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Abstract. Serially connected robots are promising candidates for performing tasks

in confined spaces such as search and rescue in large-scale disasters. Such robots

are typically limbless, and we hypothesize that the addition of limbs could improve

mobility. However, a challenge in designing and controlling such devices lies in the

coordination of high-dimensional redundant modules in a way that improves mobility.

Here we develop a general framework to discover templates to control serially connected

multi-legged robots. Specifically, we combine two approaches to build a general shape

control scheme which can provide baseline patterns of self-deformation (“gaits”) for

effective locomotion in diverse robot morphologies. First, we take inspiration from a

dimensionality reduction and a biological gait classification scheme to generate cyclic

patterns of body deformation and foot lifting/lowering, which facilitate generation of

arbitrary substrate contact patterns. Second, we extend geometric mechanics, which

was originally introduced to study swimming in low Reynolds number, to frictional

environments, allowing identification of optimal body-leg coordination in this common

terradynamic regime. Our scheme allows the development of effective gaits on flat

terrain with diverse number of limbs (4, 6, 16, and even 0 limbs) and backbone

actuation. By properly coordinating the body undulation and leg placement, our

framework combines the advantages of both limbless robots (modularity and narrow

profile) and legged robots (mobility). Our framework can provide general control

schemes for the rapid deployment of general multi-legged robots, paving the way toward

machines that can traverse complex environments. In addition, we show that our

framework can also offer insights into body-leg coordination in living systems, such as

salamanders and centipedes, from a biomechanical perspective.
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Introduction

Robots with different numbers of limbs have different advantages. Quadrupeds are

known for their agility [1], whereas hexapods and myriapods for their stability [2, 3],

and limbless robots for their ability to fit into confined spaces [4]. But robots with

increasing complexity and numbers of degrees-of-freedom (DoF) present challenges in

motion coordination, which if not addressed, may render them unusable. Furthermore,

the diversity of shape and form makes it challenging to transfer control insights gained

from one platform onto another. We are left with limited intuition and physical

understanding of how to coordinate the many DoF in diverse and complex robots to

generate effective locomotion.

To address the growing need to control robots with different shapes, modular robot

control strikes a balance between encompassing a variety of shapes while still being

able to precisely control them [5, 6]. Modular robot control has been successfully used

in serially connected limbless robots where a single control principle can be applied in

robots with different sizes [7]. In contrast, the study of modular control in general multi-

legged robots has been limited. The challenge in serially connected multi-legged robots

lies not only in designing the stepping patterns of legs, but also in the coordination

between the body and legs. For example, in robots that combine limbs and body

undulation, if stepping patterns and body undulations are not properly coordinated,

limbs can interfere with each other, resulting in reduced locomotor performance,

instability, or even failure [8, 9].

We would like to develop control schemes to generate effective periodic “self-

deformation patterns”‡ for the general class of serially connected legged and limbless

robots. Over the past decades, many techniques (e.g., gait generation [10, 11], central

pattern generators [12, 13], nearest limb synchronization [14], and learning methods

[1, 15]) have been developed, each of which can control some specific robot type

[3, 16, 17, 18, 12]. In this paper, we take inspiration from living systems: organisms with

diverse numbers of appendages and body plans exhibit effective locomotion on almost

all terrestrial environments [19, 20, 18] by making/breaking the ground contact with

limbs (e.g., salamanders) and bodies (e.g., sidewinders) in conjunction with waves of

undulation.

One method used over the last century to understand legged locomotion is a

classification scheme called “Hildebrand diagrams”. In 1965, Hildebrand [21] developed

schemes to study symmetric gaits§ observed in quadrupedal animals (e.g., horses). These

gaits have two key variables: duty factor, the fraction of a period that each leg is on the

ground over a full gait cycle, and lateral phase lag, the fraction of a period that the hind

leg leads the foreleg on the same side. Both key variables are modulated in response

to speed changes in biological [22, 23, 24]. Using these gait principles as a reference,

a multitude of algorithms have been developed for quadrupedal robot locomotion or

‡ We consider self-deformation patterns as relative movement of body and limb elements
§ In symmetric gaits, the contralateral (left and right pair) of legs are 180◦ out of phase.
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to explain why living quadrupeds choose certain gaits [25, 26, 27, 28, 29, 30]. But

thus far, these gait principles have not been applied to robots with more than four

appendages. For multi-legged robots, there is a lack of a systematic gait description

framework that allows us to modulate the balance between locomotion metrics such as

speed and stability.

In animals and increasingly in robots, appendages that make direct contact with

substrates are not the sole contributor to locomotion. Undulatory body motions play

an important role in generating propulsive forces in many systems [31, 19, 32, 33]. For

undulatory locomotors, the geometric mechanics community [34, 35, 36, 37, 38, 39,

40, 41] has developed a gait design framework to prescribe self-deformations of systems

immersed on continuous media, such as 3-link robots, lizards, and snakes [42, 38, 17];

and in discontinuous settings, including sidewinders [43, 44]. While mathematically

elegant, geometric mechanics has limitations. In particular, it is not directly applicable

to systems with a large number of appendages. Furthermore, despite some recent

efforts [42, 45], application of geometric mechanics in frictional environments (e.g., rate-

independent Coulomb dry friction) has not been systematically studied. Therefore, we

must develop dimensionality reduction and physical modelling methods before we can

use geometric mechanics to design gaits for serially connected multi-legged robots.

In this paper, we integrate dimensionality reduction techniques with tools from

geometric mechanics to develop locomotion control schemes for serially connected

robots. We first extend the Hildebrand gait classification scheme to prescribe a wide

range of contact patterns (the sequence of making/breaking contacts with environments)

using the classical Hildebrand parameters (duty factor and lateral phase lag). We use the

extended Hildebrand scheme to reduce dimensionality and prescribe body undulation as

a traveling wave. In doing so, we can apply geometric mechanics to coordinate the lateral

body undulation and the limb contact patterns. We evaluate gait performance based

on speed and static stability, and investigate the relationship between these metrics and

the Hildebrand parameters. We demonstrate our motion control framework on robots

with four (quadrupedal), six (hexapod), 16 (myriapod-like), and even zero (snake-like)

limbs (Fig. 1). Our analysis reveals empirical rules to balance the trade-off between

speed and static stability, and the potential benefit of body undulation in multi-legged

robot locomotion.

