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Canine inflammatory bowel disease (IBD) is a chronic, immunologically mediated

intestinal disorder, resulting from the complex interaction of genetic, environmental

and immune factors. Hydrolyzed diets are used in dogs with food-responsive

diarrhea (FRD) to reduce adverse responses to immunostimulatory proteins. Prebiotics

(PRBs) and glycosaminoglycans (GAGs) have previously been demonstrated to show

anti-inflammatory activity in the intestinal mucosa. Notably, hydrolyzed diets combined

with the administration of PRBs and GAGs offer a promising approach for the treatment

of canine IBD. Our aim was to investigate the effects of hydrolyzed diet and GAG+PRB

co-treatment on the serum metabolomic profile of IBD dogs. Dogs with IBD randomly

received either hydrolyzed diet supplemented with GAGs and PRBs (treatment 1) or

hydrolyzed diet alone (treatment 2) for 10 weeks. A targeted metabolomics approach

using mass spectrometry was performed to quantify changes in the serum metabolome

before and after treatment and between treatment 1 and 2. Principal component analysis

(PCA), partial least squares-discriminant analysis (PLS-DA), hierarchical cluster analysis

(HCA) and univariate statistics were used to identify differences between the treatment

groups. PCA, PLS-DA, and HCA showed a clear clustering of IBD dogs before and

after hydrolyzed diet, indicating that the treatment impacted the serum metabolome.

Univariate analysis revealed that most of the altered metabolites were involved in lipid

metabolism. The most impacted lipid classes were components of cell membranes,

including glycerophospholipids, sphingolipids, and di- and triglycerides. In addition,

changes in serum metabolites after GAG+PRB co-treatment suggested a possible

additional beneficial effect on the lipid metabolism in IBD dogs. In conclusion, the present
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study showed a significant increase in metabolites that protect gut cell membrane

integrity in response to hydrolyzed diet alone or in combination with GAG+PRB

co-treatment. Administration of such treatment over 70 days improved selected serum

biomarkers of canine IBD, possibly indicating improved intestinal membrane integrity.

Keywords: metabolomics (OMICS), inflammatory bowel disease, dogs, serum, partial least-squares-

discriminant analysis

INTRODUCTION

Canine inflammatory bowel disease (IBD) is one of the most
common chronic gastrointestinal (GI) diseases in dogs (1, 2).
It is caused by an interplay of genetic susceptibility, intestinal
dysbiosis, diet, and other environmental factors, similar to
human IBD (3, 4). Exclusion diets with a single protein
and formulation varieties (3) are used to treat such food-
responsive enteropathies, including dietary hypersensitivity or
food responsive diarrhea (FRD). Several hydrolyzed diets have
been developed for the treatment of Crohn’s disease in humans
(4, 5) and dogs (3). These diets are considered hypoallergenic
because the hydrolysis process disrupts protein structures to limit
existing allergens and allergenic epitopes, thereby making the
diets unlikely to stimulate the immune system (6, 7). Hydrolyzed
diets are clinically highly effective for the long-term treatment of
both FRE and IBD (8). However, it is not known how such diets
impact metabolic processes that coincide with these beneficial
effects, which requires the study of serum metabolite profiles.

Chondroitin sulfate (CS), a natural glycosaminoglycan (GAG)
found in the extracellular matrix, has been shown to inhibit
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) activity (9), which is significantly increased in various
chronic inflammatory processes including canine IBD (10).
Oral administration of prebiotics (PRBs) has been shown to
promote the growth of beneficial gut microbiota (11). Therefore,
we hypothesized that oral administration of GAGs and PRBs
reduces intestinal inflammation and further benefits dogs with
IBD during treatment with hydrolyzed diets. A previous study
demonstrated that concomitant treatment with GAGs and PRBs
and a hydrolyzed diet was safe in IBD dogs over 180 days, and
suggested improvements in selected serum biomarkers, such as

cholesterol and paraoxonase-1 (12). Recently, a synergistic effect

of PRBs and hydrolyzed diet has been reported in rats, in which
goblet cell populations were rapidly restored and malnutrition-
induced mucosal atrophy was reduced (13).

Metabolomic analysis inmedical research has recently become

a promising method for investigating mechanisms that cause

chronic diseases, including IBD (14–17). Metabolite profiles can
be used not only for prognostic purposes, but also to identify
early biomarkers before enteropathic abnormalities are evident
(18, 19). Furthermore, metabolomics can be used to investigate
mechanistic relationships between certain metabolites and the
influence of diets (20, 21). For example, lipid metabolism in
humans and rodent models changes in response to the presence
of IBD (22–24).

In veterinary medicine, only a few studies have utilized
serum metabolomics analysis in clinical patients (25, 26). To our

knowledge, only two studies have been reported in dogs with
IBD (27, 28). These studies have provided some new insights into
metabolomic differences in IBD dogs vs. healthy dogs and IBD
dogs before and after treatment. The aim of the present study
was to further characterize serum metabolite profiles before and
after a hydrolyzed diet therapy in IBD dogs. We also investigated
the effect of PRBs and GAGs on metabolite profiles of IBD
dogs compared to standard treatment (hydrolyzed diet only) plus
placebo therapy.

