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ABSTRACT 

Hepatitis E Virus (HEV) is an emerging foodborne pathogen and consumption of raw or undercooked 

pork products has been associated with increased risk of human infection. This work represents the 

first attempt to evaluate the risk of HEV being present on pig carcasses and in meat at the end of the 

slaughtering process considering the steps of bleeding, scalding, dehairing, singeing, polishing, 

evisceration and trimming. Based on available knowledge on the epidemiology and biology of HEV, 

the risk pathways leading to the presence of HEV on carcasses as a consequence of (i) faecal 

contamination of the skin from environment and contacts with contaminated faeces during transport 

and lairage, (ii) contact with viraemic blood at bleeding and (iii) faecal/bile cross-contamination during 

evisceration were assessed qualitatively. The pathway through which HEV could be present in meat 

of viraemic pigs, as conveyed by residual blood in muscular tissue after bleeding was instead modelled 

quantitatively. Of the three risk pathways evaluated qualitatively, only the occurrence of HEV on 

carcasses as a consequence of accidental rupture of the gut or gallbladder at evisceration was found 

to be non-negligible, but with a very low likelihood of occurrence. The quantitative output for the 

expected amount of HEV in meat of viraemic pigs shows minimum and maximum values of 0.10 and 

1.1x104 genome copies (gc)/g respectively with 4.8x102 and 5.3x103 gc/g at 95th and 99th percentile of 

the cumulative distribution. These results are consistent with the existing evidence that levels of HEV 

RNA in meat samples are usually low even in the presence of high viral loads in livers of the same 

animals. Results of the sensitivity analysis confirm highly viraemic pigs entering the slaughter line as 

those posing the greater risk for consumers. Our study suggests that prevention of HEV infection 

through consumption of pork meat at pre-harvest/harvest stages should focus on reducing the flow 

of highly viraemic pigs into the food chain.  

1. INTRODUCTION 

Hepatitis E virus (HEV) is an emerging foodborne zoonotic pathogen; the total number of new cases 

per year, globally, is estimated at 20 million, resulting in 3.4 million symptomatic cases of hepatitis E 

(WHO, 2018). The World Health Organisation (WHO) estimates that hepatitis E caused approximately 
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44,000 deaths in 2015, accounting for 3.3% of the mortality due to viral hepatitis (WHO, 2017). Eight 

different HEV genotypes have been identified so far (Nimgaonkar et al., 2018) and routes of 

transmission differ by genotype. G1 and G2 are obligate human pathogens and are currently 

circulating in low- and middle-income countries in Asia, Africa and Central America in epidemic waves 

linked to the consumption of contaminated water and poor sanitation. In contrast, G3 and G4 have a 

wider host range, are zoonotic and usually responsible for autochthonous human cases in high-income 

countries (Ankcorn & Tedder, 2017). G3, which is the main genotype circulating in Europe, can infect 

both wild and domestic pig populations in addition to other animals such as deer or chamois (Di 

Bartolo et al., 2017; Spahr et al., 2018; Trogu et al., 2020). In humans, most HEV infections have been 

associated with consumption of contaminated water and undercooked pork products (EFSA, 2017). 

Several studies reported a rise in the incidence of hepatitis E in some parts of Europe (Adlhoch et al., 

2016) and consumption of raw/undercooked pork products has been identified as the possible source 

of foodborne HEV transmission that could explain the increase of autochthonous human cases in high 

income countries (Chan et al., 2017; Cossaboom et al., 2016; Said et al., 2014,2017). 

HEV infection in pigs does not lead to any clinical signs or production losses, consequently the 

incentive of the pig industry to control HEV is to ensure the safety of pork products for final consumers. 

As for other foodborne hazards, decision-making along the pork chain to mitigate the risk of 

consumers being exposed to HEV through pork and pork products should ideally be informed by 

probabilistic risk assessment (FAO, 2007). Three probabilistic models of HEV at different stages of the 

pork chain have been published so far. One of them investigated the effects of on-farm dynamics and 

animal host-pathogen interactions on the proportion of infected pigs at slaughter (Crotta et al., 2018) 

whilst the other two  estimated the risk of human exposure to HEV through consumption of specific 

pork products (Müller et al., 2017; Sarno et al., 2016).  

However, none of these studies attempted to model the fate of the virus along the slaughtering line 

and explore the effects of the different phases of the slaughtering process on the overall risk of the 

carcass and meat being contaminated; reasons probably lie in the substantial lack of HEV-specific data 

that may preclude quantitative modelling. 

Understanding the relationships between events at slaughtering and how they modulate the fate and 

the level of contamination of HEV in the final product intended for human consumption, is  however 

pivotal for the evaluation of control options to mitigate risk by means of full farm-to-fork quantitative 

microbial risk assessment (QMRA) models. Detailed farm-to-fork probabilistic models have been 

recently developed for Salmonella spp., which is an important enteric pathogen of interest for the pig 

industry and of public health importance (Hill et al., 2016; Simons et al., 2016; Swart et al., 2016). It is 
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worth highlighting that despite Salmonella spp. being a well-known foodborne pathogen, subject to 

detailed studies for many years, modellers had to make a large number of assumptions and overcome 

numerous data gaps to tackle quantitatively the dynamics of the system.  

Given the relatively early stages of knowledge of HEV epidemiology, its transmission pathways 

through the pork chain and absence of HEV-specific data describing the fate of HEV in pig carcasses 

during slaughtering, attempting the parameterisation of a full quantitative probabilistic model would 

be, at this stage, premature.  