Moreover, by properly coordinating lateral body undulation and leg movement, our

framework leverages advantages from both legged and limbless robots. Specifically, our

framework facilitates centralized control of serially connected multi-legged robots by

introducing waves in both limb contact and lateral body undulation. With properly

coordinated lifting and landing body segments, our framework can also improve the

mobility of limbless robots by giving insights into coordination and trade-offs of stability

and speed in serially connected multi-legged robots. In this way, our framework offers the

potential to modulate gaits for different tasks by switching between fast gaits and stable

gaits. Further, we show that our scheme can generate control hypotheses for diverse

living systems including salamanders and centipedes, thereby offering new insights on
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the functional role of body-leg coordination from a biomechanical and robophysical

perspective.

Hildebrand Gait Prescription

Related work

In the Hildebrand gait formulation [21], symmetric quadrupedal gaits are categorized

by two parameters: The duty factor represents the fraction over a gait period that each

leg is on the ground, and the lateral phase lag represents the fraction over a gait period

that the hind leg leads the foreleg on the same side. There are three major assumptions

in the Hildebrand symmetric gait family: (1) the duty factor of each leg is the same,

(2) the pairs of contralateral legs are 180◦ out of phase, and (3) the lateral phase lag is

the same for left and right legs.

We use a binary variable c to represent the contact state of a leg, where c = 1

represents the stance phase and c = 0 represents the swing phase. The contact pattern

of symmetric quadrupedal gaits can be written as

cFL(ϕc) =

{
1, if mod(ϕc, 2π) < 2πD

0, otherwise

cFR(ϕc) = cFL(ϕc + π)

cHL(ϕc) = cFL(ϕc + 2πΦlat)

cHR(ϕc) = cFL(ϕc + 2πΦlat + π) (1)

where Φlat denotes the lateral phase lag, D the duty factor, cFL(ϕc), cFR(ϕc), cHL(ϕc),

and cHR(ϕc) the contact state of the fore-right (FR), fore-left (FL), hind-left (HL), and

hind-right (HR) limbs at the gait phase ϕc, respectively. Many common quadrupedal

gaits can be described using the Hildebrand formula. For example, the lateral sequence

walking gait (Fig. 2) can be described by D = 0.75, Φlat = 0.25. Plotting a diagram of

the stance/swing phases of the feet from just these two parameters shows that in this

gait, each leg is lifted for a quarter of a cycle and only one leg is lifted at any given

instant, and the leg lifting sequence follows FR, HR, FL, and HR. The trot gait (Fig.

2) can be described by D = 0.5, Φlat = 0.5, where the FR and HL are coupled in phase

(same as the FL and HR pair). Another quadrupedal gait, the pace gait (Fig. 2), can

be described by D = 0.5, Φlat = 0, where the FR and HR are coupled in phase, as are

the FL and HL pair. Note that asymmetric quadrupedal gaits, such as bounding and

galloping, exist and cannot be prescribed by the same Hildebrand methods.

Prescription of Contact Patterns for Arbitrary Robots

The first two assumptions of the Hildebrand symmetric gait family can hold in general

for non-quadrupedal systems with discrete contacts. To expand the third assumption to

a broader range of locomotors, we can generalize the definition of the lateral phase lag
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A general locomotion control framework for multi-legged locomotors 5

to be the phase lag between two consecutive legs (instead of only the fore and hind legs)

on the same side. Then, the contact function of a multi-legged system can be written

as:

cl(ϕc, 1) =

{
1, if mod(ϕc, 2π) < 2πD

0, otherwise

cl(ϕc, i) = cl(ϕc + 2π(i− 1)Φlat, 1)

cr(ϕc, i) = cl(ϕc + π, i), (2)

where cl(ϕc, i) (and cr(ϕc, i)) denotes the contact state of i-th leg on the left (and the

right) at gait phase ϕc, i ∈ {1, ...N} for 2N -legged systems.

Many common multi-legged gaits can also be described by this extended Hildebrand

formulation. For example, many hexapod robots and animals use the alternating tripod

gait (Fig. 2), which couples FL, MR (middle-right), and HL in phase, and couples the

FR, ML, and HR similarly. The alternating tripod gait for a hexapod (N = 3) can be

described by D = 0.5 and Φlat = 0.5.

Myriapod gaits can be classified into direct waves and retrograde waves of limb

contact [46] (Fig. 2). Typically, for gaits with Φlat < 0.5, the phase of the hind leg

is ahead of the phase of its immediate fore leg. In other words, the legs move in a

wave propagating from tail to head, which we call a diagonal sequence gait, and which

corresponds to direct waves in myriapods. On the other hand, when Φlat > 0.5, the

phase of the hind leg is behind the phase of its immediate fore leg. Therefore, the leg

wave propagates from head to tail, which we call a lateral sequence gait, and which

corresponds to retrograde waves in myriapods. Interestingly, on level ground, animals

with fewer legs more commonly use lateral sequence gaits [21, 47, 22, 48], and animals

with more legs use both diagonal sequence and lateral sequence gaits [33, 49]. As we

will discuss later, we hypothesize that this difference in gait choice is a result of the

balance between speed and stability.

Our proposed gait formulation can also include systems without legs, e.g.,

sidewinding limbless robots. The complex mode of limbless locomotion, sidewinding,

can be prescribed as the superposition of two waves: lateral and vertical body waves [39].

Similar to legged systems, sidewinders can regulate their contacts by modulating the

vertical traveling wave [39]. The typical contact pattern of a sidewinder is shown in Fig.

