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Abstract

Background: Previous studies have identified many immune pathways which are consistently altered in humans
and model organisms as they age. Dairy cows are often culled at quite young ages due to an inability to cope
adequately with metabolic and infectious diseases, resulting in reduced milk production and infertility. Improved
longevity is therefore a desirable trait which would benefit both farmers and their cows. This study analysed the
transcriptome derived from RNA-seq data of leukocytes obtained from Holstein cows in early lactation with respect
to lactation number.

Results: Samples were divided into three lactation groups for analysis: i) primiparous (PP, n = 53), ii) multiparous in
lactations 2-3 (MP 2-3, n=121), and iii) MP in lactations 4-7 (MP > 3, n=55). Leukocyte expression was compared
between PP vs MP >3 cows with MP 2-3 as background using DESeq? followed by weighted gene co-expression
network analysis (WGCNA). Seven modules were significantly correlated (r 2 0.25) to the trait lactation number.
Genes from the modules which were more highly expressed in either the PP or MP >3 cows were pooled, and the
gene lists subjected to David functional annotation cluster analysis. The top three clusters from modules more
highly expressed in the PP cows all involved regulation of gene transcription, particularly zinc fingers. Another
cluster included genes encoding enzymes in the mitochondrial beta-oxidation pathway. Top clusters up-regulated
in MP > 3 cows included the terms Glycolysis/Gluconeogenesis, C-type lectin, and Immunity. Differentially expressed
candidate genes for ageing previously identified in the human blood transcriptome up-regulated in PP cows were
mainly associated with T-cell function (CCR7, CD27, IL7R, CAMK4, CD28), mitochondrial ribosomal proteins (MRPS27,
MRPS9, MRPS31), and DNA replication and repair (WRN). Those up-regulated in MP > 3 cows encoded immune
defence proteins (LYZ, CTSZ, SREBF1, GRN, ANXA5, ADARBT).

* Correspondence: Ibuggiotti@rvc.ac.uk

The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9
7TA, UK

Full list of author information is available at the end of the article

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07977-5&domain=pdf
http://orcid.org/0000-0002-7404-7800
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:lbuggiotti@rvc.ac.uk

Buggiotti et al. BMC Genomics (2021) 22:693

Page 2 of 17

COWS.

Conclusions: Genes and pathways associated with lactation number in cows were identified for the first time to
date, and we found that many were comparable to those known to be associated with ageing in humans and
model organisms. We also detected changes in energy utilization and immune responses in leukocytes from older

Keywords: Ageing, Leukocytes, Cow, Primiparous, Multiparous, Longevity

Background

Longevity is an economically important trait in dairy
cows, which also has welfare implications. Cattle can po-
tentially live for over 20 years, but this is rare in practice
and the average lifespan in dairy cows is currently
around 4.5 to 7 years [1-3]. To maximise economic po-
tential, heifers should first calve at 24 months of age so
becoming primiparous cows, starting their first lactation,
and beginning to pay back their rearing costs through
the production of saleable milk [4]. Ideally, they should
continue to calve at annual intervals, with their milk
production potential increasing progressively until the
fourth or fifth lactation [5]. Cows which survive for lon-
ger achieve greater lifetime milk production associated
with higher profitability [2, 3, 6] together with the bene-
fit of reduced greenhouse gas emissions [7]. Many cows
do not achieve optimum longevity due to premature in-
voluntary culling, for which the main reasons are mas-
titis, infertility and lameness [8, 9]. On the other hand,
voluntary culling may be used to remove cows with low
milk yields or behavioural issues and to increase the rate
of genetic gain [10].

There are major alterations in the metabolic profiles
associated with the start of lactation [11]. These also
change with age as primiparous cows are still growing,
so their energetic demands for growth compete with
those of milk production, whereas in older cows the
higher milk yields are associated with greater mobilisa-
tion of body tissue, leading to higher circulating concen-
trations of nonesterified fatty acids (NEFA) and beta-
hydroxybutyrate (BHB) [12, 13] Circulating concentra-
tions of IGF1 are also significantly lower in multiparous
(MP) than primiparous (PP) cows in early lactation [14].
IGF1 is a key metabolic hormone which provides a good
indication of the energy balance status of the animal and
is also linked to the immune responses following calving
[15]. There are therefore important metabolic, endocrine
and physiological changes that occur as cows mature,
stop growing and increase their milk yields. Cows with
greater milk production potential face an increased risk
of glucose shortages in their immune cells, which con-
tributes to immune dysfunction in the peripartum
period [16]. Both metabolic and immune dysfunction
therefore impact on the transcriptomic changes in leu-
kocytes in early lactation.

Recent studies in human populations have highlighted
age-associated changes in leucocyte functionality affecting in-
nate and adaptive immune functions [17]. The causes and
consequences of ageing on the human blood transcriptome
have, however, proved difficult to dissect due to interactions
with environmental influences, genetic factors and a large
number of age-related diseases [18]. Studies on model organ-
isms have highlighted that ageing is characterized by many
alterations at molecular, cellular and tissue level [19]. Studies
of the ageing transcriptome have been performed in species
including C. elegans [20], flies [21], rodents [22] and humans
[23]. This approach has identified various signatures found
to occur repeatedly across different tissues and organisms.
Candidate genes whose expression is consistently associated
with cellular ageing have been classified into six categories: i)
downregulation of genes encoding mitochondrial proteins, ii)
downregulation of the protein synthesis machinery, iii) dys-
regulation of immune system genes, iv) a reduction in
growth factor signalling, v) constitutive responses to stress
and DNA damage, and vi) dysregulation of gene expression
and mRNA processing [24].

Although all living creatures age at some point, our
knowledge on the biology of ageing is still not sufficient.
The physiological process of ageing in humans is associ-
ated with a progressive loss of function and increased
vulnerability to disease, frailty, and disability [25].
Because the incidence of adult diseases increases with
age, a better understanding of the biology of ageing
could greatly improve our efforts to elucidate the physio-
pathology of such conditions [26].

In this study we have compared the leucocyte tran-
scriptome between young (primiparous, PP) and older
(multiparous, MP) cows in order to shed light on the
genes and related genomic pathways involved in age-
related symptoms arising during the different phases of
a cow’s life. This has the potential to inform both breed-
ing and management practices, so providing a significant
gain to both agricultural production and animal welfare.