In this context, a qualitative risk assessment framework providing a descriptive or categorical 

characterization of the risk is an ideal option to: (i) systematically synthesize through a reasoned and 

logical discussion the available knowledge and uncertainties to provide a preliminary qualitative risk 

estimate and (ii) screening the risk pathways to determine whether any of them merit further 

quantitative investigation (FAO, 2009). Therefore, objectives of this study were to: (i) evaluate, using 

a  qualitative and, where possible quantitative risk assessment frameworks, the risk of HEV being 

present on carcass and in meat at the end of the slaughtering process and (ii) identify, by means of 

sensitivity analysis, the  uncertainties and data gaps that should be addressed to allow full quantitative 

assessment of the risk. 

2. MATERIAL AND METHODS 

Our approach consisted in a detailed assessment of the biological events occurring during the different 

steps of the slaughtering of pigs and subsequent evaluation of the extent to which these can favour 

or prevent HEV contamination of the carcass. The model considers the lairage (where the animals are 

housed when entering the abattoir) as the starting point of the slaughtering process and the post-

mortem inspection after evisceration as the endpoint. A brief description of the typical slaughter line 

is outlined in section 2.1. 

Four risk pathways were identified: 

1. Presence of HEV on carcass after processing due to faecal contamination of the skin from 

environment and contacts with contaminated faeces during transport and lairage. 

2. Presence of HEV on carcass after processing due to contact with viraemic blood at bleeding 

3. Presence of HEV on carcass after processing due to faecal/bile cross-contamination during 

evisceration. 

4. Presence of HEV in meat due to residual blood in muscular tissue after bleeding. 

For each pathway, the sequence of sufficient and necessary events leading to the virus being present 

on a carcass were identified and the qualitative likelihoods presented in Table 1 were assigned to 
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each event upon reasoned and logical discussion of the available scientific evidence for pathways 

1,2, and 3. For pathway 4, availability of necessary data in scientific literature allowed quantitative 

estimation of the risk. 

Table 1. Definition of the qualitative terms used to describe the likelihoods of the necessary events 
leading to the presence of HEV in the final product after slaughtering.  

Likelihood Description 

High (H) Expected to occur 

Moderate (M) Occurrence less than 50% probability 

Low (L) Unlikely to occur 

Very low (VL) Rarely occur 

Extremely low (EL) Very rarely occur 

Negligible (N) Chance of occurrence so small that can be ignored 

 

For the pathways assessed qualitatively, the likelihoods assigned to each event were combined to 

derive the overall estimate of the risk. The final risk estimates were therefore expressed as cumulative 

likelihoods obtained combining the qualitative estimates of the inputs according to the matrix of 

conditional probabilities presented in Table 2 and previously adopted by European Food Safety 

Authority (EFSA) and other qualitative risk assessments (Crotta et al., 2016; EFSA, 2008a; Peeler & 

Thrush, 2009). 

Table 2. Combination matrix used for the estimation of the conditional likelihoods. The product of two 
probabilities is always less than the lowest probability and is sometimes given as a range (e.g. N-EL). 
However, as explained in the EFSA report, since qualitative term covers a wide range of likelihoods the 
combined estimate is in some case equal to the lower estimate (e.g. a step ‘n’ with an estimate of VL 
with a step ‘n+1’ with an estimate of EL produces and an overall estimate of N-EL). 

 Conditional likelihood step ‘n’ 

Likelihood step 'n+1' N EL VL L M H 

H N EL VL L M M 

M N EL VL VL L M 

L N EL EL VL VL L 

VL N N-VL EL EL VL VL 

EL N N N-EL EL EL EL 

N N N N N N N 

 

Within this qualitative risk assessment, we describe the likelihood of HEV passing from one stage of 

the slaughtering line to the next in qualitative terms; and given that some viral particles do make the 

transition, within each step we also assess the likely amount of HEV being transferred. The expected 

amount of virus is described by the ordinal ranges defined in Table 3. 
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Table 3. Definition of the qualitative ranges used to describe the likely amount of HEV RNA in the 

different events; gc = genome copies. 

Likelihood Description 

R0 0 gc/g or gc/mL or gc/cm2 

R1 1-10 gc/g or gc/mL or gc/cm2 

R2 10-102 gc/g or gc/mL or gc/cm2 

R3 102-103 gc/g or gc/mL or gc/cm2 

R4 >103 gc/g or gc/mL or gc/cm2 

 

In order to avoid overconfidence on the outcomes and prevent misinterpretation, an assessment of 

the uncertainty surrounding each estimation was included (Table 4), and expressed as: High, (H) 

Moderate (M) or Low (L).  

Table 4. Definition of the qualitative terms used to define the levels of uncertainty surrounding the 

likelihoods assigned to the steps along the qualitative pathways. 