2. Note that the contact pattern during sidewinding locomotion is the same as one side

(either left or right) of the contact pattern of a legged system. As such, we prescribe

the contact state of the i-th link of the sidewinding system as c(ϕc, i) = cl(ϕc, i), where

cl(ϕc, i) is defined in Eq. 2

Prescription of Leg Shoulder Movement

Legs generate self-propulsion by protracting during the stance phase to make contact

with the environment, and retracting during the swing phase to break contact. That is,

the leg moves from the anterior to the posterior end during the stance phase and moves
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A general locomotion control framework for multi-legged locomotors 6

from the posterior to anterior end during the swing phase. With this in mind, we use

a piece-wise sinusoidal function to prescribe the anterior/posterior excursion angles (θ,

Fig. 2) for a given contact phase (ϕc),

θl(ϕc, 1) =

{
Aθ cos (

ϕc

2D
), if mod(ϕc, 2π) < 2πD

−Aθ cos (
ϕc−2πD
2(1−D)

), otherwise,

θl(ϕc, i) = θl(ϕc + 2π(i− j)Φlat, j)

θr(ϕc, i) = θl(ϕc + π, i) (3)

where Aθ is the shoulder angle amplitude, θl(ϕc, i) and θr(ϕc, i) denote the leg shoulder

angle of i-th left and right leg at contact phase ϕc, respectively. Note that the shoulder

angle is maximum (θ = Aθ) at the transition from swing to stance phase, and is minimum

(θ = −Aθ) at the transition from stance to swing phase. Fig. 3 shows an example of a

hexapod gait under this equation.

Numerical Prediction on Speed and Stability

We numerically calculated the speed of various gaits [38] over a range duty factors

and lateral phase lags for a quadrupedal, hexapod, myriapod, and sidewinder systems.

Fig. 3 and Fig. 4 graphically depict the process, and the Materials and Methods section

provide details. To explicitly show the effect of limb-substrate contact on speed, we fixed

the swing angle Aθ when comparing the displacements of different gait parameters. Note

that in this section, there is no body undulation in all gaits.

The numerical prediction of body speed, measured in units of body length per

cycle (BLC), is plotted in Fig. 5 (middle column). We observe that modulating the

lateral phase lag does not significantly affect body speed. This observation becomes

more apparent for systems with more legs. In the myriapod system, speed is almost

independent of the lateral phase lag and is uniquely determined by the duty factor.

In addition to measuring body speed, we require other metrics to quantify gait

stability. For instance, the contact pattern of quasi-static gaits (e.g., quadrupedal

walking gaits) need significantly less low-level control efforts to be stably realized on

robots than the contact pattern of dynamically stable gaits (e.g., bouncing gaits) [25].

In this paper, we separate robots’ configurations into three groups (1) statically stable,

(2) statically unstable, and (3) unstable. In the statically stable configurations, the

center of mass is bounded within the supporting polygon (Fig. 3c.1). In the statically

unstable configurations, also known as unstable diagonal-couplet gaits [47], the center

of mass is outside the supporting polygon but there is at least one leg in stance phase on

the left and the right side (Fig. 3c.2). Despite not being statically stable, the statically

unstable configurations can be made dynamically stable when the speed increases [22]

or when combined with a low-level controller [28, 16, 29]. In other words, the loss of

static stability could be compensated by the acquired dynamic stability. In the unstable

configurations, also known as unstable lateral-couplet gaits [47], either the left or the
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A general locomotion control framework for multi-legged locomotors 7

right side of the legs are all in swing phase (Fig. 3c.3), which makes it more difficult to

stabilize∥. We define the static stability metric as the fraction of the gait cycle spent

in statically stable configurations. Note that this measure only applies to the gaits

with statically stable and statically unstable configurations; the appearance of unstable

configurations will contradict our assumptions. Therefore, we define the measure of

static stability to be 0 if there exists unstable configurations in the gait.

We numerically calculated the static stability for the quadrupedal, hexapod, and

myriapod systems in Fig. 5. As one might expect, when comparing the same gait

parameters (duty factor D and phase lag Φlat) among different systems, the static

stability increases with the number of legs. Similarly, an increase in duty factor results

in an increase in static stability. Moreover, we observe that the diagonal sequence

(Φlat > 0.5) is in general less stable than the lateral sequence (Φlat < 0.5). Thus, most

diagonal sequence gaits are stable only for systems with a greater number of legs, such

as myriapods. The static stability is also strongly correlated with the lateral phase lag.

Specifically, gaits are more statically stable as |Φlat−0.5| → 0 and they become “closer”

to an alternating tripod gait.

Surprisingly, modulating the lateral phase lag only affects the static stability, while

body speed is not correlated with the lateral phase lag. On the other hand, animals

including myriapods [33] and quadrupedal lizards [19, 50, 51] have been observed to

modulate the lateral phase lag as speed increases. In other words, in biological systems,

the loss of static stability is compensated by a gain in speed while our findings indicate

that speed is independent of lateral phase lag modulation. We hypothesize that this

discrepancy is due to differences in whole-body coordination, which we consider in the

next section.

Experimental Results on Speed and Stability

Using robophysical models, we tested the locomotor performance of gaits with a range

of lateral phase lag for quadrupedal, hexapod, myriapod, and sidewinder systems (Fig.

6). The quadrupedal experiments were performed on granular media (poppy seeds);

other experiments were performed on hard ground. The duty factor for the hexapod,

myriapod and the sidewinder systems were fixed to D = 0.5, and the duty factor for the

quadrupedal system was set to D = 0.75 for reference (see the Materials and Methods

for additional experiment details). Note that in this section, there is no body undulation

in all gaits.

We measured gait speed via the number of body lengths traveled per gait cycle.

Interestingly, the range of gaits showing the most theory-experiment discrepancy

overlaps with the range of gaits that are not statically stable. Since our predictions

are based on 2D physics calculations, they cannot capture 3D unstable behaviors, such

as tipping over and falling to the ground. Therefore, we hypothesize that the discrepancy

∥ in the case of limbless sidewinding, unstable configurations are defined as those with no contact, see

Fig. S4
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A general locomotion control framework for multi-legged locomotors 8

between our hexapod theory and experiments is caused by static instability. Note that

our experiments on quadrupeds were performed on poppy seeds, where the ventral

surface often was in contact with the environment. In our myriapod experiments,

configurations tend to be mostly statically stable given their large number of legs.

Therefore, the effect of static stability was only critical in our hexapod experiments.

To test our hypothesis that static stability is the source of the theory-experiment

discrepancy, we characterized unstable behaviors by the roll and pitch of the robots. We

recorded the body pitch and roll during the course of the robophysical hexapod gaits.