MATERIALS AND METHODS

Animals
Client-owned dogs with IBD were enrolled in a prospective,
randomized, double-blind, placebo-controlled study. All animal
owners gave written informed consent. All procedures involving
animals were reviewed and approved by the Animal Welfare
and Ethical Review Board of the Royal Veterinary College
(P302A3B70) and the UK Home Office under the Animals
(Scientific Procedures) Act 1986 (PPL 70/7393).

All dogs were diagnosed with IBD based on clinical
exclusion diagnosis (29) including stool examination, complete
blood count, chemistry profile, urinalysis, serum trypsin-
like immunoreactivity, serum canine pancreatic lipase
immunoreactivity, serum cobalamin (i.e., B12), and folate
concentrations. Furthermore, dogs were analyzed by two-
dimensional abdominal ultrasound and endoscopic biopsies
of the duodenum, ileum, and colon. Based on the guidelines
of the World Small Animal Veterinary Association (WSAVA)
International Gastrointestinal Standardization Group (30, 31),
dogs showed predominantly lymphoplasmacytic infiltration. The
response to dietary treatment was assessed with a commercial
hydrolyzed diet: Purina Veterinary Diet HA Hypoallergenic
Canine Formula (Purina HA; Nestlé Purina Petcare); details of
its nutritional components are shown in Table S1. The dogs
presenting for a work-up for chronic diarrhea were discharged
from the hospital after all diagnostic procedures. The dog
owners were instructed to exclusively feed Purina HA until
the biopsy results were available. They were contacted ∼7
days post discharge to assess the response of their dogs to the
diet. If the dogs responded positively to dietary exclusion with
improvement in clinical signs such as having a formed stool or
less diarrhea, those IBD dogs were included in the study.

Study Design
Dogs with confirmed IBD and with a positive response to the
dietary exclusion were randomized by means of a computer-
generated schedule into one of the two treatment groups:

Frontiers in Veterinary Science | www.frontiersin.org 2 July 2020 | Volume 7 | Article 451



Ambrosini et al. Lipid Metabolism in Canine IBD

GAG+PRB supplement (treatment 1) and placebo (treatment 2)
at visit 2. All dogs were switched to a Purina HA hydrolyzed
diet since visit 1, which was maintained throughout the study
period. Dogs in the GAG+PRB supplement group (treatment 1)
received an oral daily dose of 10mg CS, 215mg alpha-glucan
butyrogenic resistant starch, 26mg beta-glucans and mannan-
oligosaccharides per kg of body weight. Dogs in the placebo
group (treatment 2) received a placebo powder, which only
contained excipients and flavorings, orally once a day.

Blood samples were collected during the initial physical
examination (pre-treatment, visit 1, day 0), during a subsequent
visit (visit 2, day 14 ± 2), and after the treatment schedule
was completed (post-treatment, visit 3, day 70 ± 2). Serum was
obtained by centrifugation, frozen within 30min of collection
and then immediately stored at−80◦C until analysis. Both the
owners and the evaluators of the dogs, including clinicians and
those who analyzed samples and tissues, were blinded to the
assignment of the treatment groups. The study nursing staff acted
as dispensers and were not blinded. None of the IBD dogs had to
be unblinded during the course of the study. The trial design and
inclusion of dogs are summarized in Figure 1.

Ultimately, a total of 15 dogs were included in this study
(n = 9 for treatment 1, n = 6 for treatment 2). At the time
of registration (visit 1), there were 35 dogs, 20 of which were
excluded during the study (visit 2) for various reasons, including
unscheduled visits, non-compliance with dosage, progressive
weight loss and diarrhea, receiving prior treatment with steroids,
cyclosporine, and/or antibiotics. The characteristics of included
dogs (i.e., breeds, sex, age, and body weight) are summarized
in Table 1. The study population consisted of 10 male and 5
female dogs (intact and neutered) of different breeds and crosses
aged between 14 and 131 months. For each visit, the owners
provided data sheets showing the time and amount of feeding.
None of the dogs included in the study had problems eating
the recommended daily amount of food. All dogs responded

quickly and sustained to dietary treatment for 10 weeks. All dogs
remained with their owners at the end of the study and were then
subjected to normal veterinary and husbandry practices. Details
of the clinical data of the dogs will be published elsewhere in
the near future. In short, histopathological evaluations showed
a significant decrease in the modified WSAVA histological score
(31) after 10 weeks of treatment for both groups, but was not
statistically significant between treatment groups.

Chemicals
Ammonium acetate (Optima LC-MS), formic acid (mass
spectrometry grade), pyridine (99+%, extra pure), isopropanol,
acetonitrile, methanol, and water were purchased from Fisher-
Scientific (Fair Lawn, NJ 07410). Ethanol was purchased from
Merck (Billerica, MA 01821). All solvents were of LC-MS

TABLE 1 | Characteristics of the dogs included in the study at the time of

enrollment.

Treatment 1

(hydrolyzed diet supplemented

with PRBs and GAGs)

Treatment 2

(hydrolyzed diet only)

Breed Lurcher

Cross Breed

Staffordshire Bull Terrier

Coker Spaniel

Cockapoo

Border Collie

Labrador Retriever (3)

German Shepherd (2)

Boxer

Border Collie

Collie Cross

Lhasa Apso

Sex Female (0)

Neutered female (4)

Male (2)

Neutered male (3)

Female (1)

Neutered female (0)

Male (4)

Neutered male (1)

Age (months) 54.5 (14–131) 36 (19–80)

Numerical data are expressed as median (range).