Uncertainty Interpretation 

Low (L) 
The estimation is strongly supported by data-evidence. 
Agreement by different authors 

  

Moderate (M) 
The estimation is supported by few or Incomplete data. 
Some authors report conclusions slightly different from some other 

  

High (H) 
The estimation is supported only by scarce data or it is based on 
Hypothesis/Assumptions. 
Strong disagreement from different authors 

   

With respect to the uncertainties, the worst estimate among the risk factors and along the steps of 

the pathways was conservatively considered; this way, a high uncertainty in one step is enough to lead 

to a high uncertainty in the overall outcome. An exception was made if the occurrence of the event in 

step ‘n + 1’ is Negligible with Low uncertainty. In addition, arrows on top of the uncertainty labels are 

used to specify the expected direction of the uncertainty. As an example, a likelihood estimate of 

Medium associated to a level of uncertainty equal to 𝑴⃐    indicates that while the likelihood was judged 

to be “Medium” the available evidence suggests there is a certain degree of uncertainty around this 

estimate. The likelihood estimate could therefore be different from Medium, but different toward the 

lower rather than higher levels of the likelihood scale.  
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For each qualitative pathway, a sensitivity/uncertainty analysis was carried out. This was done by 

evaluating what the cumulative likelihood would be if the uncertain likelihood estimates were 

different, according to the direction indicated by the uncertainty. 

2.1. Outline of the slaughtering line 

The model considers the lairage (where the animals are housed when entering the abattoir) as the 

starting point of the slaughtering process and the post-mortem inspection after evisceration as the 

endpoint.  

Lairage and stunning. Upon entry to the slaughterhouse, animals are usually kept in lairage (holding 

pens) for a period before being slaughtered. This is to provide a buffer to supply the processing line 

and allow the animals to recover from the stress of transport to avoid negative effects on meat quality 

(Warriss, 2003). Prior to slaughter, pigs are stunned through electronarcosis or gas. During the 

slaughtering process, pig carcasses often come into physical contact with each other and cross-

contamination of the skin may occur. 

Bleeding. After stunning, pigs are hoisted by one leg and killed by severing the major blood vessels 

from which carotid arteries and the jugular veins arise at the inlet of the chest. In this procedure, the 

knives are routinely disinfected in hot water at not less than 82°C (EC, 2004) and only touch a small 

area (that is trimmed during carcass dressing); the potential contribution of residuals of viraemic blood 

transferred from the blade to the following pig is considered to be negligible.  

Scalding. After the blood is drained, the carcass is moved to the scalding bath. At scalding, pigs are 

submerged into a scalding bath containing hot water at around 62-63°C for 6-7 minutes. This 

procedure loosens the hair in the follicle; if lower temperatures are used, the hair will not be loosened 

while at very high temperatures, the skin will be cooked and the hair will become difficult to remove. 

After scalding, the carcasses are de-haired. 

Dehairing-singeing-polishing. Dehairing can either be done manually or in the dehairing machine 

consisting of a rotating drum with flexible extensions. At this stage, the bulk of the hairs are removed, 

and the vigorous mechanical action of the dehairing machine might lead to a small amount of faeces 

being extruded from the anus. After dehairing, the carcasses go through a singeing oven where the 

skin is exposed to very high temperatures (~1000°C) for about 25 seconds. After singeing, a machine 

with hard-rotating brushes removes the burnt hair left on the carcass. At this stage, there is chance 

for a small amount of faecal material quantified in 1g in a previous study by means of expert opinion 

(Swart et al., 2016) to be mechanically released from the anus. Plugging of the anus is a practical option 
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to prevent release of faeces during processing (Purnell et al., 2010). After polishing, carcasses go to 

the evisceration station. 

Evisceration. Evisceration is recognized within the Hazard Analysis of Critical Control Point as a Critical 

Control Point for management of foodborne hazards due to the high risk of carcass contamination 

with faecal matter and bile at this step of the processing. Guts or other internal organs such as the 

stomach or the gall bladder can be accidentally punctured/ruptured during manual evisceration 

leading to a leak of faeces or bile on and into the carcasses. If any rupture occurs, the carcass is 

diverted to a separate line where any visible contamination is trimmed.  

Trimming. Trimming is done manually, with a sterilized knife; in this operation, a large portion around 

the contamination is removed. At this stage, even if all the visible contamination is removed, 

microscopic contamination cannot be excluded.  

2.2. Pathway 1: Presence of HEV on carcass after processing due to faecal contamination of the 

skin from environment and contacts with contaminated faeces during transport and lairage. 

The overall likelihood for the presence of HEV on carcasses due to fecal contamination of the skin 

depends on: 

(i) The likelihood of HEV being present on the skin of animals entering the slaughtering line; 

(ii) The likelihood of this -or a fraction of this- initial contamination persisting on the carcass and 

successfully making the transition across the slaughtering steps of: scalding, dehairing and 

singeing 

(iii) The likelihood of the carcass being contaminated or re-contaminated at polishing.  

The risk pathway is outlined in Figure 1. While relevant for the risk of HEV contamination due to faecal 

and bile-cross contamination, what happens during evisceration is assumed to be independent with 

respect to the likelihood of HEV contamination due to initial level of faecal contamination on the skin. 

Similarly, while relevant for the likelihood of HEV contamination due to contact with viraemic blood 

during bleeding, what happens during bleeding is independent from the likelihood of HEV 

contamination considered within this specific pathway.  
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Figure 1. Pathway nr.1; flowcharts outlining the required steps for HEV to be present on a carcass after processing because 
of faecal contamination of the skin from environment and contacts with contaminated faeces during transport and lairage.  

 

Step 1: Likelihood of HEV being present on the skin of animals entering the slaughter line. 