The experimental data for these experiments over three gait settings (D = 0.5 Φlat =

0.15, D = 0.5 Φlat = 0.45, D = 0.5 Φlat = 0.65) are compared in Fig. 7a. We observed

that only the statically stable hexapod gait (Φlat = 0.45) has both low pitch and low roll.

The unstable hexapod gaits have either high roll angle (Φlat = 0.15) or high pitch angle

(Φlat = 0.65). We calculated the average pitch and roll for each gait, and compared

them with the numerical predictions of static stability. We observe that the range of

low average pitch and roll overlaps with the range of statically stable gaits. When the

hexapod body is in configurations with low roll and low pitch, the experimental data

agree with the theoretical predictions.

Body-leg Coordination in Hildebrand Gait Formulation

Geometric Mechanics to Coordinate Lateral Body Undulation

As discussed in the previous sections, speed is not correlated with the the lateral

phase lag when there is no body undulation. However, previous experimental gait

studies with lizards and myriapods [33, 19] have found that modulation of lateral phase

lag is associated with changes in the lateral body undulation. For example, lizards

increase the amplitude of their lateral body undulation during transitions from lateral

sequence walking to trotting or even diagonal sequence gaits [19, 48, 50, 51, 24, 23].

Similarly, myriapods change their leg wave pattern (lateral phase lag) at high speed

while simultaneously increasing lateral body undulation amplitude [33]. Accordingly,

we hypothesize that modulating the lateral phase lag can regulate the balance between

speed and stability only if properly coordinated with lateral body undulation.

To account for these observations, we introduce the lateral body bending angle

α (Fig. 2). We prescribed lateral body undulation by propagating a wave along the

backbone from head to tail [52]:

α(ϕb, i) = Aαcos(ϕb − 2π(i− 1)Φb
lat) (4)

where α(ϕb, i) is the angle of i-th body joint at phase ϕc, 2πΦb
lat is the phase lag

between consecutive joints. For simplicity, we assume that the spatial frequency of

the body undulation wave and the contact pattern wave are the same, i.e. Φb
lat = Φlat.

The body shape can then be described as the phase of contact, ϕc, and the phase of

lateral body undulation ϕb. These two independent phase variables represent a reduced
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A general locomotion control framework for multi-legged locomotors 9

shape space (see Materials and Methods) on a two-dimensional torus on which we can

apply geometric mechanics gait design techniques to optimize body-limb coordination

(Materials and Methods).

The geometric mechanics gait design framework separates the configuration space

of a system into two spaces: the position space and the shape space. The position

space represents the location (position and orientation) of a system relative to the

world frame, while the shape space represents the internal shape (joint angles) of the

system. The geometric mechanics framework then establishes a functional relationship

to map velocities in the shape space into velocities in the position space; this functional

relationship is often called a local connection. The curl of the local connection, which

we call a “height function” can then be used to design, analyze, and optimize gaits.

Using geometric mechanics tools [38, 41, 53], we derived height functions and

designed gaits (Materials and Methods). Fig. 3 and Fig. 4 show examples of

coordination between the lateral body undulation and contact phase derived with

geometric mechanics. We also provided an example of coordinating the body undulation

and contact pattern for sidewinding in Fig. S4. Once we designed a coordination pattern

ϕc → ϕb in the reduced shape space, we can convert that pattern into both a contact

pattern and body undulation.

We quantified the body-leg coordination by its phase lag: ϕbc : ϕc−ϕb. Interestingly,

we observed that the empirically calculated ϕbc has a linear relationship with Φlat (Fig.

8). We next seek to investigate the physical intuition behind this relationship. We first

decomposed the body-leg coordination to a single “sub-unit,” which we define as two

pairs of legs and one body joint. Our Hildebrand-based approach then allows us to

prescribe the phase of each feet and the body bending. Previous work [40] found that

in effective gaits, when the HL/FR feet land, the body is bent clockwise, and when the

HR/FL feet land, the body is bent counterclockwise. We can encode this relation by

ϕbc ∼ (Φlat+1/2)π. Then, the FR and HL foot touch-down is symmetrically distributed

around the peak of the clockwise body bending angle, and the touch-down of FL and HR

feet are symmetrically distributed around the peak of counterclockwise body bending

angle. Via this relationship, we posit that despite the seemingly complicated whole-

body motion, the optimal body-leg coordination is achieved by locally coordinating

each sub-unit of two legs and a body joint.

Numerical Prediction of Speed and Stability

We used a numerical simulation to predict the gait speed and stability at a range

of lateral phase lags and duty factors for the quadrupedal, hexapod, myriapod and

sidewinder systems. We observed that modulating the lateral phase lag can regulate

the balance between speed and stability if properly coordinated with lateral body

undulation. The loss of static stability is compensated by a gain in speed only when

the body and limb phases are properly coordinated. These observations were derived

by plotting gait speed and stability against the extended Hildebrand gait parameters,
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A general locomotion control framework for multi-legged locomotors 10

shown in Fig. 5. The addition of body undulation changes slightly changes the static

stability, as depicted in Fig. S1.

Experimental Results

We tested the locomotion performance of systems with discrete contact and coordinated

lateral body undulation using robophysical models (Materials and Methods for details).

We recorded the displacement over time for two gaits in each system (Fig. 6). Our

numerical predictions quantitatively agree with experiments not only in the average

displacement per gait cycle, but also in the time evolution of the displacement.

The only notable theory-experiment discrepancies occur in the hexapod and the

sidewinder systems. As discussed earlier, static instability can lead to theory-experiment

discrepancy for hexapods and sidewinders due to the planar assumptions made in our

theoretical model. To investigate this discrepancy further, we studied the effect of

static instability on sidewinders and observed that some gaits result in significant yaw

(Fig. 7b), such that the robot’s path deviates from the desired straight-line course.

Comparing the net yaw change per gait cycle with the numerical predictions of static

stability reveals that significant yaw only occurred in gaits with low static stability. As

static stability increases (for sidewinding, stability increases with the lateral phase lag),

the unmodelled turning vanished.