Results

Weighted gene co-expression network analysis (WGCNA)
to determine the relationships of leucocyte gene
transcription between cow parity

Whole blood transcriptomes of 229 cow samples from
six dairy herds were obtained in early lactation at 14 +
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0.1 days in milk. The PP cows, as expected, produced
less milk, but there was no difference in milk production
between the MP2-3 and MP > 3 cows, with milk yields
at the time of sample collection of PP 23.5 + 0.88" (n =
53); MP2-3 33.8+0.68" (n=121) and MP>3 33.0+
1.14° (n=55) kg/d respectively (mean + SEM, b>a, P<
0.001; Supplementary Table 1). There was also a minor
difference in milk production between two of the herds,
with ITA cows producing slightly less and DEU cows
slightly more milk (Supplementary Table 1). The herd ef-
fect was, however, accounted for in the WGCNA analysis
by removing the batch effect (Supplementary Fig. 1).

The leucocyte RNA samples had an average mapping rate
against the reference genome of 96.2%, resulting in an aver-
age total number of reads of 34,439,525 (Supplementary
Table 2). As we were most interested in understanding the
effect of ageing, we contrasted the leukocyte expression be-
tween the two groups with extreme lactation numbers PP vs
MP >3, using those classified as MP2-3 as background.
Firstly, we performed a differential expression analysis using
DESeq2. Over 5000 genes out of the 17,216 genes initially
mapped were found to be differentially expressed between
lactation groups following Benjamini-Hochberg false discov-
ery rate adjustment (padj < 0.1). This list was narrowed down
to 2925 differentially expressed genes (DEG) when contrast-
ing PP vs MP > 3 cows (Supplementary Fig. 2). We then ap-
plied WGCNA to identify gene modules from our dataset
associated to the trait of lactation number. From an initial
total of 21,207 genes, 13,769 (64.9%) genes passed the
DESeq?2 filtering steps. Samples from three cows were re-
moved at this stage as outliers (two from MP >3 and one
from MP2-3 age group, respectively; Supplementary Fig. 3),
leaving a total of 226 samples. This unsupervised technique
identified 32 interconnected gene modules from the filtered
gene list (Fig. 1A). The number of genes per module is
shown in Fig. 1B. Of these, the violet and turquoise modules
were significantly related to the trait lactation number in
both the PP and MP > 3 groups (Fig. 1C). As expected, mod-
ules with a significant positive correlation in the younger
cows were negatively correlated with lactation number in the
older ones, and vice versa, while no modules showed a sig-
nificant correlation with the medium lactation number
group (MP2-3). Within these seven significant modules,
2274 genes were more highly expressed in the leukocytes of
the PP cows and 2721 genes were more highly expressed in
the leukocytes of the MP >3 cows. The top 20 genes with
the highest differential expression between PP and MP >3
cows are listed in Table 1.

Significant modules in leukocytes of both PP and MP > 3
cows

The violet module containing 87 genes had the
highest correlations with lactation number (+0.59 in
PP and - 0.43 in MP >3 cows, Fig. 1C). Within this
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module the LAMA4 gene was the most highly corre-
lated gene (Table 1, gene significance = 9.05 x 10~ >?),
with lower expression in the MP >3 cows, represent-
ing its module membership. This is a laminin gene,
part of the family of extracellular matrix glycoproteins
which form the major non-collagenous constituent of
basement membranes. GO enrichment analysis of the
genes in this module revealed the terms receptor
binding and cell periphery (Fig. 2A).

The turquoise module represents the second module
which had significant correlations in opposite directions
with PP and MP >3 cows, of —0.29 and 0.33, respect-
ively. This module contained 1818 genes of which
NELL2 was the most highly correlated with lactation
number (Table 1). This was also overall the most differ-
entially expressed gene in leucocytes with higher expres-
sion in MP >3 cows. It was a large module containing
1818 genes with a wide variety of functions (Fig. 2B,
Supplementary Table 3). The top six most significant
GO terms (all <1.36x 10" >° and containing between
389 and 959 genes) were extracellular region, membrane,
single-organism process, vesicle and cell periphery.

Modules up-regulated in leukocytes of PP cows

The modules midnightblue, darkred, and orange were all
significantly positive in PP cows with correlations span-
ning from 0.27 to 0.25, implying lower expression in leu-
kocytes as lactation number increased (Fig. 2A,
Supplementary Table 3). The most significant GO terms
in the midnightblue module were all biological pro-
cesses: protein autophosphorylation, immune system
process, cell activation and regulation of cell-cell adhe-
sion. The darkred module had enrichment of biological
regulation and the molecular function term cell periph-
ery, while the orange module was mainly enriched with
genes involved in cilium and cilium organisation; RNA
processing and regulation of gene expression, and micro-
tubule organizing center.

Black module: down-regulated in leukocytes of PP cows

The black module was down-regulated in leukocytes of
PP (correlation of —0.25) and almost significantly up-
regulated in MP >3 (correlation of 0.24). Genes were
therefore more highly expressed in the older cows with
higher lactation numbers. GO enrichment analysis of
genes in this module (Fig. 2B, Supplementary Table 3)
showed that the most significant terms all related to cel-
lular components (membrane, vesicle, cytoplasm, extra-
cellular region and cell). Within the biological process
category single-organism process, monocarboxylic acid
metabolic process, small molecule catabolic process and
negative regulation of cellular process were significant.
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(See figure on previous page.)

indicate the r value: significance was taken at P=+ 0.25

Fig. 1 A Cluster dendrogram of 13,769 genes (individual black lines at top) clustered by their topological overlap dissimilarity scores. The multi-
coloured panel next to “Dynamic Tree Cut” shows 42 identified modules using the Dynamic Tree Cut algorithm. The second multi-coloured panel
shows 32 larger modules identified after highly correlated smaller modules were merged together (agreement of 0.8). B Number of genes per
module identified using WGCNA. C Module-trait correlations according to the parity of the cow: i) primiparous (PP, n =53), i) multiparous in
lactations 2-3 (MP 2-3, n=121), and iii) MP in lactations 4-7 (MP > 3, n = 55). Red, positive correlation, blue, negative correlation. Numbers

Yellow module: down-regulated in leukocytes of MP >3
cows

Lastly, the yellow module was significantly down-
regulated in leukocytes as lactation number increased
(MP > 3; correlation - 0.27). In this module IGF2BP3
(insulin like growth factor 2 mRNA binding protein
3) was the most highly correlated gene (Table 1).
Within this module the two cellular component
terms binding and nucleic acid binding transcription
factor activity were most highly represented, together
with three biological processes (regulation of gene ex-
pression, regulation of nitrogen compound metabolic
process and regulation of cellular macromolecule bio-
synthetic process) (Fig. 2A, Supplementary Table 3).