The presence and level of HEV contamination on the skin of pigs has not yet being investigated. The 

initial level of HEV on the skin of the animals entering the slaughtering line is dependent upon a 

number of biological and management factors including: proportion of animals excreting HEV with 

faeces, level of HEV in contaminated faeces, contact rate during transport and lairage, amount of 

faeces transferred amongst animals and between the animals and the lairage environment. In 

addition, the process of cross-contamination at this stage involves many events that are 

interdependent and highly uncertain. This is because environmental conditions are highly variable and 

will probably affect both the likelihood of faecal material being transferred from animal to animal and 

survival of the virus. Several studies have investigated the presence of HEV RNA in faeces of naturally 

infected pigs at slaughter reporting observed prevalence estimates of 33.3% in Italy, (Di Bartolo et al., 

2011), 3%, 41% and 38% in Czech Republic, Spain and Italy respectively (Di Bartolo et al., 2012) and 

14% and 17% in UK (Berto et al., 2012; Grierson et al., 2015). The proportion of pigs excreting 

infectious HEV with faeces at the end of the production cycle was estimated to range from 25.3% to 

30.8% by a transmission model fitted from longitudinal data of naturally infected pigs (Crotta et al., 

2018). From these data, and assuming homogeneous mixing of animals at lairage, the likelihood of 

HEV being present on the skin of a random pig at beginning of the slaughter line is cautiously 

considered as Medium at a Moderate and bidirectional level of uncertainty. This means that while the 

most representative likelihood estimate for this event is evaluated to be “Medium”, because of the 

uncertainty, it is possible for the real estimate to be “Low” or “High”. 

Level of HEV contamination on skin from contaminated faeces.  
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The level of HEV  in contaminated faeces has been observed to range approximately between 104 to 

106 genome copies (gc)/g (Kanai et al., 2010; Leblanc et al., 2010); hence, for this assessment, the level 

of HEV contamination on the skin of contaminated animals is assumed to lie within the range 

described by R2 (see Table 3) with Moderate uncertainty. Assuming a level of skin contamination 

ranging between 10 to 102 gc/cm2 implies that there is the equivalent of 0.01 to 1 g of faeces uniformly 

distributed for every 100 cm2 of carcass’ surface. To reflect hat this is probably an overestimation, the 

uncertainty is assigned a left pointer.  

Step 2: Effect of scalding, dehairing and singeing on the level of HEV contamination on the skin and 

likelihood of HEV not being eliminate/inactivated. 

Although HEV-specific data are not available, experimental studies comparing the level of bacteria 

from bleeding to end of the singeing process reached similar conclusions: after singeing, the number 

of bacteria on the skin can be expected to be from 99.96% to 99.99% lower than that observed 

immediately after bleeding (Bolton et al., 2002; Pearce et al., 2004; Wheatley et al., 2014). Hence, 

considering the time-temperature combinations at which carcasses are exposed during scalding (i.e. 

62-63°C for 6-7 minutes) and singeing (i.e. ~1000°C for about 25 seconds) and the recent data 

demonstrating inactivation of the HEV G3 when exposed to temperatures of at least 65°C for 5 

minutes (Imagawa et al., 2018), it is biologically reasonable to assume this heat treatments have a 

substantial impact on the reduction of the level of HEV contamination on the skin. For this reason, the 

likelihood of HEV on the skin surviving both the scalding and singeing stages is assumed to be 

Negligible at Low uncertainty. 

Step 3: Likelihood of skin being contaminated or re-contaminated at polishing.  

After singeing, a machine with hard-rotating brushes removes the burnt hair left on the carcass. At 

this stage, it is again possible that a small amount of faecal material is mechanically released from the 

anus. Assuming homogeneous dispersion on the carcass of a small amount of faeces previously 

quantified in 1g (Swart et al., 2016), it is assumed that the likelihood of HEV being present on the skin 

as a result of polishing is Medium (i.e. equal to the likelihood of HEV being present in faeces) with a 

level of contamination described by the range R1 at Low uncertainty. This estimation is justified by 

the extremely low amount of faeces that would be uniformly distributed on the carcass surface during 

polishing. As an example, considering the carcass surface can be estimated as: 𝑆𝑐 = 734 ∗ 𝑚0.656  

(Kelley et al., 1973), with m being the body mass, if we consider the median value for carcass weight 

in UK (79Kg) as reported by EFSA baseline study (EFSA, 2008b), this results in 1g of faeces uniformly 

dispersed over a surface of ~12800cm2. Plugging of the anus is a practical option to prevent escape of 
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faeces during processing (Purnell et al., 2010); under this scenario (SC2), the likelihood of HEV being 

present on skin due to polishing becomes Negligible at Low uncertainty.   

2.3. Pathway 2: Presence of HEV on carcass after processing due to contact with viraemic blood 

at bleeding. 

The presence of HEV on carcass due to contamination from blood leaking on the skin during bleeding 

(Figure 2) depends on: 

(i) Likelihood of HEV being present in bloodstream of animals entering the slaughter line; 

(ii) Likelihood of HEV contaminating the external skin as a consequence of contact with viraemic 

blood during bleeding; 

(iii) Viraemic titre of HEV in blood of viraemic pigs; 

(iv) Effect of scalding, dehairing, singeing and polishing on the level of HEV contamination on the 

skin. 

While relevant for the HEV contamination from faecal and bile-cross contamination, what happens 

during polishing and evisceration is assumed not to be relevant with respect to the likelihood of HEV 

contamination of meat due to blood leaking on carcass during bleeding.   

 

Figure 2. Pathway nr.2; flowcharts outlining the required steps for HEV to be present on a carcass after processing because 
of contact with viraemic blood during bleeding.  