Body-leg Coordination in Biological Locomotors

Symmetric gaits in quadrupedal animals can be categorized using Hildebrand

analysis [21, 47]. Recent work showed that a geometric mechanics framework can predict

the optimal body-leg coordination for fire salamanders (Salamandra salamandra) [54,

40]. However, the means by which salamander modify their leg movements and body-leg

coordination in response to speed changes was previously unstudied. In this work, we

recorded fire salamanders moving on sand. Five individuals were recorded, and their

foot placement and backbone positions tracked. From the tracking data we measured

gait parameters such as duty factor, lateral phase lag, amplitude of body bending,

and amplitude of leg movements. We then used geometric mechanics to predict the

optimal body-leg coordination for salamanders walking at various speeds. We observed

quantitative agreement between the geometric mechanics prediction and the measured

biological data (Fig. 9).

Beyond quadrupedal animals, our methods can also be applied to study animals

with various number of legs and backbone segments. Centipedes are known to

be fast-moving locomotors: certain centipedes are the fastest-running terrestrial

arthropods [33, 49]. Given their high speeds, past work often used dynamic models

to analyze their locomotion [55, 56]. We hypothesized that despite their high speeds,

centipede locomotion can be analyzed with our quasi-static geometric model. To test this

hypothesis, we recorded videos of centipedes (Scolopendra polymorpha) under different
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A general locomotion control framework for multi-legged locomotors 11

speeds. Three individuals were recorded, their leg and body positions tracked, and

their gait parameters estimated. We then used geometric mechanics to predict the

optimal body-leg coordination. We once again observed quantitative agreement between

geometric mechanics predictions and the measured animal data (Fig. 10).

Discussion and Conclusion

Principles of gait modulation

In this paper, we developed a general gait design framework for a broad class of

locomotors: multi-legged robots (with an arbitrary number of pairs of legs) with

an articulated backbone, including limbless sidewinding. Specifically, we extended

the Hildebrand gait formulation [21, 47], originally used to categorize symmetric

quadrupedal gaits, and combined it with modern geometric mechanics tools to

investigate optimal leg-body coordination. We showed that the symmetry in Hildebrand

quadrupedal gaits is conserved for other locomotors: it is simple enough to enable

physical interpretation of the gait parameters; on the other hand, it is sufficiently rich

in content, offering a scheme to modulate gaits in a diversity of robot shapes. These

properties enable our framework to link well-studied locomoting systems like quadrupeds

and hexapods with less-studied systems like myriapods, generating new opportunities to

transfer insights among and compare between different locomoting morphologies. Given

a new robot with arbitrary pairs of legs or without legs, our framework can immediately

provide effective open-loop gaits, which can serve as the basis for closed-loop adaptive

or data-driven/learning-based control algorithms.

Our gait principles reveal insights into proper contact scheduling. These principles

could serve as a starting point for additional layers within in a robot’s control

architecture or even for mechanical design iterations. For example, [57] found that

while direct application of gait design tools can prove ineffective in rough terrain,

adding passive leg compliance can greatly improve performance in this environment.

Our proposed framework can not only simplify the gait design and modulation process

for robots with different morphologies in various homogeneous environments, but can

also provide a guideline for designing robot controllers that navigate unstructured

environments and overcome obstacles. Our framework can also be used to test

hypotheses and therefore give novel insights into the control principles behind gaits

in biological systems.

Finally, our framework facilitated testing hypotheses about the role of body

undulation in multi-legged systems. These observations can act as guidelines in the

control of a variety of legged robots. For example, in RHex [3], a hexapod with flexible

legs attached to a rigid body, the duty factor is the only tuning parameter that can

regulate the balance between speed and stability. In other cases, such as in [58], a

segmented robot with a flexible backbone and contralateral legs coupled to a straight

line (and therefore, have a fixed duty factor), the lateral phase lag acts as the salient
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A general locomotion control framework for multi-legged locomotors 12

parameter to balance between speed and stability when properly coordinated with lateral

body undulation.

Insights from robotics to biological systems

We have also shown here that once two gait parameters (duty factor and lateral phase

lag) are specified, the gait is readily prescribed and can then be analyzed with geometric

tools. To explore gait tuning principles for locomoting systems, we quantitatively

investigated the effect of modulating gait parameters on locomotor performance. As

shown in Fig. 6, we found that in robots with a fixed straight backbone, the displacement

per gait cycle is nearly invariant to the changes in the lateral phase lag, Φlat. On the

other hand, in gaits where body undulation is properly coordinated with leg motions,

Φlat affects the displacement. This seemingly counter-intuitive observation can help us

develop hypotheses about gait modulation principles.

In addition to these robotics applications, our proposed control principles can also

offer explanatory power to some hypotheses about biological locomotion. For example,

biological myriapods (Chilopoda) can be categorized into direct-wave myriapods [33] and

retrograde-wave myriapods [33]). Direct-wave myriapods propagate their leg contact

wave from tail to head (corresponding to Φlat < 0.5 in our modified Hildebrand

formulation) while retrograde-wave myriapods propagate their wave from head to tail

(Φlat > 0.5) [46]. Interestingly, Manton [33] showed that there is no significant lateral

body undulation in direct-wave myriapods regardless of their speed; instead, the only

significant gait modulation at high speed is a decrease in duty factor. On the other hand,

gait modulation in retrograde-wave myriapods is much more complicated: they not only

decrease the duty factor, but also increase the lateral phase lag. More importantly, they

exhibit characteristic lateral body undulation at high speeds [33, 49]. This observation

is consistent with the principles discovered via our gait analysis methods, where we

found that tuning the lateral phase lag can only improve the speed if accompanied with

properly coordinated lateral body undulation. Moreover, the contribution from lateral

body undulation is greater for retrograde-wave myriapod locomotion than for direct-

wave myriapods. This may be one of the reasons behind the biological observation that

lateral body undulation is only characteristic of retrograde-wave myriapods [33, 49].