Functional annotation cluster analysis
The next stage of the analysis involved pooling all the
genes from the modules which were more highly

expressed in the PP cows (yellow, orange, midnightblue,
darkred, violet) and those which were more highly
expressed in the MP >3 cows (black and turquoise).
These two gene lists were then subjected to David func-
tional annotation cluster analysis [27]. All the results are
provided in Supplementary Table 4. The top six most
significant clusters in each category are summarised in
Table 2, with the genes in each of these clusters listed in
Supplementary Tables 5A and B.

Clusters 1, 2 and 3 from the modules which were posi-
tively correlated in the PP cows were all involved in the
regulation of gene transcription. Cluster 1 consisted al-
most entirely of 56 genes encoding zinc finger proteins.
The most significant term in Cluster 1 was Krueppel-as-
sociated box. All but five of the Cluster 1 genes were
included in the much larger Cluster 2 with 142 genes,
for which the most significant terms were Zinc-finger
and metal ion binding. Cluster 2 also contained all 18

Table 1 Top 20 genes with the highest differential expression between PP and MP > 3 cows. Positive fold change (FC), more highly
expressed in PP cows; negative FC (shaded), more highly expressed in MP >3 cows

Gene Symbol Gene name logFC adj.p.value
NELL2 neural EGFL like —1.581 1.40E-63
ZNF462 zinc finger protein 462 1.931 1.79E-38
PLCLT phospholipase C like 1 (inactive) 1.042 245E-37
IGF2BP3 insulin like growth factor 2 mRNA binding protein 3 2.268 6.36E-37
CNTNAPT contactin associated protein 1 1675 2.85E-35
SOX13 SRY-box transcription factor 13 1.925 8.17E-35
BLK BLK proto-oncogene, Src family tyrosine kinase 0.881 1.23E-32
MYBL1 MYB proto-oncogene like 1 -0.771 1.93E-32
CD163L1 CD163 molecule like 1 1463 6.55E-32
WNT5A Wnt family member 5A 2673 2.56E-31
SCRN1 secernin 1 1.129 5.03E-31
LOC515828 uncharacterised 1.207 6.12E-30
CSPG4 chondroitin sulfate proteoglycan 4 2.831 8.30E-30
DBN1 drebrin 1 0.942 1.95E-29
PTPRK protein tyrosine phosphatase receptor type K —3.301 2.00E-29
LAMA4 laminin subunit alpha 4 2.998 4.15E-29
TCAF1 TRPM8 channel associated factor 1 1.050 1.17E-28
LOC751811 WCT isolate CH211 1.389 2.85E-28
SOX4 SRY-box transcription factor 4 0.820 3.69E-28
LOC104969122 uncharacterised —-1.396 9.97E-28
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genes from Cluster 3, for which the three significant
terms were Transcription regulator SCAN, Retrovirus
capsid, C-terminal and SCAN. Cluster 4 contained 61
genes involved in nucleotide binding. Cluster 5 contained
31 genes for which the most significant term was BTB/
POZ fold. Finally, Cluster 6 contained 50 genes with the
most  significant term being Immunoglobulin-like
domain. Overall, this analysis shows that the most
significant functions which were more highly expressed
in the first lactation cows all related to the regulation of
gene transcription.

Turning to the genes which were more highly
expressed in the MP > 3 cows, Clusters 1, 2 and 3 were
all large clusters containing 471, 435, and 254 genes, re-
spectively, with quite general functions relating to the
cell surface, transport across it and signalling. In Cluster
1 the top three terms were Membrane, Transmembrane
helix and Transmembrane, in Cluster 2 they were Signal,
Disulfide bond and Glycoprotein and in Cluster 3 trans-
membrane region, topological domain: Cytoplasmic and
topological domain: Extracellular. The top term in Clus-
ter 4 was Glycolysis/Gluconeogenesis and this contained
27 genes, nearly all of which encoded enzymes involved
in the glycolytic pathway (Fig. 3).

The top term in Cluster 5 was C-type lectin fold, and
11 of the 25 genes in this cluster encoded C-lectins.
Finally, Cluster 6 contained 45 genes involved in
Immunity and Innate immunity. These are illustrated in
Fig. 4, which shows that they mainly encoded proteins
for pattern recognition receptors (PRR), the bovine
MHC complex, the complement system and several with
antimicrobial activity. Another noteworthy cluster which
was negatively related to lactation number was Cluster
16 (Supplementary Table 4). The top pathway in this

was Fatty acid degradation (P<0.0013). This cluster
contained a number of genes encoding enzymes in the
mitochondrial beta-oxidation pathway, which converts
fatty acids into acetyl CoA to enter the TCA cycle
(ACSLI, ACSL4, ACSLS, ACSL6, CPT1, CPT2, ACOXI,
ACADVL, ECHSI, ACADS, ACAAIL ACAT2, ACADS,
ACADVL). This implies greater use of this pathway to
supply energy in the leukocytes of the PP cows.

Comparison with other species

Finally, we investigated the overlap between genes signifi-
cantly associated with lactation number in leucocytes in
our study and 170 candidate genes identified from previous
studies of ageing in humans and model organisms (mainly
mice and C. elegans [18]). Almost one quarter of these can-
didate genes (38/170, 22.3%) were present in our list of
DEG, of which 14 and 24 respectively were from positive
and negative significantly correlated modules, indicating re-
duced or increased expression in older cows. Of these 16 of
the 38 DEG were previously identified as being age-related
in the human blood transcriptome ([18]; Table 3).

Those up-regulated in PP cows were mainly associated
with T-cell development and function (CCR7, CD27,
IL7R, CAMK4, CD28) and protein synthesis within the
mitochondria (MRPS27, MRPS9, MRPS31), and also in-
cluded WRN, a gene associated with premature ageing
in humans [36]. Those up-regulated in MP > 3 cows in-
cluded genes encoding proteins involved in immune de-
fence (LYZ, CTSZ, SREBFI, GRN, ANXA5 and
ADARBI).

