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Abstract

Background

In onchocerciasis endemic areas in Africa, heterogenous biting rates by blackfly vectors on

humans are assumed to partially explain age- and sex-dependent infection patterns with

Onchocerca volvulus. To underpin these assumptions and further improve predictions

made by onchocerciasis transmission models, demographic patterns in antibody responses

to salivary antigens of Simulium damnosum s.l. are evaluated as a measure of blackfly

exposure.

Methodology/Principal findings

Recently developed IgG and IgM anti-saliva immunoassays for S. damnosum s.l. were

applied to blood samples collected from residents in four onchocerciasis endemic villages in

Ghana. Demographic patterns in antibody levels according to village, sex and age were

explored by fitting generalized linear models. Antibody levels varied between villages but

showed consistent patterns with age and sex. Both IgG and IgM responses declined with

increasing age. IgG responses were generally lower in males than in females and exhibited

a steeper decline in adult males than in adult females. No sex-specific difference was

observed in IgM responses.

Conclusions/Significance

The decline in age-specific antibody patterns suggested development of immunotolerance

or desensitization to blackfly saliva antigen in response to persistent exposure. The variation
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between sexes, and between adults and youngsters may reflect differences in behaviour

influencing cumulative exposure. These measures of antibody acquisition and decay could

be incorporated into onchocerciasis transmission models towards informing onchocerciasis

control, elimination, and surveillance.

Author summary

Onchocerciasis, a disease caused by the helminth parasite Onchocerca volvulus, is trans-

mitted by the bites of female Simulium blackflies. The disease is still endemic in many

African countries, and the World Health Organization has proposed elimination of its

transmission in 12 countries by 2030. Understanding the heterogeneity in human expo-

sure to vector bites can help discern which portion of the population is at higher risk of

acquiring/ transmitting infection and is fundamental to identifying target groups for sero-

logical monitoring and transmission control. Traditionally, blackfly biting rates are esti-

mated by performing human landing catches, a method that is often considered unethical

and which can be unreliable as a representative measure. Therefore, we used our recently

developed immunoassays to measure human antibody responses to antigens contained in

the saliva of blackflies and deposited into human skin when they bloodfeed. In onchocer-

ciasis endemic communities in Ghana, we measured antibody responses to understand

age- and/or sex-related demographic patterns in vector exposure. We observed lower anti-

body responses in males compared to in females, and a substantial decline with increasing

age, suggesting that high blackfly biting pressure induces desensitization in the human

host.

Introduction

Female blackflies of the Simulium damnosum sensu lato (s.l.) complex are the predominant

vectors of Onchocerca volvulus in Africa. This filarial nematode causes human onchocerciasis,

commonly known as river blindness and proposed for elimination of transmission (EOT) in

12 countries by 2030 [1]. Repeat exposure to bites of infective blackflies is a key driver of para-

site acquisition, and high biting rates are important determinants of transmission intensity

and resurgence following control interventions, particularly those based on mass drug admin-

istration (MDA) of ivermectin [2,3]. Therefore, ‘stop-MDA surveys’ and post-treatment sur-

veillance protocols would be improved by monitoring exposure to vector bites in addition to

exposure to the parasite and assessment of residual infection in informative age and sex groups

depending on the epidemiological setting [4,5]. Annual biting rates (ABR, the number of

bites/person/year) are predominantly estimated by performing human landing catches

(HLCs) [6], but this is both labour-intensive and often considered unethical. Furthermore,

HLC methods likely lead to biased estimates of ABRs as they are typically performed on a few

adult males at the riverbank close to blackfly breeding sites, where biting rates are likely to be

higher and vector collectors are maximally exposed [7]. Thus, HLCs may not capture the true

exposure representative of the community, age or sex groups or their activity patterns. Fur-

thermore, when blackfly densities are high, HLCs may be unable to capture all biting events

thereby underestimating the biting rate [8,9]. Applying novel methods to measure individual

and population exposure to blackfly vector bites would greatly inform our understanding of
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exposure patterns to onchocerciasis and inform mathematical transmission modelling of con-

trol and elimination [2].