Materials and Methods

Geometric Mechanics

We used tools from geometric mechanics, the application of differential geometry

concepts to rigid body mechanics, to design the coordination between body undulation

and contact patterns. In this section, we provide a concise overview of the tools used

to design the coordination patterns. For a more detailed and comprehensive review, we

refer readers to [41, 53, 40].
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A general locomotion control framework for multi-legged locomotors 13

Robot GRF Formula Reference

Quadruped Poppy Seed RFT [59, 40]

Hexapod Anisotropic Coulomb Friction [60, 61]

Myriapod Anisotropic Coulomb Friction [60, 61]

Sidewinder Isotropic Coulomb Friction [62, 42]

Table 1. The ground reaction force formulas used to model quadrupeds, hexapods,

myriapods, and sidewinders robophysical systems.

The geometric mechanics gait design framework separates the configuration space

of a system into two spaces: the position space and the shape space. The position

space represents the location (position and orientation) of a system relative to the

world frame, while the shape space represents the internal shape (joint angles) of the

system. The geometric mechanics framework then establishes a functional relationship

to map velocities in the shape space into velocities in the position space; this functional

relationship is often called a local connection.

Reduced Equation of Motion In kinematic systems where frictional forces dominate

inertial forces, the equations of motion can be approximated by:

ξ = A(Φ)Φ̇, (5)

where ξ = [ξx ξy ξθ]
T ∈ g denotes the body velocity in the forward (x), lateral (y), and

yaw (θ) directions; Φ denotes the internal shape variables. In this work, Φ = [ϕc ϕb]
T ,

representing the contact phase and the lateral body undulation phase. A(Φ) is the

local connection matrix, which encodes environmental substrate interactions.

Numerical Derivation of the Local Connection Matrix The local connection matrix A

can be numerically derived via force and torque balances [17]. The force and torque

balance equations require a model of the ground reaction forces (GRF), such as granular

material interaction and ground friction. We summarize the GRF formula for our four

robots above. Further details on the local connection derivation can be found in the

Supplementary Material.

Connection Vector Fields and Height Functions Once we obtain the local connection

matrix, we can further analyze the system kinematics during locomotion. Each row

of the local connection matrix A corresponds to a component direction of the body

velocity. Each row of the local connection matrix over the shape space then forms a

connection vector field. Then, the body velocity can be computed via the dot product

of connection vector fields and the shape velocity Φ̇.

A periodic gait can be represented as a closed curve in the shape space. The

displacement resulting from a gait, ∂χ, can be approximated by:
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A general locomotion control framework for multi-legged locomotors 14∆x

∆y

∆θ

 =

∫
∂χ

A(Φ)dΦ. (6)

According to Stokes’ Theorem, the line integral along a closed curve ∂χ is equal to

the surface integral of the curl of A(Φ) over the surface enclosed by ∂χ:∫
∂χ

A(Φ)dΦ =

∫∫
χ

∇ × A(Φ)dϕcdϕb, (7)

where χ denotes the surface enclosed by ∂χ. The curl of the connection vector field,

∇ × A(Φ), is referred to as the height function. The three rows of the vector field

A(Φ) can thus produce three height functions in the forward, lateral and rotational

direction, respectively.

The height function derivation simplifies the gait design problem to drawing a

closed path in a Euclidean shape space. The body displacement from a path can be

approximated by the integral of the surface enclosed by that path.

Toroidal Shape Spaces In our gait prescription, the two shape variables are

parameterized as cyclic phases, resulting in a toroidal shape space (T 2) [63]. Examples

of height functions on toroidal shape spaces are shown in Fig. 3b. The shape variables

Φ = [ϕc, ϕb]
T ∈ T 2 correspond to the phase of contact and the phase of the lateral

body undulation, respectively. A gait is a closed curve in the toroidal shape space (solid

purple curve Fig. 3b), but as it is a non-Euclidean space, there is no clear “surface”

enclosed by the path.

To form an enclosed surface, Gong et al., [41] introduced the notion of “assistive

lines” in the Euclidean parameterization of the toroidal shape space. This method allows

a surface integral to be calculated. In Fig. 3b, the surface integral is the area within

solid lines is subtracted from the area of the surface enclosed in the upper left corner.

For simplicity, in our optimization we assumed that the mapping between the two phase

variables is linear and that the body and legs share the same temporal frequency, i.e.,

ϕb = ∂χ(ϕc) = ϕc + ϕ0, where ϕ0 is the phase offset between lateral body undulation

and contact pattern to be optimized.

Simulation

We performed a numerical simulation to predict locomotive performance, and compared

these results to those obtained from robophysical experiments. Specifically, we

prescribed the contact state and the joint angle of each leg by a single variable, ϕc,

using Eq. 2 and Eq. 3. Similarly, we prescribed the lateral body undulation by another

variable, ϕb, using Eq. 4. The amplitudes of leg and body joint angles are listed below.
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A general locomotion control framework for multi-legged locomotors 15

Robot Aθ Aα

Quadruped 30◦ 30◦

Hexapod 10◦ 10◦

Myriapod 12◦ 17◦

Sidewinder N/A 5.6L (rad)

Note that the amplitude of sidewinder body undulation is related to the lateral

phase lag, such that the “relative curvature,” that is, the maximum curvature of the

backbone of limbless locomotors [43, 64, 42], remains constant.

Given the body-limb coordination function ∂χ : ϕc → ϕb as described above, the

shape variable Φ and shape velocity Φ̇ can be rewritten as:

Φ =

[
ϕc

∂χ(ϕc)

]
, Φ̇ =

[
1

d∂χ(ϕc)
dϕc

]
ϕ̇c (8)

The body displacement is computed by integrating the following ordinary

differential equation [38]:

g(t) =

∫ t

0

TeLg(ϕc)A(Φ)dΦ (9)

=

∫ t

0

TeLg(ϕc)A(

[
ϕc

∂χ(ϕc)

]
)

[
1

d∂χ(ϕc)
dϕc

]
dϕc, (10)

where g = (x, y, α) ∈ SE(2) represents the body frame position and rotation [65]. Note

that TeLg is the left lifted action with respect to the coordinates of g:

TeLg =

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 (11)

Integrating the ordinary differential equation throughout one period (from t = 0

to t = 2π), results in the body trajectory, from which we can determine the predicted

displacements in the forward, lateral, and rotational directions over one gait cycle. Note

that we neglect any inertial effects in this simulation.