Step 1: Likelihood of pigs being viraemic at the time of slaughter. 

Studies investigating the prevalence of slaughter-age viraemic pigs reported observed prevalence of 

3% and 44,4% in two different studies in UK (Crossan et al., 2015; Grierson et al., 2015)  and 6.3% in 

US (Sooryanarain et al., 2020). In two longitudinal studies investigating the presence of HEV in 

naturally infected swine herds, presence of HEV RNA in blood of slaughter-age pigs was observed in 

11.8% and 12.5% of the subjects respectively  (de Deus et al., 2008; Leblanc et al., 2007). Evidence 

seems to suggest that likelihood or a random pig being viraemic at slaughter should be lower than the 

likelihood for HEV to be present in faeces. The likelihood for this event is therefore estimated to be 
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Low but with High and right pointing uncertainty. This indicates that it is possible that the real 

prevalence of viraemic pigs at slaughter is higher than “Low”.  

Step 2: Likelihood of HEV contaminating the skin at bleeding. 

During bleeding, blood drains from the vessels of the neck coming in contact with the external surface 

of the carcass, mainly in the area of the head considering pigs are hoisted during bleeding to facilitate 

quick and complete drain of blood. At this stage, HEV contaminating the external skin is considered as 

a certain event if the animal is viraemic, therefore, the likelihood of HEV contaminating the skin 

through the blood leaking on the carcass is assumed as equal to the likelihood for step 1: Low but with 

High and right-pointing uncertainty.  

Viraemic titre of HEV in blood of viraemic pigs. 

Viraemic titre of HEV RNA in blood of viraemic pigs at slaughter is highly variable and observed to 

range from <100 to 106 HEV RNA genome copies/mL (Grierson et al., 2015; Sooryanarain et al., 2020). 

This high variability is probably explained by the variability in the stage of the individual course of HEV 

infection different pigs have reached at the time of slaughter. For this reason, viraemic titre in blood 

of viraemic pigs and the level of contamination on skin in contact with leaking blood is conservatively 

considered to lie within the range R3 with High and left-pointing uncertainty to indicate this is a worst 

scenario and the actual titre of HEV in viraemic pigs shall be lower. 

Step 4: Effect of scalding, dehairing and singeing on the level of HEV contamination on the skin and 

likelihood of HEV not being eliminate/inactivated.  

At this stage, as discussed for in pathway 1, the overall likelihood of HEV on skin successfully surviving 

both the scalding and singeing stages is assumed to be Negligible at Low uncertainty.  

2.4.  Pathway 3: Presence of HEV on carcass after processing due to faecal and bile cross-

contamination during evisceration 

Within this pathway, only the events occurring during evisceration are assumed to be relevant for the 

overall likelihood of HEV being present on meat as a result of cross-contamination with faeces and 

bile during evisceration (Figure 3). Within the evisceration step of the slaughter line, the following 

events are taken into account:  

(i) The likelihood of HEV being present in faeces and bile,  

(ii) The likelihood of internal organs being ruptured during evisceration,  

(iii) Amount of faeces or bile content leaking on carcass as a result of ruptured gut or gallbladder, 

(iv) Level of HEV contamination in bile and faeces, 

(v) Proportion of non-visible contamination remaining onto/into the carcass following trimming. 
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Figure 3. Pathway nr.3; flowcharts outlining the required steps for HEV to be present on a carcass after processing because 
of faecal/bile contamination during evisceration.  

Step1: Likelihood of HEV being present in faeces and bile. 

The probabilities of bile and faeces being contaminated are assumed to be related to the infectious 

status of the animal entering the slaughtering line. The likelihood of HEV being present in faeces, 

considering the evidence presented in step 1 of pathway 1, is evaluated as Medium with a Moderate 

and left-pointing level of uncertainty. 

For the occurrence of slaughter-age animals with contaminated bile, again, high variability in the 

observed prevalence is reported in literature with estimates ranging from below 1% up to 51.1% 

(Salines et al., 2017). Within this qualitative risk assessment, the likelihood of pigs having HEV in bile 

is considered to be Medium with High left-pointing uncertainty.  

Step 2: Likelihood of internal organs being punctured/ruptured during evisceration. 

Data to estimate the likelihood of gut and gallbladder being punctured or ruptured during evisceration 

are only available from a recent study where estimates for the occurrence of these events were 

quantified by means of expert opinion elicitation (Crotta et al., 2019). Results of that study estimated 

the median probability of rupturing the gut and the gallbladder during evisceration around 2% in high 

and middle throughput abattoirs. However, results of that study also indicate a certain degree of 

uncertainty between estimates of different experts, this was due to the different perceptions, 



 

14 
 

professional experiences and confidence the interviewees had around the variability in the number of 

events (i.e. ruptures). For these reasons, the likelihood of the gut or gallbladder being ruptured during 

evisceration is considered Very Low at a Moderate right-pointing level of uncertainty.  

Step 3: Level of HEV contamination on skin in contact with faecal and bile contamination following 

accidental rupture of gut or gallbladder. 

The level of HEV in contaminated faeces and bile is typically high, up to 106 cg/g; therefore, it can be 

easily assumed that the level of HEV contamination on the skin in contact with the leaked faeces or 

bile lies within the range R3 with Low uncertainty.  

Step 4: Level of HEV contamination remaining on carcass after trimming. 