Proteins in the saliva of blood-seeking arthropod vectors of human and veterinary diseases

provoke an immunomodulatory response in vertebrates following their exposure to vector

bites (e.g. by mosquitoes, sand flies, triatomine bugs, and tsetse flies) [10]. Measurement of

host anti-saliva antibodies has proven a useful surrogate marker to monitor individual host bit-

ing rates [11–15], seasonal variations in exposure and infection [16,17], and to evaluate vector

control interventions [18–22]. Immunoassays to measure human anti-saliva antibody

responses to blackfly bites have not been available until recently developed by the authors, spe-

cifically to measure human IgG and IgM antibody responses to saliva of S. damnosum s.l.

which is the main vector in Africa including the study sites in Ghana [23].

In the present study we report on the demographic patterns revealed by applying these

assays to community residents in the Bono East region of Ghana, a savannah setting. This area

was under vector control during the Onchocerciasis Control Programme in West Africa

(OCP, 1974–2002) [24,25], and is where the first ivermectin community trials were conducted

in the late 1980’s [26]. However, transmission persists despite many years of annual MDA,

even after adopting biannual MDA in 2010 [27,28]. With the risk of residual transmission

leading to possible resurgence of human infections if MDA were to stop [3], the area has been

the subject of comprehensive entomological [27,29–31], parasitological [32] and parasite geno-

mic [33] research, and a source of valuable epidemiological and entomological data for param-

eterizing onchocerciasis transmission models [34–36]. Due to the lack of reliable tools to

independently measure human exposure to vector bites, mathematical models have assumed

age- and sex-dependent exposure rates based on patterns of human infection with O. volvulus.
However, modelling outputs used to inform EOT and surveillance strategies are sensitive to

such patterns [4,37]. The aim of this study is to apply our novel human IgG and IgM immuno-

assays as indicators of individual biting exposure, both between and within (by age and sex)

onchocerciasis-endemic communities. The generated demographic patterns will help to scruti-

nize mathematical modelling assumptions.

Material and methods

Ethical statement

Ethical clearance was obtained from the Council for Scientific and Industrial Research (CSIR)

Institutional Review Board (RPN008/CSIR-IRB/2019) in Accra, Ghana. Residents were

informed of the objectives of the study and participants provided fully informed written con-

sent; parents or guardians provided consent for <18-year-olds. At the time of the study, iver-

mectin treatment against onchocerciasis was administered as part of the on-going national

biannual MDA programme [38]. Each participant was rewarded with a bar of washing soap, a

commercial sachet of malt drink powder (Milo, Nestlé) and a can of condensed milk. Blackfly

collections were carried out by local OCP vector collectors following standard HLC techniques

[39]. Individual identifiers on data records were anonymized prior to analyses and data

storage.

Study area

The study was conducted during the wet season in August 2019 in rural villages in an oncho-

cerciasis-endemic area of the Pru river basin, Pru District, in the Bono East region of Ghana.

Fig 1 provides a map of the study area and the location of the study communities, created

using the ‘ggplot2’ and the ‘rworldmap’ package in R software [40,41]. The shapefiles for the

base layers of the map were retrieved from the Database of Global Administrative Areas
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(GADM, https://gadm.org/download_country.html) and from DIVA-GIS (http://www.diva-

gis.org) under a CC BY license, with permission from GADM and DIVA-GIS.

Recruitment, blood sampling and demographic information

Villages were selected on the criteria that (a) there was evidence of exposure to

S. damnosum s.l. vector bites [30,42], (b) they were under current ivermectin treatment as

part of the national onchocerciasis control programme [43], (c) the villages comprised >200

residents, and (d) the villages represented variable ABRs based on previous records [30,42].

Five villages were selected; due to the proximity of two of the villages, these were grouped into

a single cluster (Asubende and Senyase (ASU/SEN) resulting in four village clusters. These

included ASU/SEN, with high biting rates (400–850 flies/person/month), Beposo [BEP] with

moderate values (100–350), and Fawoman [FAW] and Ohiampe [OHI] with lower biting rates

(25–175 flies/person/month) [30,42].

To obtain blood samples from the village residents, two recruitment approaches were

adopted: in villages with<300 residents (ASU/SEN, FAW, and OHI) all residents were invited

to participate. In the larger village (BEP) an age/sex stratified sample was identified based on

assigning random numbers generated using R software [44], to the pages of the paper-based

census records compiled by the MDA programme. The households contained on randomly

selected pages were noted and invited to participate until reaching an estimated sample of

houses containing 250 individuals as required from statistical calculations (i.e. ~1000 individu-

als in total across the four village clusters). Children younger than 4 years old were not

recruited.