FIGURE 1 | Summary of the trial design and inclusion of dogs. A total of 35 dogs were enrolled and 20 dogs had to be excluded for various reasons, including

unscheduled visits, non-compliance with the dosage, progressive weight loss and diarrhea, receiving prior treatment with steroids, cyclosporine, and/or antibiotics.

Each box represents the period in which the dogs received Purina HA diet (gray), treatment 1 (hydrolyzed diet supplemented with PRB+GAG; black) and treatment 2

(hydrolyzed diet only; upward diagonal). Blood samples for metabolomics analysis were collected during the initial physical examination (pre-treatment, visit 1, day 0),

during a subsequent visit (visit 2, day 14 ± 2), and after the treatment schedule (post-treatment, visit 3, day 70 ± 2).
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analytical grade or higher purity. Phosphate-buffered saline
(PBS 1x, sterile ultra-pure grade) was obtained from VWR
(Solon, OH 44139). Phenyl isothiocyanate (PITC, for protein
sequencing) was obtained from Sigma-Aldrich (St. Louis,
MO 63103).

Metabolite Extraction
Sample preparation was performed using the AbsoluteIDQ R©

p400 HR kit (Biocrates Life Sciences AG, Innsbruck, Austria) in
accordance with the user manual. In brief, after the addition of
10 µL of the supplied internal standard solution to each well on a
filter spot of the 96-well extraction plate, well-pipetting was done
using 10µL of each serum sample, quality control samples, blank,
or zero sample (PBS). The plate was then dried under a gentle
stream of nitrogen for 30min using a pressure manifold. The
samples were derivatized with 5% PITC in ethanol:water:pyridine
(1:1:1 v/v/v) for the amino acids and biogenic amines, and
subsequently dried for 60min under nitrogen. Metabolites and
internal standards were then extracted with 300 µL methanol
containing 5mM ammonium acetate by shaking for 30min at
450 rpm, and eluted by a gentle nitrogen stream. One-half of
the eluate was transferred to a new 96-well plate and diluted
with water (50:50 v/v) for the liquid chromatography-mass
spectrometry (LC-MS) analysis. The second-half of the eluate was
diluted with 250 µL of the running solvent for flow injection
analysis-mass spectrometry (FIA-MS). Both LC and FIA plates
were securely covered with silicon mats and shook for 5min at
500 rpm prior to analysis.

Quantification of Metabolites
Metabolites were measured with a targeted metabolomics
approach using a Dionex Ultimate 3000 ultra-high-performance
liquid chromatography (UHPLC) coupled to a Thermo Scientific
Q Exactive Focus Orbitrap mass spectrometer. This method
allowed for the quantification of up to 408 endogenous
metabolites across 11 different metabolite classes. A total of 21
amino acids and 21 biogenic amines were quantitatively analyzed
by UHPLC-electrospray ionization tandem mass spectrometry.

The chromatographic separation was based on a reserved-phase
liquid chromatography using 0.1% formic acid in water and 0.1%
formic acid in acetonitrile as mobile phase A and B, respectively.
The needle wash solvent was consisted of a mixture of
acetonitrile, methanol, isopropanol, and water (1:1:1:1 v/v/v/v).
The injection volume was set as 5 µL and the flow rate
was set as 0.8 mL/min. The remaining 366 metabolites,
including 55 acylcarnitines, 172 phosphatidylcholines (PCs),
24 lysophosphatidylcholines (LPCs), 18 diglycerides (DGs), 42
triglycerides (TGs), 31 sphingomyelins (SMs), 9 ceramides, 14
cholesteryl esters, and 1 sum of hexoses were analyzed by FIA-
MS, using a one-point internal standard calibration. In terms of
quantification, the lipids and a subset of acylcarnitines are semi-
quantitative in nature because of (i) the lack of commercially
available specific internal standards and (ii) the impossibility
to verification accuracy beyond arbitrary luminescence units.
Thus, the total concentrations of possible isobars and structural
isomers were represented in the present kit. We utilized the
running solvent provided by the kit for the FIA-MS analysis
and the solvent was used with an injection volume set to 20
µL. Separation gradients and mass detection were performed as
recommended by the manufacturer’s instructions.

Data Pre-processing
A total of 53 serum samples from 15 dogs (one to three samples
per dog before and after treatment) were included in this study
and means were calculated for each dog at each timepoint.
The data were then cleaned using a modified 80% rule. Briefly,
metabolites that were not present in at least 80% of the samples
in at least one group (i.e., pre-treatment 1, post-treatment 1, pre-
treatment 2, or post-treatment 2) were discarded; the remaining
284 metabolites included in the present work are listed in
Table S2. Remaining values below the limit of detection (LOD)
in the data set were replaced applying a logspline imputation
method with values between LOD and LOD/2 method (32) (R
version 3.4.1, package logspline). To meet the assumptions of
statistical tests, the data were additionally log2-transformed (33).

FIGURE 2 | PCA (A) and PLS-DA (B) on the data set for pre- vs. post-treatment 1 and post-treatment 2. The confidence interval of the ellipses is 95% considering a

normal distribution. Pre-treatment, n = 15, red circles; post-treatment 1, n = 9, green triangles; post-treatment 2, n = 6; blue squares.
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Multivariate Statistics
Unsupervised principal component analysis (PCA) and
supervised partial least squares-discriminant analysis (PLS-DA)
were applied to visualize, group, and classify the samples.
Both statistical analyses were conducted in R software (version
3.4.1); PCA was performed using the R package stats and
PLS-DA was carried out with the R package mixOmics. In
addition, hierarchical cluster analysis (HCA) was applied to
create heatmaps of the differentially expressed metabolites and
to assign samples to clusters (R version 3.4.1, package heatmap).