Discussion
Livestock species are raised primarily for their economic
benefit to humans. Most dairy cows are culled before
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Table 2 Summary of the six most significant clusters obtained from DAVID functional annotation cluster analysis of the DEG in the
modules which were significantly positively or negatively correlated to lactation number in primiparous (PP) cows, indicating either

lower or higher gene expression in older multiparous MP >3 cows

Positive Modules

Negative Modules

Cluster 1: Enrichment Score: 16.18

« Krueppel-associated box

« Zinc finger C2H2-type/integrase DNA-binding domain
« Zinc finger, C2H2

« Nucleic acid binding

« Zinc finger, C2H2-like

- KRAB

« ZnF_C2H2

« Regulation of transcription, DNA-templated

« Metal ion binding

Cluster 2: Enrichment Score: 7.01

- Zinc-finger

« Metal ion binding
- Zinc

+ Metal-binding

Cluster 3: Enrichment Score: 6.83

- Transcription regulator SCAN
« Retrovirus capsid, C-terminal
-« SCAN

Cluster 4: Enrichment Score: 5.05

« Nucleotide binding

« Nucleotide-binding, alpha-beta plait
« RNA recognition motif domain

« RRM

Cluster 5: Enrichment Score: 2.02

- BTB/POZ fold
« BTB/POZ-like
- BTB

Cluster 6: Enrichment Score: 1.88

« Immunoglobulin-like domain
« Immunoglobulin-like fold

« Immunoglobulin subtype 2

« Immunoglobulin I-set

« Immunoglobulin subtype

- 1Ge2

- 1G

Cluster 1:Enrichment Score: 29.73

« Membrane

- Transmembrane helix

« Transmembrane

- integral component of membrane

Cluster 2: Enrichment Score: 19.87

- Signal

- Disulfide bond

« Glycoprotein

- Signal peptide

« Glycosylation site: N-linked (GIcNAc..)
- Disulfide bond

Cluster 3: Enrichment Score: 7.32

- Transmembrane region
« Topological domain: Cytoplasmic
- Topological domain: Extracellular

Cluster 4: Enrichment Score: 3.94

« Glycolysis / Gluconeogenesis
« Glycolysis

« Glycolytic process

« Carbon metabolism

« Biosynthesis of amino acids

Cluster 5: Enrichment Score: 3.70

+ C-type lectin fold

+ C-type lectin-like

+ C-type lectin

- CLECT

+ C-type lectin, conserved site

Cluster 6: Enrichment Score: 3.28

« Immunity
« Innate immunity
« Innate immune response

they reach the end of their potential lifespan due to poor
milk production or fertility and/or an increased preva-
lence of diseases such as those causing mastitis or lame-
ness [3, 8, 9]. Various cow longevity indexes have been
defined, some of which also take account of lifetime milk
production, which is in turn affected by both the milk
yield capacity and the number of lactations achieved [3].
The main focus of previous studies into longevity in
cows has been to increase the average survival time in
the milking herd, so improving the profitability of the
dairy industry. For example, one genome wide associ-
ation study (GWAS) which investigated longevity found
genes such as NPFFR2, previously identified as a

candidate gene for mastitis resistance and two zinc fin-
ger proteins (ZNF613, ZNF717), which have been associ-
ated with calving difficulties [37]. Information about the
age-related morbidities and causes of death that afflict
cattle due to natural ageing is, however, limited. In con-
trast, there is a growing body of previous work into the
underlying causes of cellular ageing which has been
based on studies of human populations and model
organisms.

This study is the first, to our knowledge, to assess
changes in the global gene expression in leukocytes of
dairy cows associated with increasing lactation number.
For this we compared first lactation PP cows versus
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older multiparous MP >3 cows using WCGNA analysis
in order to identify potential genes and related pathways
involved in the ageing process. The blood samples were
all collected in early lactation, a time when lactating
cows are placed under metabolic stress due to the nutri-
ent requirements of milk production [11, 38] but none
are pregnant. These aspects improved comparability be-
tween samples but meant that we did not include any
data from younger growing heifers of < 2 years. The gen-
eral aim of most dairy farmers is to calve animals for the
first time at 2 years of age and then to achieve an annual
calving interval, although in practice these targets are
rarely met [39]. Although we did not record the exact
ages of the cows in this study, the expectation would be
for the PP cows to have been between 2 and 2.5 years
old, the MP2-3 between 3.5—6 years old and the MP > 3
(which were in lactations 4—7) would have been between
6 and 10years old. In most countries worldwide, dairy
cow longevity has declined over the past 50 years and
has been negatively related to the rise in milk yields
achieved over the same period [3]. Despite the many dif-
ferences in physiology, lifestyle and lifespan between
species, many of the genes and pathways identified in
our study as being associated with increased lactation
number in dairy cows were nevertheless the same as
those highlighted in previous studies of ageing in other
species [18-20, 23].

All the samples analysed were whole blood leukocytes.
In dairy cows the average leucocyte population is be-
tween 5 and 12 cells per ml of blood, predominantly

consisting of lymphocytes and neutrophils [40]. The
blood does, however, also contain natural killer cells,
platelets, peripheral blood mononuclear cells (PBMC),
eosinophils, and basophils. These different cell types all
vary in both their basal gene expression and their tran-
scriptional amplification responses to particular stimuli
[41]. Furthermore, many aspects of the immune system
alter during ageing, eventually leading to immunosenes-
cence [24]. During this process different immune cell
subsets are affected in different ways [17]. There is also
an increase in baseline systemic inflammation with age,
termed “inflammaging” [42, 43]. This may arise as a re-
sult of multiple mechanisms, including the accumulation
of misfolded proteins, impaired clearance of senescent
cells and obesity. Most individual leukocytes have a
short lifespan in the circulation, measured in days or
weeks, before they are destroyed by the lymphatic sys-
tem, although there is a small pool of long-lived T and B
lymphocytes which can survive for years, providing im-
munological memory. In humans, the relative abundance
of naive T-cells decreases with chronological age while
the population of memory T-cells increases [18, 44, 45].
Another possible source of variation in our analysis was
the potential differences between herds, but this was
accounted for by removing the batch effect in the
WGCNA. Two of the six herds also fed three different
lactational diets. Although these did influence cow me-
tabolism this was not yet apparent at Day 14 when the
samples used in the present study were collected. A
comparison of the transcriptome in PBMC collected
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Fig. 4 David functional annotation Cluster 6 contained genes involved in immunity which were more highly expressed in MP >3 vs PP cows.
This included genes encoding proteins for pattern recognition receptors (PRR), the bovine MHC complex, the complement system and several
with antimicrobial activity. NRROS and TNFAIP8L2 can both act as negative regulators of TLR signalling mediated via inhibition of

NF-kappa-B activation
.

from the same UK herd failed to detect any DEG attrib-
utable to diet at this time [46].