Fig 1. Map of Ghana indicating study communities in the Pru District, Bono East region. Shapefiles for the base layers of the map

retrieved from GADM (https://gadm.org/download_country.html) and DIVA-GIS (http://www.diva-gis.org) under a CC BY license, with

permission from GADM and DIVA-GIS.

https://doi.org/10.1371/journal.pntd.0010108.g001
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A total of 958 participants were finally recruited, all tested for IgG antibodies, and a subset

of 500 individuals tested for IgM antibodies (Table 1). For age stratification purposes, the iden-

tified populations in all villages were divided into eight age categories (in years): 5–10, 11–20,

21–30, 31–40, 41–50, 51–60, 61–70, > 71, aiming to recruit 32 residents per age class in each

village, split equally between the sexes. In the case of IgM, samples were selected by random

number generation assigned to the ordered age-stratified full list of samples and aimed to test

around 40–60% of the samples tested by IgG per age class, with some variability in percentage

tested in the oldest age group. The numbers tested per age and sex strata per village cluster are

shown in Figs A and B and Table C in S1 File. The geographical coordinates, elevation and

number of individuals sampled and tested for each immunoglobulin per village cluster are

shown in Table 1.

Participants in each village/cluster were invited to the local school and assigned a subject/

sample identification number written on a personalized card. Two to four ml of blood were

collected into Ethylene Diamine Tetra Acetic acid (EDTA) tubes by venipuncture and kept

cool for 2–3 hours in an insulated cool box until centrifugation at 2500 rpm for 15 min to sepa-

rate the plasma. Samples were stored at 7˚ C until ELISA testing. Metadata on name, age, sex,

number of years of residence, house number, name of household head, and history of clinical

onchocerciasis were collected.

Immunoassays to measure human exposure to blackfly bites

Enzyme-linked immunosorbent assays (ELISA) previously developed were performed to mea-

sure anti-S. damnosum s.l. saliva IgG and IgM human responses [23]. Briefly, host-seeking

S. damnosum s.l. females were collected following standard OCP vector collector techniques in

one study location (ASU), near the Pru river [39]. All collected flies were stored in a cool

box until dissected on the same day. The collected flies were anesthetized in a –20˚ C freezer

for 10 min after which their salivary glands were removed, and aliquots stored in Tris-buffered

saline (TBS) (one gland per μl TBS, pH 7.5) at –20˚ C until further use. Flat-bottom 96-well

microtiter plates (ThermoFisher Scientific) were coated with blackfly salivary gland

Table 1. Study communities, their geographical coordinates, elevation and numbers of people sampled and tested

for IgG and IgM per community in the Pru District, Ghana.

Community/Cluster Coordinates (degrees, minutes,

seconds)

Elevation (masl) No. sampled

Tested for each

immunoglobulin

(%)

Long Lat IgG IgM

Asubende/Senyase [ASU/SEN] 08˚01’08.8"N 00˚58’52.4"W 153.3 186 97

100% (52.2%)

Beposo [BEP] 08˚00’26.7"N 000˚57’40.2"W 118.0 253 139

100% (54.9%)

Fawoman [FAW] 08˚01’11.4"N 001˚01’29.3"W 102.4 263 124

100% (47.2%)

Ohiampe [OHI] 08˚00’26.2"N 001˚03’49.5"W 114.3 256 140

100% (54.7%)

Total 958 500

100% (52.2%)

Long: Longitude; Lat: Latitude; masl: metres above sea-level

https://doi.org/10.1371/journal.pntd.0010108.t001

PLOS NEGLECTED TROPICAL DISEASES Demographic patterns in anti-blackfly salivary antibodies

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010108 January 12, 2022 5 / 18

https://doi.org/10.1371/journal.pntd.0010108.t001
https://doi.org/10.1371/journal.pntd.0010108


homogenate (SGH) with 0.2 μg SGH/well (for IgG ELISA) or 0.025 μg SGH/well (for IgM