Considering that faecal and bile-contaminated carcasses are detected by visual inspection by abattoir 

staff and retained for trimming where contaminated areas are removed; the overall amount of HEV 

contamination eventually remaining on carcass as result of ruptured gut and gallbladder is therefore 

to be attributed to microscopic “spots” of contamination that remained undetected during inspection 

and trimming. The amount and dispersion of non-visible contamination that remains on a carcass are 

challenging to evaluate even in qualitative terms and experimental studies to gather quantitative data 

would be probably complex. Considering these are likely to remain unknown parameters, two possible 

scenarios are evaluated at this stage: 

SC1: high likelihoods of High amounts of undetected faecal/bile contamination on a carcass at 

trimming 

SC2: high likelihoods of Low amounts of undetected faecal/bile contamination on a carcass at 

trimming 

2.5. Pathway 4: Presence of HEV in meat due to residual blood in muscular tissue after bleeding. 

Considering that the virus does not replicate in the cells of the muscular tissue, it is reasonable to 

hypothesize that the presence of HEV RNA in meat is in fact due to the residual blood remaining in 

muscles of viraemic pigs after bleeding. To explore the extent to which this pathway could indeed be 

relevant, the expected level of HEV RNA in meat (𝐻𝐸𝑉𝑀𝐸𝐴𝑇) is quantified as:  

𝐻𝐸𝑉𝑀𝐸𝐴𝑇 = 𝑅𝐵𝐿𝑂𝑂𝐷 ∗ 𝐶𝑉           

Where RBLOOD is the residual blood remaining into the muscular tissues after bleeding in mL/Kg and CV 

is the viral load in the bloodstream in genome copies/mL. The volume of blood present in the carcass 

of a slaughtered pig is related to the initial blood volume and the efficiency of exsanguination but 

limited research on this subject has been conducted. The volume of blood released from slaughtered 

pigs during exsanguination has been estimated to be in the range of 40–60% of total blood volume or 
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approximately 4–5% of their live weight (Warriss, 1984) while the residual blood content in muscle 

post-slaughter has been estimated at 2–9 ml/kg of muscle (Warriss & Wilkins, 1987). Accordingly, 

RBLOOD (expressed in mL/g rather than mL/Kg) is described as: 

𝑅𝐵𝐿𝑂𝑂𝐷~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(2; 9) ∗ 10−3𝑚𝐿/𝑔          

The empirical distribution describing the level of HEV contamination in blood of viraemic pigs (CV), 

was parameterized from data reported by (Grierson et al., 2015). In that study, HEV RNA was detected 

in 36 plasma samples with a viral load ranging from detectable but below the limit of quantification 

(i.e. 22 International Unit (IU)/mL) to a maximum of 106 IU/mL. The correction factor of 2.25 was used 

to convert the results to genome copies (ARUP, 2020) and the resulting values were used to 

parameterize an empirical cumulative distribution describing the variability in the observed viral load 

in blood of viraemic pigs as follows:  

𝐶𝑉~𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒(𝑚𝑖𝑛;𝑚𝑎𝑥; {𝑝}; {𝑥}) 𝑔𝑐/𝑚𝐿      

where min and max are the Minimum (49.5 gc/mL) and Maximum (1.3x106 gc/mL) observed values 

while x and p are the vectors of the values of CV  {49.5, 6.1x102, 1.3x103, 6.3x103, 9.9x103, 4.3x103, 

1.3x106}(gc/mL) at the percentiles {0.83,0.86,0.89,0.92,0.94,0.97} respectively. 

Simulation and sensitivity analysis. 

Output of the stochastic model is presented as cumulative probability distribution describing the 

simulated overall level of HEV contamination in meat (𝐻𝐸𝑉𝑀𝐸𝐴𝑇). In order to evaluate the relative 

impact of the inputs, a sensitivity analysis was performed and a tornado chart was used to rank the 

inputs by their influence on the outputs’ mean. Results were obtained as a mean of 500.000 Monte 

Carlo iterations using the software @Risk (version 7.0.1 for Excel, Palisade Corporation, Newfield, NY). 
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3. RESULTS 

The estimated likelihoods and uncertainties for each step combined as per the combination matrix 

(Table 2) provided the cumulative likelihoods; these are reported for pathway 1, 2 and 3 in Tables 5- 

8 with the estimated likelihoods and uncertainties in brackets. 

Table 5. Summary of risk estimates for pathway 1: ‘Presence of HEV on carcass after processing due 

to faecal contamination of the skin from environment and contacts with contaminated faeces during 

transport and lairage.’ (H = High, M = Medium, L = low, VL = Very Low, EL = Extremely Low N = 

Negligible, U = Uncertainty). 

Step Description 
Likelihood 

(conditional) 
U Contamination U 

1 
Likelihood of HEV being present on the skin of 
animals entering the slaughter line 

𝑀 𝑀⃡   𝑅2 𝑀⃐   

      

2 
Likelihood of HEV not being eliminated/inactivated 
during scalding, dehairing and singeing 

𝑁(𝑁) 𝐿 𝑅0(𝑅0) 𝐿 

      

3-SC1 
Likelihood of the skin being faecal contaminated 
during polishing (no plug of anus) 

𝑀(𝑀) 𝑀⃡   𝑅0 𝐿(𝑀) 

      

3-SC2 
Likelihood of the skin being faecal contaminated 
during polishing (plug of anus) 

𝑁(𝑁) 𝐿(𝐿) 𝑅0(𝑅0) 𝐿(𝑀) 

 

 

 

Table 6. Summary of risk estimates for pathway 2: ‘Presence of HEV on carcass after processing due 
to contact with viraemic blood at bleeding’ (H = High, M = Medium, L = low, VL = Very Low, EL = 
Extremely Low, N = Negligible, U = Uncertainty). 