The leukocyte transcriptome thus provides a reflec-
tion of the basic functions required for cell survival to-
gether with the various responses of the different cell
types to the changing environment within the body,
which alters with key factors such as disease exposure
and nutrition. Cells may proliferate, undergo apoptosis
or migrate to or from tissues into blood in response to
different signals [47]. The changes reported here which
were associated with lactation number will, to some ex-
tent, reflect altered abundance of different cell types as
well as their changing expression patterns. Despite this
caveat, many previous studies have now reported that
transcriptional signatures of whole blood can reliably
differentiate individuals with a variety of infections, for
example Johne’s disease (Mycobacterium avium subsp.
Paratuberculosis) in cattle [48]. Our analysis also bene-
fitted from the use of WGCNA, which identifies net-
works of co-expressed genes whose expression is highly

correlated. The use of whole blood also avoided the pit-
fall of potential artefacts which can be induced during
cell separation procedures and provided greater
consistency in a multi-site study.

Previous work based on studies of human populations
and model organisms has identified a number of tran-
scriptional signatures for cellular ageing which occur re-
peatedly across different tissues and organisms and
which segregate into six main groups [24, 49]. In brief
these are: i) downregulation of genes encoding mito-
chondrial proteins; ii) downregulation of the protein syn-
thesis machinery (including ribosome biogenesis); iii)
dysregulation of immune system genes, immune senes-
cence; iv) reduction in growth factor signalling; v) con-
stitutive responses to stress and accumulated DNA
damage, and vi) dysregulation of processes regulating
gene expression and mRNA processing (transcription
and translation). We have obtained evidence that all of
these were associated with lactation number within our
population of cows.
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Table 3 List of genes overlapping candidate age-related genes found in humans and with differential expression between PP

(highly expressed) and MP > 3 (highly expressed) cows

Gene Module Description Reference
name
PP CCR7 darkred Control the migration of memory T cells to inflamed tissues, as well as stimulating dendritic cell [28]
maturation
Ccb27 midnightblue Required for generation and long-term maintenance of T cell immunity [28]
FOXO1  midnightblue Transcription factor which may play a role in myogenic growth and differentiation [29]
IL7R midnightblue Plays a critical role during lymphocyte development (age and longevity expression association) [30]
CAMK4  midnightblue Implicated in transcriptional regulation in lymphocytes, neurons and male germ cells (longevity [31]
genetics candidate)
CD28 midnightblue Essential for T-cell proliferation and survival, cytokine production, and T-helper type-2 development [28]
WRN yellow RecQ helicase important in the maintenance of genome stability. Mutations cause Werner syndrome [32]
(premature ageing)
MRPS27  yellow Mitochondrial ribosomal protein assisting protein synthesis within the mitochondrion (mitochondrial [33]
ageing)
MRPS9  yellow Mitochondrial ribosomal protein assisting protein synthesis within the mitochondrion (mitochondrial [33]
ageing)
MRPS31  orange Mitochondrial ribosomal protein assisting protein synthesis within the mitochondrion (mitochondrial [33]
ageing)
MP > SREBF1  black Transcription factor involved in sterol biosynthesis [29]
3 ANXAS5  turquoise Potential role in cellular signal transduction, inflammation, growth and differentiation [34]
LYz turquoise Antimicrobial peptide [34]
CTsz turquoise Lysosomal cysteine protease with role in immune defense [34]
ADARB1  turquoise Enzyme in the A (adenosine) to | (inosine) RNA editing pathway, involved in a general maintenance of ~ [35]
cellular health (longevity genetics candidate)
GRN turquoise Granulin precursor protein which regulates cell growth. Also, co-ordinates CpG trafficking to TLR9, pro-  [34]

moting activation of signalling cascade

Mitochondria and oxidative stress

Mitochondria regulate a multitude of different metabolic
and signalling pathways and also play an important role
in programmed cell death [50]. Oxidative metabolism
causes endogenous production of free radical molecules
and oxidative damage accumulates in multiple tissues
and species with age [49]. For example, accumulated
mutations in somatic mitochondrial DNA (mtDNA) and
respiratory chain dysfunction were associated with age-
ing in mice [51]. In our study, genes encoding proteins
involved in fatty acid beta-oxidation were more highly
expressed in leukocytes in PP cows. There were also
changes in expression of genes encoding mitochondrial
ribosomal proteins, with higher expression of MRPS9,
MRPS27 and MRPS31 in leucocytes of PP cows whereas
MRPL17 and MRPL38 showed enriched expression in
MP > 3 cows.

Protein synthesis

Protein homeostasis is essential to maintain protein
structure and function, but the control of this process
declines during ageing [49]. In our study, GO enrich-
ment analysis of all the genes in the violet module,
which were more highly expressed in the first lactation

cows, revealed their involvement in protein autophos-
phorylation and catalytic activity (enzyme activity).
Autophosphorylation is a type of post-translational
modification of proteins. In eukaryotes, this process oc-
curs by the addition of a phosphate group to serine,
threonine or tyrosine residues within protein kinases,
normally to regulate the catalytic activity. Genes in-
volved in regulation of nitrogen compound metabolic
process were identified in the yellow module as being
down-regulated in the older MP > 3 cows. Maintenance
of the proteome is essential to enable cells to respond
appropriately to their environment. This requires correct
synthesis and assembly of proteins and is controlled by
molecular chaperones and clearance mechanisms which
help to prevent protein misfolding and the associated
accumulation of toxic aggregates. The efficiency of this
process declines with age and has previously been
associated with both metabolic and immunological
diseases [49, 52].

