccine antibody intereference and sampling early on in 
infection prior to seroconversion. Single MAT results have low sensi-
tivity, this increases when paired sample are taken but this is rarely 
performed in primary-care practice. PCR diagnosis is best suited to early 
in infection and prior to antimicrobial therapy and the sensitivity and 
specificity varies according to target gene (Miotto et al., 2018; Schuller 
et al., 2015). Unfortunately, in this submissions dataset we do not have 
dog vaccine status, clinical history or information about whether a 
sample is single or paired. 

One of the main challenges associated with modelling the spatial 
distribution of disease is identifying suitable spatial data or proxies, and 
understanding the uncertainties introduced as a result of the variabilities 
associated with the data.Previous studies have reported links between 
leptospirosis cases and flooding but this was not seen here (Dechet et al., 
2012; Lau et al., 2010; Smith et al., 2013) Furthermore, due to open 
access data limitations our flooding variable was based on fluvial (river) 
flood hazard rather than pluvial (rainfall or surface water) flooding. 
Surface area flooding may be associated with canine leptospirosis more 
than fluvial flooding because urban areas are more susceptible to it, but 
this is not well understood (Houston et al., 2011). The methodologies 
used to determine dog density were less comprehensive than those used 
for livestock density calculations. Livestock densities were calculated 
using government sources such as mandatory animal tracing schemes. 
Dog density was estimated through a combination of the UK pet popu-
lation using estimations based on extrapolation of survey results to UK 
household census data, veterinary practice locations and a clinic 
catchment area based on number of veterinarians and road access 
(Aegerter et al., 2017; Gilbert et al., 2018; Murray et al., 2010). Since 
leptospires have numerous wildlife reservoirs, with rodents being most 
notable, exploring the relationship between environment suitability and 
rodent density would have been of great interest (Adler, 2015), although 
no meaningful dataset of rodent density across GB was available. 

5. Conclusions 

This study has indicated that canine leptospirosis may exhibit a 
seasonal pattern in GB, with the disease increasing in Autumn. Spatial 
variation in both the distribution of test-positive proportions and sub-
missions was identified, potentially indicating that agroecological risk 
factors and varying awareness of the disease impact the distribution of 
the leptospirosis in GB. Ecological niche modelling identified average 
annual temperature as the most important variable in all the Maxent 
models, accounting for between 35.9–58.5% of the variation in distri-
bution of all cases and individual serogroups, indicating a higher 
probability for the presence of leptospirosis in southern and central 
England. However, the serogroups displayed distinct ecological prefer-
ences, most notably that Sejroe had a preference for lower average 
annual temperatures and that the presence of Australis was associated 
with areas of higher horse density. Existing vaccines provide protection 
against two of the three main serogroups identified here but are unlikely 
to provide protection against the Sejroe serogroup. Although the test- 
positive proportion was low in Scotland, the predominant serogroup 
identified in Scotland was Sejroe. Leptospirosis should still be consid-
ered as a differential diagnosis in dogs with appropriate clinical signs, 
even if vaccinated with a commercial tetravalent vaccine. 
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