ELISA) and incubated overnight at 4˚ C. The plates were blocked with 6% non-fat dried milk

(Bio-Rad) in phosphate-buffered saline (PBS) with 0.05% Tween 20 (PBS-Tw) and incubated

with plasma diluted 1/100 (IgG ELISA) or 1/50 (IgM ELISA) in 2% non-fat dried milk. The

plates were washed and incubated with peroxidase-conjugated anti-human IgG (1/1,000) or

IgM antibody (1/70,000) (Sigma-Aldrich; Bethyl Laboratories, Inc). The ELISA was developed

using an orthophenylendiamine (OPD) solution in a phosphate-citrate buffer (pH 5.5) with

0.1% hydrogen peroxide. The reaction was stopped after 5 min with 10% sulfuric acid and the

absorbance, optical density (OD) value was measured at 492 nm using a Tecan Infinite M200

microplate reader (Schoeller). Further details of blackfly collection, dissection, and the immu-

noassays were previously reported [23].

Data standardization

All plasma samples were tested in duplicate. Samples with a coefficient of variation (CoV) of

more than 20% were retested. Each plate included a blank control, of which the OD value was

subtracted from the sample OD values. A set of two positive (PC) and two negative control

(NC) samples were included in each plate to correct for inter-plate variability according to the

following formula: Standardized Optical Density (SOD) = ODsample/(average ODPC−average

ODNC). Furthermore, a PC sample was titrated in duplicate on three separate plates at seven

serial dilutions from 1/50 to 1/3,200. The average of the three log-logit transformed standard

curves was used to convert and standardize sample SOD values which are reported below as

anti-saliva antibody arbitrary units/ml.

Sample size calculation

Sample sizes were calculated to achieve 90% statistical power (with type I error, α = 0.05) to

detect a difference in mean IgG SOD antibody levels between males and females, for an

unpaired two-sample effect size DCohen of 0.23 and a variance in SOD of 0.16 [45]. By adding

15% to the calculated sample size as a correction factor for subsequent non-parametric statisti-

cal testing, 460 people per sex group were required [46]. This estimate is also based on the rea-

sonable assumption that the differences in the mean antibody responses of the sexes between

clusters would be minimal as confirmed by subsequent analyses (test of village cluster × sex

interaction term: P>0.243). The equivalent statistical power to detect a difference in IgM

responses between sexes with an effect size DCohen of 0.3 and a variance in SOD of 0.16 was

90%. Calculations were made in the R package ‘power’ using a two-sided t-test.

Statistical analyses

Differences between clusters or sex categories were statistically tested by Wilcoxon rank sum

or Kruskal-Wallis tests with post-hoc Holm adjustment for multiple comparisons. Changes in

immune responses with age and/or sex were tested by fitting generalized linear models (GLM)

to the IgG and IgM anti-blackfly saliva antibody values, where a gamma distribution and log-

link function gave the best fit by log-likelihood goodness-of-fit statistics. Age, sex and cluster

interaction terms were tested, treating age as a continuous variable. Residence duration (years)

and age showed high multicollinearity; hence only age was retained in the models. Correlation

coefficients (rs) between median IgG and IgM responses by age and sex were estimated by the

Spearman’s rank method. All statistical analyses were performed in R software [44], and

graphical representations created using the ‘ggplot2’ package in R [40].
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Results

Univariate analyses of population antibody response distributions

A total of 958 participants (186–263 per village cluster) between the ages of� 5 to< 96 years

old were recruited and sampled for anti-saliva IgG antibodies; demographic characteristics are

summarized in Table 2 and in Figs A and B in S1 File. No differences were observed in the age

compositions between village clusters or between sexes, nor in the frequencies of participants

per age group (Figs A and B in S1 File). Thus, it is unlikely that the variations in age-sex com-

positions of village clusters were a source of statistical bias.

Univariate analyses of demographic variables detected significant differences between the

median IgG responses among village clusters (P<0.001) (Fig 2A), and the median IgG

responses of males and females (P<0.05) (Fig 2B). Equivalent differences were not observed in

IgM responses (Fig 3); however, both IgG and IgM median antibody responses declined with

age (P<0.001) (Figs 2D and 3D). A breakdown of the IgG and IgM antibody distribution with

age per individual cluster is visualized in Figs D and E in S1 File.