Immune system

As we were studying a leukocyte population, changes in
gene expression relating to immune function were ex-
pected. As animals age they are exposed to an increasing
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variety of disease causing microorganisms, while a pro-
gressive loss of function of the immune system increases
their vulnerability to infection [25]. Notable age-related
changes within the immune cell population include re-
duced cytokine signalling, diminished production of ni-
tric oxide and peroxide, decreased phagocytic ability and
reduced ability of dendritic cells to migrate and process
antigens [17]. Our results are in accord with the study
by Peters et al. [18], who investigated leucocytes from
ageing human populations, in finding pathways which
were either up- or down-regulated with increasing age.
The GO term immune system process was enriched in
both PP and MP > 3 cows, with genes involved in adap-
tive immunity up-regulated in the PP cows (FYN, ITK,
LCK, etc) and genes related to innate immunity up-
regulated in MP >3 cows (CTSS, CTSH, IRAK2, TLR2,
etc). The black module was down-regulated in the PP
cows and contained genes involved in the regulation of
cytokine secretion (IL10, CD14, FGR, IL17RC). Expres-
sion of genes in the turquoise module increased in older
cows, containing genes involved in neutrophil degranu-
lation and innate immune system. The darkred and
midnightblue modules were both more highly expressed
in the PP cows and contained the terms disease and
immune system.

There was also a significant overlap between the DEG
with immune functions identified in our population of
cows and candidate age-related genes in the human
transcriptome [18]. Those up-regulated in PP cows were
mainly associated with T-cell development and function
(CCR7, CD27, IL7R, CAMK4, CD28) while those up-
regulated in MP >3 cows included genes encoding pro-
teins involved in immune defence. Of these LYZ encodes
lysozyme, an antimicrobial peptide, CTSZ encodes ca-
thepsin Z a lysosomal cysteine protease with multiple
roles in host immune defense mechanisms, SREBFI en-
codes a transcription factor involved in TLR4 signalling,
while GRN encodes granulin, involved in TLRY signal-
ling, ANXAS5 is involved in T-cell activation and
ADARBI encodes a deaminase enzyme with A-to-I RNA
editing activity, which is important for the maintenance
of cellular health but may also play a role in response to
viral infection. The results from our study therefore sug-
gest that the higher lactation number cows are more ac-
tively engaged in combatting disease pathogens through
activation of the innate immune system and also support
a higher level of inflammation with ageing. Parturition is
itself an inflammatory process and, in addition to higher
rates of infectious diseases including mastitis and metri-
tis, older cows are also more vulnerable to metabolic dis-
orders including milk fever, ketosis and displaced
abomasum after calving. The prevalence of all of these
metabolic diseases increased significantly in cows which
were > 5 lactations [53]. Our previous study showed that
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metabolic disorders led to prolonged uterine inflamma-
tion by up-regulating the genes and pathways related to
immune and inflammatory processes [15].

Growth factor signalling

The relationship between ageing and metabolic regula-
tion is bidirectional, as ageing impairs the activity of key
metabolic signalling pathways and the ensuing metabolic
dysregulation results in accelerated ageing [19]. Cell sig-
nalling pathways that sense the availability of nutrients
and the energy status of the cells communicate with hor-
monal and growth factor signalling pathways to co-
ordinately regulate whole body metabolic homeostasis.
Ageing results in a gradual deterioration of various cellu-
lar functions including metabolic regulation [54]. The
turquoise module was the second highest correlated
module with lactation number, containing genes more
highly expressed in MP > 3 cows. The insulin-like growth
factor binding protein pathway was indeed enriched with
genes like INSR, IGFIR, IGF1, LDLR, HTRA1, IGFBP7
etc. (Cluster 8; Supplementary Table 4). The latter path-
way is interlinked with metabolic pathways to ensure co-
ordinate regulation and fine-tuning of cellular metabolic
responses in line with cellular energy status, nutrient
availability and hormonal/growth factor signalling input
[54]. We have shown previously that circulating IGF1
concentrations are significantly lower in PP compared
with MP cows, falling to a lower nadir in the first week
after calving [14].

Stress and DNA damage

Accumulation of genetic damage represents one of the
major contributions to ageing of cells and organisms.
Cellular DNA is constantly exposed to exogenous and
endogenous DNA-damaging agents like reactive oxygen
species, nitric oxide metabolites, and alkylating agents
[55] leading to accumulation of mutations in the genome
aggravated by loss of capacity in the DNA repair systems
[56]. DNA damage is tightly linked to various ageing
stresses, such as oxidative stress, telomere shortening,
inflammation, irradiation, exposure to chemicals, and
mitotic stress [57]. This is supported by a recent study
which took repeated measurement of the relative
leukocyte telomere length in a dairy herd. Higher rates
of telomere attrition in individual cows was predictive of
a shorter productive lifespan, suggesting a link between
telomere loss and health [58].

In our dataset, NELL2 was the gene most highly corre-
lated with lactation number in the turquoise module and
was also overall the most differentially expressed gene
between the PP and MP > 3 cows, with greater leucocyte
expression in the older animals. The encoded protein
Neural EGFL Like 2 is highly conserved in mammals
and is a glycoprotein containing several von Willebrand
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factor C and epidermal growth factor (EGF)-like do-
mains. This has a variety of possible roles but amongst
these a cell survival-promoting effect mediated by an
intracellular mitogen-activated protein kinase (MAPK)
pathway has been relatively well studied in neural tissues
[59, 60]. NELL2 is also important in protecting cells
from death caused by endoplasmic reticulum (ER) stress
resulting in the accumulation of unfolded proteins which
trigger the unfolded protein response. Within this con-
text, overexpression of NELL2 decreased expression of
ER stress-induced C/EBP homologous protein (CHOP)
and the pro-apoptotic caspases 3 and 7 while increasing
expression of ER chaperones and anti-apoptotic Bcl-xL
[61].

Another relevant gene to consider is MTOR, which en-
codes Mechanistic Target of Rapomycin, a protein be-
longing to a family of phosphatidylinositol kinase-related
kinases which mediate cellular responses to stresses such
as DNA damage and nutrient deprivation. This gene is a
central regulator of metabolic homeostasis and is associ-
ated with lifespan in many species [62, 63]. MTOR is a
component of two distinct complexes of which
mTORCI1 controls protein synthesis, cell growth and
proliferation. Genes which are part of the MTOR path-
way include the transcription factors FOXOI1 and
FOXPI. A GWAS for longevity, based on a population
of Holstein cows, previously identified a region on Btal6
containing MTOR [64]. In our study FOXPI expression
was positively related to increasing lactation number,
whereas FOXOI expression was negatively related. Also,
of potential relevance here is the opposing roles of these
two FOX genes in the regulation of glucose homeostasis,
through competition in binding to the insulin response
element in gene promoters. Up-regulation of FOXPI in
mice inhibited the hepatic expression of key gluconeo-
genic genes, including PGC-1a, PEPCK and G6PC [65].
LAMTORI, -2 and -3 all also featured in the list of
DEG which were negatively related to lactation number
in our study. These genes encode late endosomal/lyso-
somal adaptor, MAPK and MTOR activator-1, - 2 and -
3 respectively, all subunits of the Ragulator complex.
This functions as a lysosome anchor, which recruits Rag
GTPase and its associated mTORC1 complex to the
lysosomal surface prior to MTOR activation [66].