Robophysical Experiments

Robotic Models All of the robophysical models were designed in Solidworks and printed

using Stratasys Dimension Elite 3D Printer. They are powered with an external power

supply (12 V, 5A) and controlled via the MATLAB DYNAMIXEL SDK, interfacing

with the servo motors through a Robotis USB2Dynamixel controller. All the robots have

open-loop control such that gait parameters are not changed during an experiment, and

the control signals (servo positions) continue to be sent as a function of time, regardless

of external forces or the tracking accuracy of the servos.
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A general locomotion control framework for multi-legged locomotors 16

The quadruped robot (Fig.S4a, 450 g., ∼40 cm long, [66]) has four legs and an

actuated trunk. Each limb is actuated with two Dynamixel XL-320 servos (stall torque

0.39 [N.m]) to control the vertical position and the step size of the leg (45 mm-high steps,

Fig.S4a). The body joint servo (Dynamixel AX-12) controls the horizontal bending. The

legs have a cube shape with 24× 24 mm2 surface area.

The hexapod robot (Fig.S4b, 300 g., ∼25 cm long) has a segmented body (three

segments) with pairs of legs in each segment. The vertical and horizontal motion of the

legs in a segment are coupled (out-of-phase) and controlled by two Dynamixel XL-320

servos (Fig.S4b). The body joint servos (Dynamixel XL-320) controls the horizontal

bending of the segments. The legs have pointed feet.

The myriapod robot (Fig.S4c, ∼1000 g., ∼72 cm long) has a eight body segments,

similar to the segments of the hexapod robot [67]. Each segment has a pair of rigidly

connected legs 12 cm in length. There are three servos (Dynamixel XL-320) in each

segment; one controls horizontal body bending and two control the fore/aft and up/down

motion of the legs (Fig.S4b).

The sidewinder robot has seven segments, each of which contains two joints

connected at an angle of 90o (Fig.S4c). Each joint is comprised of a AX-12 servo

motors (stall torque = 1.5 [N.m]). The horizontal motors vary the lateral wave, and the

vertical motors create a changing contact pattern.

Experimental Setups and Data Analysis We used an Optitrack motion capture system

(including 4-6 Naturalpoint, Flex13 cameras, 120 fps and Motive software) to capture

the position and orientation of the reflective markers attached to the robots. The data

was analyzed in Matlab.

Quadruped robot experiments were performed on a trackway filled with ∼1 mm

diameter poppy seeds [66]. Before each experiment we fluidized the bed using four

vacuums to prepare a uniform loosely packed state. Each experimental condition,

consisting of the quadruped robot and a set of gait parameters was repeated three

times for a total of nine gait cycles.

The hexapod and myriapod robot experiments were performed on a cardboard and

particle board surface, respectively. Before each experiment, the joints were set to their

neutral positions. The robots were allowed to run for three cycles (five trials/gait).

Sidewinder experiments were performed on a foam mat surface to reduce slip. Each

experiment was started from the same position and repeated three times, for five to six

gait cycles per trial.

Salamander data analysis In salamander experiments, individual animals walked along

a straight trackway filled with 300-µm glass particles. Three cameras (GoPro Hero3+,

720 pixel resolution) were positioned around the trackway and recorded synchronized

videos at 120 FPS. All experiments were approved by the Royal Veterinary College’s

Clinical Research Ethical Review Board, approval number 2015 1336. Salamanders were

captured under collection permit # 2016/001092 provided by the Government of the

Page 16 of 29AUTHOR SUBMITTED MANUSCRIPT - BB-102964

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A general locomotion control framework for multi-legged locomotors 17

Principality of Asturias. No animals were harmed for the experiments, and animals

had rest periods in between data collection trials. Experiments were conducted in a

humidity-controlled laboratory at the University of Oviedo, Spain. The temperature

( 18°C) and light cycle (12hr dark, 12hr light) were maintained at constant levels.

At least three gait periods were recorded in each experiment. Limb positions, body

angles, and footfall timing are manually extracted from each recording. We fitted the

animal body angles with the first two terms of Fourier Series as in [40].

Centipede Data Analysis In centipede experiments, individual animals ran along a

flat, hard trackway. One overhead camera were was to record centipede locomotion.

Positional data were extracted from videos with animal pose estimation software

DeepLabCut (DLC) [68]. Ten frames from each video were extracted and manually

labeled. DLC would then provide positions for labeled points on all of the other frames.

The positions of feet and body segments were labeled.
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Figure 1. Legged and limbless robotic models studied in the paper. a.

Quadrupedal robot [66, 40] b. Hexapod robot c. Myriapod robot with eight pairs of

legs [67] d. Sidewinder robot [69]. All scale bars are 5 cm. See Fig. S4 for the axis of

joint angles.
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Figure 2. Modelling multi-legged systems and sidewinders. The contact

patterns of some well-known gaits: (a.1) lateral sequence walking, (a.2) trotting,

and (a.3) pacing in quadrupeds; (b) alternating tripod in hexapods, (c) sidewinding

in snake-like limbless robots, (d.1) retrograde-wave and (d.2) direct-wave gaits in

myriapods. For each system, these diagrams show the variables included in the model,

such as leg joint angles θN , and body joint angles α(N−1), where N is the number of

leg pairs for legged systems or joint sets in the sidewinder. In the contact sequence

diagrams, filled blocks represent stance phase, and open blocks represent swing phase.

(e) A general contact pattern table. The blue arrow represents the duty factor D. The

red arrow represents the lateral phase lag, Φlat. τ denote gait phase. (f) Hildebrand

plots with two parameters D and Φlat to characterize the motions in the vertical

plane. We labeled the region associated with walking, running, lateral sequence (LS)

and diagonal sequence (DS) gaits.
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Figure 3. An example of gait design for a hexapod using Hildebrand gait

principles and geometric mechanics. From the parameter space (a.1), we select

the duty factor D and lateral phase lag Φlat. We prescribe the contact by its phase ϕc

(a.2), and the lateral body undulation by its phase ϕb (a.3). (b) The gait parameters

determine the equations of motion, which in turn are used to derive a height function,

and design a gait. The gait path (the purple curve) shown maximizes the volume

enclosed in the lower right corner (in solid shadow) minus the volume enclosed in

the upper left corner (in dashed shadow). The left panel is the toroidal visualization

of the height function, the right panel is the Euclidean visualization of the height

function. Fig. c.1-3 illustrates configurations in which the robot is statically stable

(c.1), statically unstable (c.2) and unstable (c.3)
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Figure 4. Snapshots of the numerical simulation showing examples of two

prescribed myriapod gaits. (a) statically unstable, Φlat = 0.92, D = 0.5 and (b)

statically stable Φlat = 0.5, D = 0.5. We compared the gait with straight fixed body

(top) and gaits with coordinated body undulation (bottom). The displacement, in

body length (BL) per cycle, are labeled with a red arrow. The black/white circles

show the stance/swing phase of the feet.