Step Description 
Likelihood 

(conditional) 
U Contamination U 

1 Likelihood of HEV being present in bloodstream 𝐿 𝐻    𝑅3 𝐻⃐   
      

2 
Likelihood of HEV contaminating the skin 
during bleeding 

𝑐𝑒𝑟𝑡𝑎𝑖𝑛  (𝐿) /(𝐻   ) 𝑅3 𝐻⃐   

      

3 
Likelihood of HEV not being  
eliminated/inactivated during scalding, 
dehairing and singeing 

𝑁(𝑁) 𝐿(𝐿) 𝑅0(𝑅0) 𝐿 
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Table 7. Summary of risk estimates for pathway 3(faeces): ‘Presence of HEV in meat due to faecal 
cross-contamination during evisceration’ (H = High, M = Medium, L = low, VL = Very Low, EL = Extremely 
Low, N = Negligible, U = Uncertainty). 

Step Description 
Likelihood 

(conditional) 
U Contamination U 

1 Likelihood of HEV being present in faeces 𝑀 𝑀⃐   𝑅3 𝐿 

      

2 
Likelihood of internal organs being ruptured 
during evisceration 

𝑉𝐿(𝑉𝐿) 𝑀⃐  (𝑀⃐  ) 𝑅3 𝐻⃐   

      

3 
Level of HEV contamination on skin in contact 
with faecal contamination following accidental 
rupture of the gut 

/ / 𝑅3 𝐿 

      
4-

SC1 
High amounts of non-visible contamination on 
carcass 

𝐻(𝑉𝐿) L(𝑀⃐  ) 𝑅3 𝐿 

      
4-

SC2 
Low amounts of non-visible contamination on 
carcass 

𝐻(𝑉𝐿) L(𝑀⃐  ) 𝑅0 𝐿 

 

 

 

 

Table 8. Summary of risk estimates for pathway 3(bile): ‘Presence of HEV in meat due to bile cross-
contamination during evisceration’ (H = High, M = Medium, L = low, VL = Very Low, EL = Extremely 
Low, N = Negligible, U = Uncertainty). 

Step Description 
Likelihood 

(conditional) 
U Contamination U 

1 Likelihood of HEV being present in bile 𝑀 𝐻⃐   𝑅3 𝐿 

      

2 
Likelihood of internal organs being ruptured 
during evisceration 

𝑉𝐿(𝑉𝐿) 𝑀⃐  (𝐻⃐  ) 𝑅3 𝐻⃐   

      

3 
Level of HEV contamination on skin in contact 
with bile contamination following accidental 
rupture of the gallbladder 

/ / 𝑅3 𝐿 

      
4-

SC1 
High amounts of non-visible contamination on 
carcass 

𝐻(𝑉𝐿) L(𝐻⃐  ) 𝑅3 𝐿 

      
4-

SC2 
Low amounts of non-visible contamination on 
carcass 

𝐻(𝑉𝐿) L(𝐻⃐  ) 𝑅0 𝐿 
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Results of qualitative sensitivity analysis for pathway 1 indicate that reducing the uncertainty in step 

1 and 3 is unlikely to make any difference on the final estimate. In fact, even if under the worst 

scenario, the likelihood of step 1 was High instead of Medium, the Negligible chances for HEV to 

survive scalding and singeing in step 2 (with low uncertainty) makes the actual value of step 1 

irrelevant. Similarly, even if the likelihood of the skin being faecal-contaminated during polishing is 

high, the amount of uniformly distributed faeces on a carcass would be so low to generate a level of 

HEV contamination per cm2 of little/no concern in terms of risk of human exposure. Again, results of 

qualitative sensitivity analysis for pathway 2 indicate that reducing the uncertainty in step 1 is unlikely 

to make any difference on the final estimate. Even if under the worst scenario, the likelihood of step 

1 was High instead of Low, the Negligible chances for HEV to survive scalding and singeing in step 2 

(with low uncertainty) makes the actual value of step 1 irrelevant for the final estimate.  

From the sensitivity analysis on both the pathways, it can be observed how the likelihood estimates 

for step 1 and step 2 are already considering, according to the available evidence, the worst scenarios 

for these events. For both the steps, according to the direction of the uncertainty, different but lower 

likelihoods are possible. This means that with the most likely cumulative likelihood being Very Low, if 

considering the uncertainty, the final estimate can only be lower than Very Low. Estimations are 

however very different for the final level of undetected contamination at trimming, within the range 

R3 in scenario 1 and R0 if considering scenario 2.  The level of contamination in meat (𝐻𝐸𝑉𝑀𝐸𝐴𝑇) is 

estimated by two parameters only: the level of HEV in viraemic pigs (𝐶𝑉), and the amount of residual 

blood per Kg of muscle tissue (𝑅𝐵𝐿𝑂𝑂𝐷). In viraemic pigs, the minimum and maximum simulated values 

were 0.10 and 1.1x104 gc/g respectively with 3x10-1, 1.6x101, 4.8x102 and 5.3x103 gc/g at 50th, 90th, 

95th and 99th percentile respectively (Figure 4).  