Multivariate analyses of IgG responses according to village cluster, sex and

age

Accounting for cluster ID, sex, age, and the age x sex interaction term, multivariate models

revealed that IgG responses were significantly lower in BEP than in ASU/SEN (P<0.01), simi-

lar between ASU/SEN and FAW (P = 0.406), and higher in OHI than in ASU/SEN (P<0.001)

(Figs 4A and 5). Generally, males exhibited lower IgG responses than females (P<0.001)

(Figs 4B and 5). Fig 5 illustrates the (exponentiated) regression coefficient estimates of the

final model (summarized in Table F in S1 File).

Table 2. Summary statistics of participants and median antibody titres by immunoglobulin and village/cluster.

Assay Village Participants

(n)

Median age (Q1 –Q3)

(in years)

Sex ratio

(M:F)

Median duration of residency

(Q1 –Q3) (in years)

Median antibody titre

(units/ml)

Reported biting

rate

IgG All 958 21.0 (11.0–42.0) 0.84:1

(437:521)

16.0 (8.0–32.0) 2478.13

(1550.05–3413.36)

NA

ASU/SEN 186 24.0 (14.0–39.0) 1:1

(93:93)

20.0 (10.0–35.0) 2507.34

(1699.94–3125.95)

High

BEP 253 25.0 (11.0–46.0) 0.83:1

(115:138)

24.5 (11.0–46.0) 1951.63

(1269.37–2822.26)

Moderate

FAW 263 22.0 (10.0–40.0) 0.71:1

(109:154)

13.0 (6.0–26.0) 2590.61

(1662.54–3535.01)

Low

OHI 256 17.0 (11.0–40.5) 0.88:1

(120:136)

14.0 (7.0–24.0) 2956.20

(1703.47–4430.85)

Low

IgM All 500 21.5 (10.0–42.0) 0.85:1

(230:270)

17.0 (7.0–35.0) 3628.43

(1687.59–9923.29)

NA

ASU/SEN 97 23.0 (12.25–36.75) 1.37:1

(56:41)

21.0 (9.25–35.75) 2956.66

(1496.31–7690.82)

High

BEP 137 24.0 (10.0–45.0) 0.72:1

(58:81)

24.0 (10.0–45.0) 4021.58

(1462.01–10396.13)

Moderate

FAW 124 23.0 (9.0–40.0) 0.77:1

(54:70)

11.0 (6.0–29.0) 4102.16

(2148.38–10473.40)

Low

OHI 140 17.5 (9.0–42.0) 0.79:1

(62:78)

15.0 (7.0–25.0) 3569.30

(1561.18–10754.69)

Low

The interquartile range (Q1 and Q3) of age, duration of residency, and the antibody titres are shown in brackets. Reported biting rates are according to [30,42]. All: All

clusters together; village clusters: ASU/SEN: Asubende/Senyase; BEP: Beposo; FAW: Fawoman; OHI: Ohiampe. n: number; M: males; F: females; NA: not applicable

https://doi.org/10.1371/journal.pntd.0010108.t002
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Fig 2. Human anti-blackfly saliva IgG antibody responses according to cluster, sex, and age. Boxplots showing the

distributions of IgG responses (A) by cluster, (B) by sex, (C) by age, and scatterplot (D) by age and sex (points)

showing the best-fit lines (solid lines). IgG levels are shown as units/ml. F: female; M: male. Village clusters: ASU/SEN:

Asubende/ Senyase; BEP: Beposo; FAW: Fawoman; OHI: Ohiampe.

https://doi.org/10.1371/journal.pntd.0010108.g002

Fig 3. Human anti-blackfly saliva IgM antibody responses according to cluster, sex and age. Boxplots showing the

distributions of IgM responses (A) by cluster, (B) by sex, (C) by age, and scatterplot (D) by age and sex (points)

showing the best-fit lines (solid lines). IgM levels are shown as units/ml. F: female; M: male. Village clusters: ASU/SEN:

Asubende/ Senyase; BEP: Beposo; FAW: Fawoman; OHI: Ohiampe.