Regulation of gene expression

The control of gene expression becomes more dysregu-
lated with cellular ageing. A large number of genes and
pathways identified in this study are involved in regula-
tion of gene expression. The violet module was the most
highly correlated with lactation number and contained a
group of genes involved in transcriptional regulation in-
cluding ZNF462, SOX13, and SOX4, all of which fea-
tured individually in the top 20 genes whose expression
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was most highly correlated with age (Table 1). Genes in
the orange module were more highly expressed in PP
cows and this module was enriched with genes involved
in gene expression (CHTOP, CPSF6, THOCI1, UPF3B,
etc.) and metabolism of RNA (AMDHDI, SRSF2, SRSF4,
SRSFS, etc.). In the yellow module IGF2BP3 was down-
regulated in the older cows and was the most highly cor-
related gene. IGF2BP family members were initially
identified as post-transcriptional regulators of IGF2.
They are RNA-binding proteins which direct nuclear
RNA export and translation/degradation rates, so play-
ing a major role as regulators of the RNA life cycle.
IGF2BP3 has recently risen to prominence as a potential
oncogene [67]. Other genes in this module were also
grouped under regulation of gene expression (TGFB3,
NEUROG?2, ZNF554, etc.). The yellow module also con-
tained the gene WRN, which exhibited lower transcript
abundance in MP >3 cows. A mutation in this gene in
humans causes Werner Syndrome, an autosomal reces-
sive disorder characterized by the premature develop-
ment of ageing features. The encoded protein is a
member of the RecQ family of proteins and is involved
in DNA replication and repair, and telomere mainten-
ance, so playing a crucial role in genome stability [36].
Expression of WRN was similarly reduced in leucocytes
of older humans [18]. ADARBI was another candidate
gene from previous studies which was up-regulated in
the older MP >3 cows. It encodes a deaminase enzyme
with A-to-I RNA editing activity, was previously identi-
fied in a study of men aged 90-119 years, and is also as-
sociated with longevity in C. elegans [35].

Metabolism

One key difference between PP and MP >3 is that milk
production potential in dairy cows increases with age [5].
The liver coordinates the extensive metabolic changes re-
quired for milk production and these are reflected in cir-
culating metabolite concentrations [11, 38]. Milk synthesis
has a high requirement for glucose. In ruminants this de-
mand is met almost exclusively through hepatic gluconeo-
genesis and cows are at risk of glucose insufficiency
during early lactation, the time period we investigated
[16]. NEFA are released from lipid stores as an alternative
energy source and are either used by the udder to provide
milk triglycerides, fully oxidized in the liver to provide en-
ergy, or partially oxidised resulting in the production of
ketone bodies, in particular BHB. Circulating BHB con-
centrations are thus an index of fatty acid oxidation and
concentrations are significantly higher in older cows [12].
BHB, NEFA and glucose concentrations can all influence
leukocytes directly. Immune cells require an adequate
supply of nutrients including glucose to mount an effect-
ive immune defense [68]. Neutrophils from cows with
more elevated NEFA and BHB concentrations after
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calving had reduced expression of genes important for
granulocyte recruitment, IFN signaling and apoptosis [69].
This suggested that neutrophil survival time was longer in
the circulation when exposed to pro-inflammatory condi-
tions. Another study of the circulating leucocyte transcrip-
tome in early lactation found that expression of genes in
KEGG pathways relating to DNA replication, cell cycle,
homologous recombination, base excision repair, and val-
ine, leucine, and isoleucine biosynthesis were all inhibited
as plasma BHB increased, whereas genes involved with
vitamin metabolism, the endocrine system, signalling mol-
ecules and the immune system were activated [70].

In this study genes in both black and turquoise mod-
ules were negatively significantly correlated to cow parity
and David functional annotation cluster analysis found
enrichment of the terms fatty acid metabolism and gly-
colysis. Interestingly, we found that the majority of 27
genes in Cluster 4, with higher expression in MP >3
cows, were involved in the Glycolysis/Gluconeogenesis
pathway (Fig. 3). Although the underlying metabolic
background is very different, up-regulation of a small
cluster of genes relating to “Fatty acid metabolism, per-
oxisome activity” was also associated with ageing in the
human blood transcriptome [18].

Other key genes associated with lactation number
Within the violet module LAMA4 was the most highly
correlated gene overall, with greater expression in the PP
cows. This encodes a subunit of laminin, part of the family
of extracellular matrix glycoproteins which form the major
non-collagenous constituent of basement membranes.
Laminin is thought to mediate the attachment, migration
and organization of cells into tissues by interacting with
other extracellular matrix components, suggesting that
these activities may be reduced in older cows. There is a
second MTOR complex mTORC?2, which acts as a regula-
tor of the actin cytoskeleton. This is a network of actin
and actin binding proteins which are important for a
range of essential cellular processes including organelle
transport, cell migration, phagocytosis, and cell cycle pro-
gression. This is in agreement with the blood transcrip-
tomic study in humans [18] in which expression of a
cluster of genes relating to the actin cytoskeleton and focal
adhesion also increased with ageing (ACTA2, ACTN4,
CSRPI, ILK, LPP, TAGLIN, TLNI, VCL and WDRI). In
contrast, ARHGAP15 was more highly expressed in youn-
ger cows (this study) and in humans [18]. This gene en-
codes Rho GTPase activating protein 15 which is involved
in T- and B-cell signalling and promotes an increase in
actin stress fibres and cell contraction [71].