 

Figure 4. Cumulative probability describing the level of HEV in meat of viraemic pigs.  
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Results of sensitivity analysis in Figure 5 clearly indicate how  𝐻𝐸𝑉𝑀𝐸𝐴𝑇 is more affected by the 

viraemic titre in blood of infected animals than the amount of residual blood in tissues after bleeding. 

 

Figure 5. Sensitivity analysis. Following simulation, the spider plot (left) shows the mean values of HEVMEAT  obtained as a 
function of different percentiles values of the input variables. The tornado chart (right) shows the values of the lowest and  
highest means values for HEVMEAT that are be obtained as a function of each individual variable when the other was held at 
its baseline value. Cv= Viral load in blood of viraemic pigs; RBLOOD= Residual blood content in muscle. 

 

4. DISCUSSION  

In this work, we evaluated qualitatively and, when possible, quantitatively, the main risk pathways 

describing the dynamics governing the fate of HEV along the slaughtering line. As previously noted, 

considering the current important knowledge gaps in the epidemiology and host-pathogen 

interactions of HEV in pigs, the objective of this work was not to provide an accurate estimation of 

actual level of contamination to be expected in the meat or skin of a random pig. This would be 

unrealistic considering the existing knowledge gaps and the assumptions that would be required to 

describe probabilistically complex events such as the initial level of contamination on the skin or the 

cross-contamination due to animal-animal and animal-environment contacts/interactions. 

Probabilistic models have extensively been used in the context of food safety, supporting evidence-

based control strategies for different food-borne hazards (EFSA, 2020; FDA, 2003) and highlighting 
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fundamental knowledge gaps that prevent accurate quantification of risk (Crotta et al., 2017). Indeed, 

our approach, although qualitative for most of the pathways, allowed not only to explicitly describe 

the dynamics that are hypothesized to affect the fate of HEV along the slaughtering process but also 

to evaluate the expected relevance of the risk pathways themselves and the potential effects of the 

inputs/events for which data are lacking. This is particularly useful in perspective of the development 

of comprehensive quantitative risk assessment models. 

Our results suggests that a better characterisation of the initial level of skin contamination of animals 

entering the slaughterhouse or of the spread of viraemic blood on carcass during bleeding, which are 

both complex processes, would be uninformative. Because of the overall reduction effect exerted by 

steps until and including singeing, the final level of HEV contamination eventually present on the 

carcass after processing is totally driven by the contamination resulting from the uniform dispersion 

of contaminated faeces during polishing and/or accidental rupture of the intestines/gallbladders 

during evisceration. The amount of faecal contamination due to polishing is related to the amount of 

faeces mechanically extruded from the anus at that stage (if the anus is not plugged); this is expected 

to be so low as to generate a uniformly distributed HEV contamination that is probably irrelevant. 

As for the events at evisceration, the joint likelihood “HEV is present in faeces/bile ∩ gut/gallbladder 

are accidentally ruptured” is indicative of a Very Low probability for contaminated faeces/bile to 

contaminate the carcass and even when it happens, the actual level of contamination on carcass is 

determined by the amount of contamination remaining undetected at trimming. The amount and 

spread of this contamination is not, in our opinion realistically predictable. However, from our 

scenario analysis it can be concluded that high amount of non-visible contamination because of 

ruptured gut/gallbladder at evisceration are possible but very rare events. For this reason, extensive 

studies aimed at getting accurate insight of the parameters regulating the extent of undetected 

contamination are poorly justified and doing a simple microbiological survey comparing the viral load 

between trimmed/non trimmed carcasses is probably the best option.  
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Several studies have investigated the occurrence and abundance of HEV in pork products so far (Berto 

et al., 2012; Boxman ILA et al., 2019; Giannini et al., 2018; Hao et al., 2018; Intharasongkroh et al., 

2017; Leblanc et al., 2010; Moor et al., 2018; Szabo et al., 2015; Wilhelm et al., 2014). However, while 

the presence of HEV RNA was common in liver and liver-products, HEV has rarely been detected in 

meat, not even when a high viral load was detected in paired liver samples from the same animal 

(Feurer et al., 2018). This is consistent with results of our simulations (Figure 5) on the level of 

contamination in meat of viraemic pigs where values higher than 1x102 gc/g were observed only above 

the 94th percentile.  

In conclusion, our risk assessment captures the biological risk pathways describing the main factors 

we hypothesize can explain the presence of HEV on processed carcass (via faecal and bile cross-

contamination) and in meat (via viraemic blood). Considering that the skin is an edible part of 

slaughtered pigs, our results suggest that although rare, the presence of HEV on skin of  processed 

carcasses cannot be excluded and for this reason, this should be targeted by microbiological surveys 

to better quantify the overall risk of human exposure to HEV through consumption of pork products. 

However, in contrast to other enteric bacterial pathogens such as Salmonella spp., which pose a risk 

for consumers through external contamination of meat, the main risk posed by HEV seems to be the 

presence of the virus in meat as a result of residual viraemic blood. This risk pathway, described 

quantitatively in our study, represents to our knowledge the first modelling attempt to explaining the 

presence of HEV in meat. Results suggests highly viraemic pigs as the animals posing the greater risk 

for the presence of HEV in meat, with the risk being directly related to the presence of residual blood 

in muscular tissues after bleeding and the level of HEV contamination in the bloodstream of viraemic 

pigs.  
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