https://doi.org/10.1371/journal.pntd.0010108.g003
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Fig 4. Regression effect plots for all explanatory variables contained in the final model for the IgG responses. Each

plot visualizes the effect of a specific explanatory variable while fixing the others to their reference level. The panels

show the variations in responses between village clusters (A), sex (B), age (C), and an interaction between age and sex

(D). The vertical lines in panel A and B and the shaded regions around the lines in panel C and D represent the 95%

confidence intervals. M = Male; F = Female. Village clusters: ASU/SEN: Asubende/Senyase; BEP: Beposo; FAW:

Fawoman; OHI: Ohiampe.

https://doi.org/10.1371/journal.pntd.0010108.g004

Fig 5. Exponentiated regression coefficient estimates for the final model per assay. The regression coefficient estimates for

the final model are shown for IgG responses (A), and IgM responses (B). The circles represent the exponentiated mean

coefficient estimate, the value shown above the corresponding circle, and the horizontal lines represent the 95% confidence

intervals of the estimate. Significance levels ��� P<0.001; �� P<0.01; � P<0.05. The referents were Asubende/Senyase for village

clusters, and females for both sex and the age × sex interaction term. Village clusters: BEP: Beposo; FAW: Fawoman, OHI:

Ohiampe.

https://doi.org/10.1371/journal.pntd.0010108.g005
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IgG anti-saliva antibody responses decreased with increasing age in both sexes (P<0.001)

(Figs 4C and 5), but the response in males declined at a faster rate than in females (test of

age × sex interaction term; P<0.001) (Figs 4D and 5). Both adult male and female participants

�18 years old exhibited lower IgG antibody levels than those aged<18 years (Pfemales<0.001;

Pmales<0.001) (Fig 5). Males and females in pre-teenage years showed a similar antibody

decline with increasing age (age × sex interaction: P = 0.328), whereas in adults the decline was

more rapid in males than in females (age × sex interaction: P<0.01) (Fig 4D).

Multivariate analyses of IgM responses according to village cluster, sex or

age

Equivalent multivariate analyses of anti-saliva IgM antibody responses for 500 recruits

(Table 1) indicated no significant variation between study clusters (PBEP = 0.403; PFAW =

0.301; POHI = 0.632) or sex (P = 0.405) (Figs 5, 6A and 6B). However, there was a general

decline in response magnitude with increasing age (P<0.01) (Figs 5 and 6C), but in contrast to

IgG, the decline with age was not significantly different between sexes (test of age × sex interac-

tion term: P = 0.726) (Fig 6D). Fig 5 illustrates the (exponentiated) regression coefficient esti-

mates of the final model (summarized in Table F in S1 File).

Correlation between IgG and IgM responses

The correlation between IgG and IgM antibody responses was generally low (rs = 0.10,

P<0.05), and not dissimilar considering females or males alone (females: rs = 0.12, P<0.1;

males: rs = 0.08, P = 0.21) (Fig F in S1 File).

Fig 6. Regression effect plots for all explanatory variables contained in the final model for the IgM responses.

Each plot visualizes the effect of a specific explanatory variable while fixing the others. The panels show the variations

in responses between village clusters (A), sex (B), age (C), and an interaction between age and sex (D). The vertical

lines in panel A and B and the shaded regions around the lines in panel C and D represent the 95% confidence

intervals. M = Male; F = Female. Village clusters: ASU/SEN: Asubende/Senyase; BEP: Beposo; FAW: Fawoman; OHI:

Ohiampe.

https://doi.org/10.1371/journal.pntd.0010108.g006
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Discussion

This study measured human antibody responses against blackfly saliva as an indicator of indi-

vidual bite exposure; an approach that has been validated for several vector–host systems with

the exception of blackflies [47,48]. Simuliids are important disease vectors of human and

bovine onchocerciasis [49], mansonelliasis caused by Mansonella ozzardi [50], and vesicular

stomatitis virus [51], yet they have not received as much attention as sand fly, mosquito or tick

vectors. Only recently, we successfully developed novel immunoassays against blackfly saliva

and this is the first study to apply these tools to an epidemiological setting. The appropriate use

of these assays will also improve our understanding of O. volvulus transmission dynamics and

will be used to monitor changes in biting rates and the success of vector control interventions