Univariate Statistics
Paired t-tests were performed to identify significant metabolite
alterations in response to treatment (R version 3.4.1, package
stats). To control type 1 error (i.e., false positives), q values were
calculated using the Benjamini-Hochberg method (34). The level
of significance was set at p ≤ 0.05 and q ≤ 0.2, respectively.

RESULTS

A Clear Clustering Between Pre-treatment
vs. Post-treatment 1 and Post-treatment 2
The PCA (Figure 2A) and PLS-DA (Figure 2B) plots revealed a
clustering for pre-treatment vs. post-treatment 1 (GAG+PRB)
and post-treatment 2 (placebo), indicating that both of the
treatments had a significant impact on the canine serum
metabolome. In addition, despite the fact that the samples in
the post-treatment 2 group are more distributed along principal
component 2 in both PCA and PLS-DA, there was no clear
separation between treatment 1 and treatment 2. This suggests
that there was no difference between the two treatment groups
on the serum metabolite levels overall.

Various Serum Metabolites Changed
Between Pre- and Post-treatment 1
Consistent with the PCA and PLS-DA results (Figure 2),
HCA based on significantly changed metabolites between
pre- vs. post-treatment 1 showed a strong clustering between
samples taken before and after treatment (Figure 3). Univariate
statistical analysis showed that almost all significantly changed
metabolites in response to treatment 1 were lipids, indicating
an overall altered lipid metabolism after hydrolyzed diet therapy
when combined with GAG+PRB administration (Figure 4).
Glycerophospholipids, such as phosphatidylcholines (PCs),
sphingolipids, such as sphingomyelins (SMs), as well as
lysophosphatidylcholines (LPCs), and triglycerides (TGs) were
the most affected metabolite classes. Specifically, multi-fold
increases were seen after treatment 1 for PC(30:1) and PC(42:6),
SM(30:1) and SM(32:2), LPC(22:5), and TG(46:2), TG(48:3),
and TG(44:2).

Various Serum Metabolites Changed
Between Pre- and Post-treatment 2
Consistent with the PCA and PLS-DA results (Figure 2),
HCA based on significantly changed metabolites between
pre- vs. post-treatment 2 showed a strong clustering between
samples taken before and after treatment (Figure 5). Univariate

FIGURE 3 | HCA for significantly changed metabolites between pre- and

post-treatment 1. Hierarchical clustering and heatmap of all 103 metabolites

that were identified to be significantly different (p ≤ 0.05 and q ≤ 0.2) in

concentration between pre-treatment (n = 9) and post-treatment 1 (n = 9).

Dog identification numbers are provided on the x-axis.
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FIGURE 4 | Box plots of all significantly changes metabolites between pre- and post-treatment 1. Box plots of significantly changed metabolites (p ≤ 0.05 and q ≤

0.2) for the comparison of pre-treatment (n = 9) and post-treatment 1 (n = 9) are shown on the cleaned, imputed and log2-transformed data set. Concentration unit is

µM. Boxplots show the median (bar), the interquartile range (box), whiskers (range) corresponding to maximal and minimal data, and suspected outliers (filled circles).

statistical analysis showed that almost all significantly changed
metabolites in response to treatment 2 were lipids, indicating
an overall altered lipid metabolism (Figure 6), similar to
the effects in response to treatment 1. Specifically, multi-
fold increases were seen after treatment 2 for PC-O(38:3),
PC(30:1), and PC(39:2), SM(30:1) and SM(32:2), DG(38:0),
TG(44:1) and TG(46:2), CE(19:2) and AC(10:2). Notably,
putrescine and taurine levels were increased ∼1.5 times
following treatment 2, which was different from the effects seen
following treatment 1.

Comparison of Serum Metabolomic
Changes Between Treatment 1 and 2
Further analyses were performed to investigate which serum
metabolites were uniquely changed by each treatment. The serum
metabolites that were significantly changed after treatment 1 but
not in response to treatment 2 are shown in Figure 7. Consistent
with the univariate statistical analysis, significant changes were
noted in lipids including PC(42:6), TG(44:2), and TG(48:3).
The serum metabolites that were significantly changed following
treatment 2 but not in response to treatment 1 are shown in

Figure 8. Consistent with the univariate statistical analysis, lipids
including PC(39:2) were increased significantly after in treatment
2 but not after treatment 1. Also, putrescine and taurine levels
were increased significantly in treatment 2 group but not in
treatment 1 group. In addition to single metabolite alterations,
we also found that the sum of measured PCs was significantly
increased in response to treatment 2, a result whichwas not found
in response to treatment 1 (Figure S1).

DISCUSSION

In this study, a mass-spectrometric approach was applied to
study metabolomic changes in serum samples from dogs with
IBD in response to hydrolyzed diet with or without PRB
and GAG supplementation. We found that the dogs’ serum
metabolome changed significantly after hydrolyzed diet, both
with or without PRB and GAG supplement. Overall, lipids
were greatly impacted by these treatments, with PCs and SMs
showing the greatest increases in concentration. In addition,
we found that simultaneous treatment with PRBs and GAGs
in combination with the hydrolyzed diet increased more lipid
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FIGURE 5 | HCA for significantly changed metabolites between pre- and

post-treatment 2. Hierarchical clustering and heatmap of all 54 metabolites

that were identified to be significantly different (p ≤ 0.05 and q ≤ 0.2) in

concentration between pre-treatment (n = 6) and post-treatment 1 (n = 6).