Page 23 of 29 AUTHOR SUBMITTED MANUSCRIPT - BB-102964

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



A general locomotion control framework for multi-legged locomotors 24

Figure 5. Trade-off between speed and static stability in quadruped,

hexapod, myriapod, and sidewinding systems. Theoretically predicted static

stability (left column), displacement in body lengths per cycle (BLC) with fixed

straight back (middle column), and displacement with coordinated lateral body

undulation (right column) over the space of Hildebrand parameters D and Φlat, for

the quadruped (a), hexapod (b), myriapod (c) and sidewinder (d). White space in

all panels represents the regions where unstable configurations exist (Fig. 3c.3); we

defined static stability to be zero in those regions. Note that static stability of the

quadruped, hexapod and myriapod is numerically calculated for configurations with

a straight backbone. The static stability of the sidewinder is numerically calculated

for gaits with coordinated lateral body undulation. Note that we only consider gaits

where unstable configurations (Fig. 3c.3) do not occur.
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Figure 6. Verification of the theoretically generated gaits in the robotic

models (left column) Gait cycle of each robot (a: quadruped, D = 0.75 and Φlat = 0.5;

b: hexapod, D = 0.5 and Φlat = 0.3; c: myriapod, D = 0.5, Φlat = 0.1; d: sidewinder).

The arrows show the direction of locomotion and T is one gait cycle. The center

of mass trajectories (yellow) are given in the last snapshots. (Middle column) The

comparison of simulations (solid curves) and experimental data (curves with error

bar) of displacement over time for each system. Two gaits with body undulation

coordinated with geometric mechanics (GM) are illustrated for each system. (Right

column) The relationship between the lateral phase lag, Φlat, and the displacement for

the same system either with fixed straight backbone (red) or with coordinated lateral

body undulation (blue). The color scheme and axes in (b, c, d) is the same as in (a).
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Figure 7. The effect of static stability on locomotion performance. In the

left column (a.), the body roll and pitch over the course of the hexapod experiments

are recorded as a function of gait fraction. Three gaits (D = 0.5, Φlat = 0.65 in

purple; D = 0.5, Φlat = 0.45 in red; and D = 0.5, Φlat = 0.15 in yellow) in Hildebrand

gait space are compared. In the middle row, we show the theoretical prediction of

static stability as a function of lateral phase lag. In the bottom row, we show the

average±SD experimental body roll and pitch as a function of the lateral phase lag. In

the right column, (b.), a similar analysis is performed for the sidewinder experiments.

The top-right shows the trajectory of body motion over six gait cycles, where the color

scale represents the evolution of time. We marked the initial position of the robot in

the black circles. In the middle row, we showed the theoretical prediction of static

stability as a function of lateral phase lag. In the bottom panel of Fig 7b, The body

yaw angle is recorded as a function of lateral phase lag.
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Figure 8. Physical intuition in body-leg coordination (a) The relationship

between Φlat, lateral phase lag, and ϕbc, the optimal phasing between body and leg.

ϕbc is numerically calculated from a height function (Fig. 3). The empirical data

for the hexapod (blue circle) and myriapod (red circle) are compared. (b) Consider

a quadrupedal “sub-unit” consisting of two pairs of legs and one body-joint. The

Hildebrand prescription allows us to write the phase relation of each leg and the

body bending with respect to the fore right leg (FR). (c) To maximize locomotive

performance with body-bending, at FL (fore left) and HR (hind right) touchdown,

the body is bent clockwise; and at FR (fore right) and HL (hind left) touchdown, the

body is bent counterclockwise [40]. Given this empirical relation ϕbc ∼ (Φlat + 1/2)π,

the HL/FR and HR/FL touchdown phases are symmetrically distributed around the

peaks of the bending trajectory, which we use to coordinate body-bending with foot

contacts.
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Figure 9. Analysis of salamander (Salamandra salamandra) locomotion

using the Hildebrand framework and geometric mechanics (a.1) Estimation

of the duty factor, D, and lateral phase lag, Φlat from animal joint angle trajectories.

Curves with error bars are the average leg shoulder (hip) angle over three cycles. The

lighter-color solid curves are piece-wise linear sinusoidal functions (defined in Eq. 3)

fit to the tracked data. (a.2) Estimated D and Φlat for animal locomotion under

different speeds. (b.1) Estimating ϕbc from body bending angle trajectories. (b.2)

Relationship between ϕbc and speed, measured in body lengths (BL) per cycle. The

prediction made with geometric mechanics is shown as dashed curves. The measured

salamander data are presented by crosses in the same color as their corresponding

prediction curves, where the length and height of the crosses denote the standard

deviation of the measured animal data. Scale bar near salamander photo indicates

30mm.
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Figure 10. Analysis of centipede (Scolopendra polymorpha) locomotion

using the Hildebrand framework and geometric mechanics (a.1) Estimation

of the duty factor, D, and lateral phase lag, Φlat from animal joint trajectories. The

colorbar here denotes the shoulder joint angle for each leg on right-hand side. (a.2)

Estimated gait parametersD and Φlat for the centipede’s locomotion. (b.1) Estimating

ϕbc from body phase and leg phase. (b.2) Relationship between ϕbc and the speed,

measured in body lengths per cycle. The prediction made with geometric mechanics

is shown as solid curves. The measured centipede data are presented by crosses in the

same color as their corresponding prediction curves, where the length and height of

the crosses denote the standard deviation of the measured animal data. Scale bar near

centipede photo indicates 30mm.
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