[23]. Heterogenous exposure to blackfly bites is an important determinant of the observed

age- and sex-dependent profiles of O. volvulus infection [5]. Evaluating age- and sex-associated

exposure patterns using empirically collected data can help inform transmission dynamics

models, as these currently use assumed age- and sex-dependent exposure patterns that have, at

best, been derived from fitting the models to age- and sex-specific infection profiles [5]. Such

assumptions influence the choice of informative age groups for serological monitoring in stop-

MDA surveys [4], and have implications for understanding the contribution of currently

untreated groups to transmission and morbidity [37], as well as for the design and evaluation

of potential prophylactic strategies [52]. Testing such assumptions with independently col-

lected data is crucial for better parameterization of transmission models and improved design

of epidemiological surveys and surveillance strategies. Therefore, we explored age-and sex-

related patterns of IgG and IgM antibody titres against S. damnosum s.l. saliva across well char-

acterized endemic communities.

Both IgG and IgM antibody levels were high in children and gradually declined with

increasing age. Similar trends have been observed in human antibody responses to the saliva

of several mosquito species [53–58], posing the question of whether these patterns indicate

decreasing exposure to vector bites with age, or increasing immune tolerance and desensitiza-

tion with persistent or cumulative saliva exposure [59–62]. Investigation of human IgG

responses to sand fly saliva supports the latter proposition, with higher anti-saliva antibody

responses observed in new compared to long-term residents of a sand fly-endemic region [63].

Similarly, desensitization to salivary antigens was detected in an area colonized for more than

25 years by Aedes mosquitoes, compared to an area where individuals had been exposed for no

longer than 5 years [54]. Following that pattern, median IgG antibody responses also tended to

be lower in the current study villages where higher S. damnosum s.l. biting rates were previ-

ously reported [30,42]. Antibody responses to Anopheles mosquito bites measured after the

summer season of high vector abundance were considerably higher than those before the sum-

mer season; notwithstanding they consistently declined with increasing host age [54,55]. Inter-

estingly, in that study the decline appeared to be antigen-dependent, as the trend was not

detected in antibody responses to a specific recombinantly-expressed protein as opposed to

the whole salivary gland homogenate [64–66]. Several immunogenic proteins were recently

detected in S. damnosum s.l. saliva of which most were well-known salivary antigens [23].

Future expression of these in recombinant forms may be instructive and increase assay sensi-

tivity. This is especially interesting for IgM as these antibody responses were shown to be less

specific than the IgG responses [23].

The median IgG response was lower in males than females, which can be attributed to the

greater rate of decline of the IgG response with increasing age in males. This may reflect sex

differences in behaviour such as daily habits, occupation, education, or clothing, that influence

physical exposure to blood-seeking blackflies. Male occupants of most ages are responsible for
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agriculture, farming and fishing in the Pru region and may be less well covered by protective

clothing, whereas women are more covered, spend more time at home performing domestic

duties and/or engage in long-distance trading activities [67,68]. The current study was limited

in not recording the daily activities of the participants, though biting blackflies appeared to be

ubiquitous throughout the day within villages. That females show greater levels of non-specific

innate and adaptive immune responsiveness than males, particularly post-puberty, suggests

that hormonal involvement (reviewed in [69]) may contribute to the sex differences observed

in this study.

A non-mutually exclusive alternative driving factor behind the observed decline in antibody

levels may also be a lower exposure to blackfly bites with increasing age. Such patterns of expo-

sure were predicted by fitting age- and sex-structured onchocerciasis transmission mathemati-

cal models to age- and sex-specific profiles of O. volvulus skin microfilariae in another African

savannah setting [5]. However, the model fits also indicated that vector exposure of females

should increase (rather than decrease) with age. If this is correct, and if women indeed are

more intensely exposed as they age, it further supports the case for desensitization with

increased long-term biting exposure. Therefore, one next step to better understand exposure

patterns with age and sex is to fit dynamic models of antibody acquisition and decay to the

(IgG) data obtained here [70,71]. Future studies of the molecular and cellular mechanisms that

underly immune tolerance and progressive desensitization to blackfly saliva would also be

most informative. Variations in IgG subclass responsiveness are also possible as shown against

Anopheles or Aedes saliva [55,72]. Interestingly, human IgG4 amongst bee-keepers was found

to be associated with immunotolerance to bee venom [73,74].