Dog identification numbers are provided on the x-axis.

metabolites compared to placebo therapy, which could indicate
a possible beneficial effect of PRB and GAG supplementation
in FRD.

The most significantly altered metabolites in response to
treatment 1 (Purina HA and GAG+PRB) and treatment 2
(Purina HA and placebo) were PCs, which consist of a
choline head group and a glycerophosphoric acid with a
variety of saturated and unsaturated fatty acids (35). SMs, as
an example of sphingolipids, were also significantly affected
by treatment 1 and 2. They consist of sphingosine and a
fatty acid, which mainly occur in cell membranes and are
synthesized by the enzymatic transfer of a phosphocholine from
phosphatidylcholine to ceramide (36). SM levels were increased
after both treatment strategies, indicating that biochemical
pathways in which these molecules are involved were impacted in
IBD dogs. PCs and SMs have been shown to be essential structural
components of intestinal membranes, providing integrity and
protection to the intestinal mucosa (37, 38). Since the mucosal
abnormalities in canine IBD include severe mucosal architectural
changes (30, 31), the increase in PCs and SMs observed in
this study may reflect a restoration of the mucosal barrier
due to the protective effects of those glycerophospholipids
on the intestinal cell integrity. Other metabolites found in
membranes that were affected by both treatments were DGs
and TGs, which also generally tended to be elevated after
the treatments, suggesting improved lipid absorption as a
potential sign of recovery of the intestinal mucosal integrity.
These findings are important because various studies have shown
that the lipid metabolism could play a crucial role in modulating
the homeostasis of the intestinal epithelium (39). Disruption of
intestinal tight junctions, followed by an increase in intestinal
permeability due to local inflammation or dysbiosis, could be
a key trigger for IBD development (12). Maintaining lipid
metabolism could serve as a protective mechanism for such a
disruption (37). In particular, it has been shown that a type of
sphingolipids, gangliosides, inhibits enterotoxin activity and thus
contributes to maintaining the intestinal barrier integrity (40).
This type of sphingolipids also inhibits adhesion and growth of
Escherichia coli in infants with intestinal infections (41).

Amino acids and biogenic amines were hardly altered
by the treatments, suggesting that the respective metabolic
pathways involving these molecules were not changed by the
hydrolyzed diet; only the levels of taurine and putrescine
were increased following treatment 2. Taurine has various
physiological functions, including a role in the development of
central nervous, renal, and cardiovascular systems, stabilization
of membranes, regulation of adipose tissue, and antioxidant
effects (42–45). In addition, experiments in rats have shown
that taurine can ameliorate the clinical signs of IBD (46).
Animal models for IBD have also shown that dietary amino
acids, such as tryptophan, could improve IBD as an adjunct
to conventional therapy (45, 47, 48). High serum taurine levels
could be considered as a biomarker for a positive outcome
of IBD treatment and an adjunctive therapy for canine IBD.
Putrescine, which is one of the biogenic amines, was also
increased only following treatment 2 in our study. Interestingly,
this metabolite was also found to be significantly increased
in human IBD patients compared to healthy controls (49).
Polyamines, including putrescine, determine the physiologic
growth of intestinal mucosa, and elevated levels of polyamines

Frontiers in Veterinary Science | www.frontiersin.org 7 July 2020 | Volume 7 | Article 451



Ambrosini et al. Lipid Metabolism in Canine IBD

FIGURE 6 | Box plots of all significantly changes metabolites between pre- and post-treatment 2. Box plots of significantly changed metabolites (p ≤ 0.05 and q ≤

0.2) for the comparison of pre-treatment (n = 6) and post-treatment 2 (n = 6) are shown on the cleaned, imputed and log2-transformed data set. Concentration unit is

µM. Boxplots show the median (bar), the interquartile range (box), whiskers (range) corresponding to maximal and minimal data, and suspected outliers (filled circles).

FIGURE 7 | Box plots of all metabolites that were significantly changed in response to treatment 1, but not in response to treatment 2. Concentration unit is µM.

Boxplots show the median (bar), the interquartile range (box), whiskers (range) corresponding to maximal and minimal data, and suspected outliers (filled circles).
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FIGURE 8 | Box plots of all metabolites that were significantly changed in response to treatment 2, but not in response to treatment 1. Concentration unit is µM.

Boxplots show the median (bar), the interquartile range (box), whiskers (range) corresponding to maximal and minimal data, and suspected outliers (filled circles).

seem to lead to the oxidative stress caused by the catabolism
of polyamines (50). A sustained increase in putrescine amounts
could therefore indicate persistent oxidative stress, and this
oxidative stress could be involved in the pathogenesis of canine
IBD (51) as well as human IBD (52). This indicates that treatment
2 (i.e., diet therapy without PRBs and GAGs) might not be
entirely protective in its effect on gut homeostasis.

Contrary to genomic and proteomic studies, metabolomic
analysis allows the evaluation of the simplest low molecular
weight metabolites that are involved in disease processes (14, 53).
The present study showed a positive effect of IBD treatment
using PRBs and GAGs in addition to the hydrolyzed diet alone.
Mechanistic effects of glycerophospholipids or TGs could be
tested in our recently established intestinal cell models to better
recapitulate canine intestine (54, 55).