Conclusions
The samples collected for this study provided the oppor-
tunity to analyse the transcriptomic profile of blood
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leukocytes in a large number of early lactation cows and
we were thus able to capture the complex and tempor-
ally dynamic biological pathways which alter as cows
age. We have, we believe for the first time, identified
genes and pathways associated with increasing lactation
number in cows and found that many were comparable
to those known to be associated with ageing in humans
and model organisms. Immune-related pathways were
differentially expressed between primiparous and older
cows, including genes involved in innate and adaptive
immunity, with many immune defence genes being more
highly expressed in MP >3 animals. In addition, we
found changes in mitochondrial and metabolic function,
ribosome biogenesis, transcriptional regulation and
DNA replication, elongation and repair. Pathways sup-
plying leukocytes with energy changed in cows with dif-
ferent lactation numbers, with increased expression of
genes encoding enzymes involved in beta-oxidation of
fatty acids in the PP cows whereas genes involved in gly-
colysis were up-regulated in the older cows. These
changes may be particularly relevant to understanding
how dairy cows respond to metabolic stress during early
lactation, when they are short of energy and there is
competition for nutrient supply between the demands of
milk production and the need for immune defence. An
improved understanding of these processes may help
dairy farmers to improve both genetic selection and nu-
tritional management to increase longevity, so benefit-
ting agricultural production and animal welfare.

Methods

GPlusE study design and sample collection

The samples used in this study were collected as a part
of the Genotype plus Environment (GplusE) FP7-Project
(http://www.gpluse.eu). The animals were located on six
experimental dairy farms belonging to members of the
consortium (Supplementary Table 1). One 3 ml blood
sample from each cow was drawn from the tail vein into
a Tempus blood collection tubes (Thermo Fischer, UK)
in early lactation, at around 14 days after calving and
stored at —20°C. This sample was taken with the in-
formed consent and ethical approval of the organisations
involved and complied with the relevant national and
EU legislation under the European Union (Protection of
Animals used for Scientific Purposes) Regulations 2012
(S.I. No. 543 of 2012). All cows were subsequently re-
leased back into the herd. Details of the management of
each herd and their average milk yields over the first 50
days in milk are provided in Krogh et al. [72].

A total of 229 adult Holstein Friesian cows ranging be-
tween parities 1 and 7 were recruited. These were subse-
quently divided into three lactation number groups for
analysis: i) primiparous (PP, n =53), ii) multiparous in
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lactations 2—-3 (MP 2-3, n=121), and iii) MP in lacta-
tions 4—7 (MP > 3, n = 55).

RNA isolation, library preparation, and sequencing

The individuals performing the sample processing were
blinded to the lactation groups. Total RNA was isolated
from whole blood leukocytes using the Tempus Spin
RNA isolation Kit (Thermo Fischer, Loughborough, UK)
following the manufacturer’s instructions. Sample purity
and RNA quantity were measured using both a Nano-
Drop 1000 (Thermo Fischer, UK) and an Agilent BioA-
nalyzer 2000 using the Agilent RNA 6000 Nano Kit
(Agilent, Cheadle, UK; Supplementary Table 6). No sam-
ples were excluded based on RNA quality. Library prep-
aration was conducted at the University of Liege (GIGA
Research Facility, Liege, Belgium), using 0.75 pg of total
RNA with the Ilumina TruSeq Stranded Total RNA
Ribo-Zero Gold Sample Preparation kit (Illumina, San
Diego, USA) and sequenced on the Illumina NextSeq
500 sequencer, producing on average 30 million single
end reads of 75 nucleotides length per sample.

Transcriptomic analyses

Reads with poor quality were trimmed or removed ac-
cording to base quality using Trimmomatic v.0.36 [73].
The quality of raw and trimmed FASTQ files was
assessed with FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). The latest version of
the Bos taurus assembly (ARS-UCD1.2), and its corre-
sponding gene set, was used as reference to map reads
using the splice aware aligner HISAT2 [74]. Next, SAM
files were converted to BAM files and coordinate sorted
with SAMtools [75]. BAM files were processed further
with Picard Tools (http://picard.sourceforge.net/) in
order to remove PCR duplicates, add read group infor-
mation, sort by chromosome and create indexes. Reads
per gene were counted with StringTie [76].

Differential leukocyte gene expression analysis be-
tween the three lactation number groups was conducted
with the package DESeq2 [77]. Herd effect was consid-
ered and removed using limma remove batch effect
(limma:removeBatchEffect; Supplementary Fig. 3).
Weighted gene co-expression network analysis
(WGCNA, R package [78]; was used to construct a co-
expression network on the DESeq2 normalized data.
WGCNA follows a 6-step process to predict which genes
are connected to each other, cluster them into gene net-
works and test which gene networks are associated with
phenotypic status, leading to the selection of hub genes.

Genes with variance <0.05 were filtered out, and the
results (total of 13,769 genes) were used as input to the
signed WGCNA network construction. We generated a
“signed weighted” adjacency matrix for downstream ana-
lyses in which the direction of a pair of genes’
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correlation is preserved, and a positive correlation may
indicate “activation” whereas a negative correlation may
indicate “repression”. The adjacency matrix reported a
correlation value between every pair of gene expression
measurement across all 229 samples. The next step was
to raise the adjacency matrix to a software-determined
exponential power, thereby reducing noise by pushing
weaker pairwise connection values closer to zero relative
to stronger values. The exponential power used is the
lowest value needed to ensure the network approximates
scale-free topology and was set to seven. The adjacency
matrix was then transformed into a “topological overlap”
matrix by calculating topological overlap (TOM) scores
for each gene. This score accounts for each pair of
genes’ connection strength (adjacency value) to each
other as well as their connection strengths (adjacency
values) to every other gene in the adjacency matrix.
WGCNA identifies gene co-expression networks via
average linkage hierarchical clustering using a TOM-
based dissimilarity measure as a measure of distance.
The resultant dendrogram of clustered genes is segre-
gated into individual modules with at least 35 genes
using WGCNA’s dynamic tree-cutting algorithm.
WGCNA calculates each module’s “eigengene” (first
principle component), using all samples’ gene expression
values for all genes in that module. A module eigengene
is considered a summarized expression profile represen-
tative of that module for all samples. Finally, each mod-
ule eigengene was tested for statistical association to the
phenotypic trait of lactation number (PP, MP2-3 and
MP > 3).

Cattle genes based on the Ensembl v.100 database
were retrieved using the Ensembl BioMart online tool
[79] and gene ontology (GO) analysis was performed
using genes found in significantly correlated modules to
trait. Moreover, a David functional annotation cluster
analysis [27] was performed; all 13,769 genes were used
as background against all significantly correlated
modules.
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