Less clear in this study were the age and sex-related trends in IgM responses. Although they

also declined with age supporting the immunological desensitization hypothesis, IgM responses

are generally shorter lived than IgG responses, hence, likely to be more indicative of recent

exposure. A shorter half-life together with a lack of cumulative increase after repeat exposure

may partially explain the large number of low IgM responses observed in the village residents,

and the lack of correlations between individual host IgG and IgM responses, particularly as the

current study was limited to cross-sectional sampling during the high biting season.

Future studies would benefit from quantifying short- and long-term kinetics in individual

anti-saliva Ig responses in the context of seasonal fluctuations in vector abundance and dis-

tance to vector breeding habitats, to refine our understanding of the link between biting rates

and the Ig responses [16,53,54]. In fact, it would be very informative if antibody data generated

using our immunoassays could be used in spatial analyses to better understand patterns of vec-

tor–human contact with increasing distance from breeding sites. At present, mapping exer-

cises such as those used for Onchocerciasis Elimination Mapping (OEM) collect information

on the distribution of breeding sites and vector presence. Our novel tool could complement

OEM to identify high-risk locations where exposure to vector bites would provide additional

information to seroprevalence surveys to guide start-MDA decisions and identify informative

age/sex groups for sampling [75]. Most of the information about the relationship between vec-

tor density and distance from breeding sites pertains to African savannah settings (such as

those explored here), with less data available to characterize such a relationship in forest and

forest-savannah mosaic settings. Therefore, if our anti-vector saliva assays could be combined

with (seroprevalence) parasite exposure assays for a range of epidemiological settings, it would

be possible to obtain valuable information to help elimination efforts. However, this necessi-

tates the testing and validation of our assays for other species/cytoforms of the S. damnosum
complex.

The predominant vector species in the Bono East region are the savannah members of the

complex, S. damnosum sensu stricto/S. sirbanum [27,30]. It remains to be established if the
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anti-S. damnosum s.l. IgG and IgM antibody responses represent a damnosum complex-spe-

cific marker, or if member-specific markers of exposure would be more sensitive. We acknowl-

edge that more data need to be collected to ascertain the validity of our immunoassays to

reliably measure exposure to vector bites. Regarding empirical approaches, there are no experi-

mental or observational data yet to precisely quantify the relationship between anti-salivary

antibody levels and the number of vector bites. As colonizing blackflies in the laboratory is

notoriously difficult, collecting field data to understand the kinetics of the antibody responses

over a specified time frame would be helpful, particularly in settings with strong seasonality, in

which vector biting ceases or greatly decreases for several months during the year. Regarding

theoretical approaches, and as mentioned earlier, the exposure profiles predicted by age- and

sex-structured onchocerciasis transmission models are broadly consistent with the proposed

desensitization hypothesis. If this proves to be the case, we expect vector saliva-naïve children

still to respond well to salivary antigens as an indication of continued exposure to vector bites

pre- or post-MDA campaigns in areas with no vector control or without major ecological

changes affecting vector density. Our assay could then be used to understand potential secular

trends in vector biting rates due to anthropogenic change. Ideally, multiplex assays could be

developed to test simultaneously for both exposure to vector bites and to parasite antigens.

Conclusion

Serological anti-saliva assays are useful tools to complement information collected by HLCs by

measuring human-vector contact and revealing heterogeneities in exposure at the individual

and community level that cannot be unravelled by HLCs alone. By novel application to four

onchocerciasis-endemic communities, this study successfully evaluated age- and sex-related

demographic patterns in blackfly bite exposure. The analyses uncovered the possibility of age-

and sex-specific immunotolerance or desensitization to blackfly saliva, likely resulting from

cumulative blackfly exposure with age. Concomitant studies of infection levels in humans and

flies, vector abundance, and immune responses to blackfly saliva and parasite antigens would

greatly help to better understand transmission risk and intensity, and improve parameteriza-

tion of transmission models with which to inform optimal interventions and surveillance strat-

egies to achieve and protect onchocerciasis elimination.
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Courtenay.

Data curation: Laura Willen.

Formal analysis: Laura Willen, Philip Milton.

Funding acquisition: Mike Y. Osei-Atweneboana, Petr Volf, Maria-Gloria Basáñez, Orin
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