The very first metabolomic study on canine IBD showed
no significant alterations in lipid metabolism between healthy
and IBD dogs (27). Interestingly, the authors discussed that the
method they utilized, gas chromatography coupled with time-
of-flight mass spectrometry, might have been a less sensitive
method for lipid detection. In our study, we used UHPLC to
detect even low levels of lipid metabolites in serum samples
from IBD dogs. Another recently published study sought to
overcome this weakness utilizing a hydrophilic interaction liquid
chromatography of polar lipid classes (28). Interestingly, this
study showed significant alterations in lipid metabolites before
and after diet and glucocorticoid treatment in IBD dogs (28).
However, this study only assessed phospholipids, while our
current study examined a large number of phospholipids as well
as a large number of other lipids and low molecular weight
molecules. We used calibration curves and internal standards
to quantify the amino acids and biogenic amines and a single-
point internal standard calibration to quantify the lipids. These

methods are considered to be more robust approaches compared
to methods based on relative response factors of lipid analytes
without internal standards. It is important to note that the study
performed by Kalenyak et al. (28) employed a special novel
protein diet (i.e., codfish), which is not commercially available in
dogs. The results are therefore difficult to apply to a population
of dogs treated with commercially available hydrolyzed diets,
as was done in our study. In addition, their study only treated
food-responsive IBD dogs with 4-week diet therapy, while our
study showed stable response over a 10-week period, similar
to the longer duration of treatment recommended in human
celiac disease (56). Furthermore, Kalenyak et al., pointed out
in their work that the samples were stored at −20◦C for ∼10
years, which was previously shown to have an impact on the
serum metabolome (57). However, evidence of similar findings
in lipid metabolome alterations at the time of clinical remission
suggests that further investigations on lipidomics in canine IBD
are needed. Studies that include such sensitive lipid metabolite
analysis in larger samples from healthy and IBD dogs will
likely elucidate biomarkers for early disease detection and help
elucidate underlying pathogenic mechanisms.

One of the limitations of our study was the small sample
size of animals used in this study. Therefore, it is possible that
we may have overlooked some minor differences in metabolite
profiles between treatment groups. However, our study showed
moderate changes in lipid metabolite in IBD dogs after medical
interventions that correlated with clinical improvements (clinical
remission data will be published elsewhere). This suggests
that a change in lipid metabolism is partially involved in the
pathogenesis of canine IBD, similar to data in human IBD and
mouse models of IBD (22–24). Fecal microbiome analysis was
not performed in this study which, however, would have been
interesting andmay have linked some of the changes in the serum
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metabolome to possible dysbiosis in the microbiome. Further
limitations of our study were that the dogs were client-owned
and therefore fed individually by them, and that we have not
included healthy controls to assess disease-specific changes in
metabolomic perturbations.

In conclusion, our metabolomic study showed a significant
increase in metabolites that protect gut membrane integrity
after treatment with hydrolyzed diet in IBD dogs. Concomitant
administration of PRBs and GAGs with a hydrolyzed diet
of more than 70 days was well-tolerated by IBD dogs and
resulted in additional improvements in selected serum lipid
metabolites, possibly indicating an improvement of intestinal
membrane integrity.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

ETHICS STATEMENT

The animal study was reviewed and approved by the Animal
Welfare and Ethical Review Board (AWERB) of the Royal
Veterinary College (P302A3B70) the UK Home Office under
The Animals (Scientific Procedures) Act 1986 (PPL 70/7393).
Written informed consent was obtained from the owners for the
participation of their animals in this study.

AUTHOR CONTRIBUTIONS

KA conceived of the idea for the research. KA, BG, and
OG performed the clinical trial. SN, UM, MA, Y-JS, and JM
performed the statistical analyses. YA, JM, and KA interpreted
the data and reviewed literature. YA drafted and revised the
manuscript. VD drafted the materials and methods section for
the mass-spectrometry. DBorc, SS, BG, DBort, OG, TA, AW,
JM, AJ, SN, and KA reviewed and edited the manuscript. MA
performed statistical analysis and contributed figures to the
manuscript. All authors read and approved the final manuscript.

FUNDING

This study was supported by Bioiberica S.A.U.

ACKNOWLEDGMENTS

We acknowledge the help of the Clinical Investigation Center at
the Royal Veterinary College for help in performing the clinical
trial and data collection. The original work was published as a
research abstract at Digestive Disease Week R© 2019 (58).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fvets.
2020.00451/full#supplementary-material

REFERENCES

1. Jergens AE, Schreiner CA, Frank DE, Niyo Y, Ahrens FE, Eckersall PD, et al. A

scoring index for disease activity in canine inflammatory bowel disease. J Vet

Internal Med. (2003) 17:291–7. doi: 10.1111/j.1939-1676.2003.tb02450.x

2. Suchodolski JS, Xenoulis PG, Paddock CG, Steiner JM, Jergens AE. Molecular

analysis of the bacterial microbiota in duodenal biopsies from dogs with

idiopathic inflammatory bowel disease. Vet Microbiol. (2010) 142:394–

400. doi: 10.1016/j.vetmic.2009.11.002

3. Mandigers PJ, Biourge V, van den Ingh TS, Ankringa N, German AJ.

A randomized, open-label, positively-controlled field trial of a hydrolyzed

protein diet in dogs with chronic small bowel enteropathy. J Vet Internal Med.

(2010) 24:1350–7. doi: 10.1111/j.1939-1676.2010.0632.x

4. Greco L, Gobbetti M, Auricchio R, Di Mase R, Landolfo F, Paparo F, et al.

Safety for patients with celiac disease of baked goods made of wheat flour

hydrolyzed during food processing. Clin Gastroenterol Hepatol. (2011) 9:24–

9. doi: 10.1016/j.cgh.2010.09.025

5. von Berg A, Koletzko S, Grübl A, Filipiak-Pittroff B, Wichmann HE, Bauer

CP, et al. The Effect of hydrolyzed cow’s milk formula for allergy prevention

in the first year of life: the German infant nutritional intervention study,

a randomized double-blind trial. J Allergy Clin Immunol. (2003) 111:533–

40. doi: 10.1067/mai.2003.101

6. Cave NJ. Hydrolyzed protein diets for dogs and cats. Vet Clin North Am.

(2006) 36:1251–68. doi: 10.1016/j.cvsm.2006.08.008

7. Olivry T, Bizikova P. A systematic review of the evidence of

reduced allergenicity and clinical benefit of food hydrolysates in

dogs with cutaneous adverse food reactions. Vet Dermatol. (2010)

21:32–41. doi: 10.1111/j.1365-3164.2009.00761.x

8. Allenspach K, Culverwell C, Chan D. Long-term outcome in

dogs with chronic enteropathies: 203 cases. Vet Rec. (2016)

178:368. doi: 10.1136/vr.103557

9. Souich P, García AG, Vergés J, Montell E. Immunomodulatory and anti-

inflammatory effects of chondroitin sulphate. J Cell Mol Med. (2009) 13:1451–

63. doi: 10.1111/j.1582-4934.2009.00826.x

10. Luckschander N, Hall JA, Gaschen F, Forster U, Wenzlow N,

Hermann P, et al. Activation of nuclear factor-kappaB in dogs

with chronic enteropathies. Vet Immunol Immunopathol. (2010)

133:228–36. doi: 10.1016/j.vetimm.2009.08.014

11. Samuelsen AB, Schrezenmeir J, Knutsen SH. Effects of orally administered

yeast-derived beta-glucans: a review. Mol Nutri Food Res. (2014) 58:183–

93. doi: 10.1002/mnfr.201300338

12. Segarra S, Martínez-Subiela S, Cerdà-Cuéllar M, Martínez-Puig D, Muñoz-

Prieto A, Rodríguez-Franco F, et al. Oral chondroitin sulfate and prebiotics for

the treatment of canine inflammatory bowel disease: a randomized, controlled

clinical trial. BMC Vet Res. (2016) 12:49. doi: 10.1186/s12917-016-0676-x

13. Dock-Nascimento DB, Junqueira K, Aguilar-Nascimento JE. Rapid

restoration of colonic goblet cells induced by a hydrolyzed diet containing

probiotics in experimental malnutrition. Acta Cirurgi Brasil. (2007)

22:72–6. doi: 10.1590/S0102-86502007000700014

14. Dawiskiba T, Deja S, Mulak A, Zabek A, Jawien E, Pawełka D, et al. Serum

and urine metabolomic fingerprinting in diagnostics of inflammatory bowel

diseases.World J Gastroenterol. (2014) 20:163–74. doi: 10.3748/wjg.v20.i1.163

15. DeFeo EM, Wu CL, McDougal WS, Cheng LL. A decade in prostate

cancer: from NMR to metabolomics. Nat Rev Urol. (2011) 8:301–

11. doi: 10.1038/nrurol.2011.53

16. Hori S, Nishiumi S, Kobayashi K, Shinohara M, Hatakeyama Y, Kotani Y,

et al. A Metabolomic approach to lung cancer. Lung Cancer. (2011) 74:284–

92. doi: 10.1016/j.lungcan.2011.02.008

17. Noga MJ, Dane A, Shi S, Attali A, van Aken H, Suidgeest E, et al.

Metabolomics of cerebrospinal fluid reveals changes in the central nervous

system metabolism in a rat model of multiple sclerosis. Metabolomics. (2012)

8:253–63. doi: 10.1007/s11306-011-0306-3

Frontiers in Veterinary Science | www.frontiersin.org 10 July 2020 | Volume 7 | Article 451



Ambrosini et al. Lipid Metabolism in Canine IBD

18. Hisamatsu T, Okamoto S, Hashimoto M, Muramatsu T, Andou A, Uo M,

et al. Novel, objective, multivariate biomarkers composed of plasma amino

acid profiles for the diagnosis and assessment of inflammatory bowel disease.

PLoS ONE. (2012) 7:e31131. doi: 10.1371/journal.pone.0031131

19. Bezabeh T, Somorjai RL, Smith I, Nikulin A, Dolenko B, Bernstein C. The

use of 1H magnetic resonance spectroscopy in inflammatory bowel diseases:

distinguishing ulcerative colitis from Crohn’s disease. Am J Gastroenterol.

(2001) 96:442–8. doi: 10.1111/j.1572-0241.2001.03523.x

20. Kim HJ, Kim JH, Noh S, Hur HJ, Sung MJ, Hwang JT, et al. Metabolomic

analysis of livers and serum from high-fat diet induced obese mice. J Proteome

Res. (2011) 10:722–31. doi: 10.1021/pr100892r

21. Gou XJ, Gao S, Chen L, Feng Q, Hu YY. A Metabolomic study on the

intervention of traditional Chinese medicine Qushi Huayu decoction on

rat model of fatty liver induced by high-fat diet. BioMed Res Int. (2019)

2019:5920485. doi: 10.1155/2019/5920485

22. Scoville EA, Allaman MM, Brown CT, Motley AK, Horst SN, Williams CS,

et al. Alterations in lipid, amino acid, and energy metabolism distinguish

Crohn’s disease from ulcerative colitis and control subjects by serum

metabolomic profiling.Metabolomics. 14:17. doi: 10.1007/s11306-017-1311-y

23. Qi Y, Jiang C, Tanaka N, Krausz KW, Brocker CN, Fang ZZ, et al.

PPARα-dependent exacerbation of experimental colitis by the hypolipidemic

drug fenofibrate. Am J Physiol-Gastroint Liver Physiol. (2014) 307:G564–

73. doi: 10.1152/ajpgi.00153.2014

24. Lin HM, Helsby NA, Rowan DD, Ferguson LR. Using metabolomic analysis to

understand inflammatory bowel diseases. InflammBowel Dis. (2011) 17:1021–

9. doi: 10.1002/ibd.21426

25. Steelman SM, Johnson P, Jackson A, Schulze J, Chowdhary BP. Serum

metabolomics identifies citrulline as a predictor of adverse outcomes in

an equine model of gut-derived sepsis. Physiol Genomics. (2014) 46:339–

47. doi: 10.1152/physiolgenomics.00180.2013

26. Zhang J, Wei S, Liu L, Nagana Gowda GA, Bonney P, Stewart J, et al. NMR-

based metabolomics study of canine bladder cancer. Biochim Biophys Acta

(BBA) - Mol Basis Dis. (2012) 1822:1807–14. doi: 10.1016/j.bbadis.2012.08.001

27. Minamoto Y, Otoni CC, Steelman SM, Büyükleblebici O, Steiner JM, Jergens

AE, et al. Alteration of the fecal microbiota and serum metabolite profiles

in dogs with idiopathic inflammatory bowel disease. Gut Microbes. (2015)

6:33–47. doi: 10.1080/19490976.2014.997612

28. Kalenyak K, Heilmann RM, van de Lest CH A, Brouwers JF,

Burgener IA. Comparison of the systemic phospholipid profile in

dogs diagnosed with idiopathic inflammatory bowel disease or food-

responsive diarrhea before and after treatment. PLoS ONE. (2019)

14:e0215435. doi: 10.1371/journal.pone.0215435

29. Allenspach K,Wieland B, Gröne A, Gaschen F. Chronic enteropathies in dogs:

evaluation of risk factors for negative outcome. J Vet Internal Med. (2007)

21:700–8. doi: 10.1111/j.1939-1676.2007.tb03011.x

30. Washabau RJ, Day MJ, Willard MD, Hall EJ, Jergens AE, Mansell J, et al.

Endoscopic, biopsy, and histopathologic guidelines for the evaluation of

gastrointestinal inflammation in companion animals. J Vet Internal Med.

(2010) 24:10–26. doi: 10.1111/j.1939-1676.2009.0443.x

31. Allenspach KA, Mochel JP, Du Y, Priestnall SL, Moore F, Slayter M, et al.

Correlating gastrointestinal histopathologic changes to clinical disease activity

in dogs with idiopathic inflammatory bowel disease. Vet Pathol. (2019)

56:435–43. doi: 10.1177/0300985818813090

32. Kooperberg C, Stone CJ. Logspline density estimation for censored

data. J Comput Graph Stat. (1992) 301–28. doi: 10.1080/10618600.1992.

10474588

33. Di Guida R, Engel J, Allwood JW,Weber RJ, Jones MR, Sommer U, et al. Non-

targeted UHPLC-MS metabolomic data processing methods: a comparative

investigation of normalisation, missing value imputation, transformation

and scaling. Metabolomics. (2016) 12:93. doi: 10.1007/s11306-016-

1030-9

34. Benjamini Y, Hochberg Y. Controlling the false discovery rate:

a practical and powerful approach to multiple testing. J R

Statis Soc S B. (1995) 57:289–300. doi: 10.1111/j.2517-6161.1995.

tb02031.x

35. Triebl A, Trötzmüller M, Eberl A, Hanel P, Hartler J, Köfeler HC.

Quantitation of phosphatidic acid and lysophosphatidic acid molecular

species using hydrophilic interaction liquid chromatography coupled

to electrospray ionization high resolution mass spectrometry. J

Chromatograp A. (2014) 1347:104–10. doi: 10.1016/j.chroma.2014.

04.070

36. Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine, and

sphingosine-1-phosphate in programmed cell death. Biochim Biophys Acta.

(2006) 1758:2027–36. doi: 10.1016/j.bbamem.2006.10.018

37. Abdel Hadi L, Di Vito C, Riboni L. Fostering inflammatory bowel disease:

sphingolipid strategies to join forces. Res Article Mediat Inflamm. (2016)

2016:3827684. doi: 10.1155/2016/3827684

38. Gersemann M, Wehkamp J, Stange EF. Innate immune dysfunction

in inflammatory bowel disease. J Internal Med. (2012) 271:421–

8. doi: 10.1111/j.1365-2796.2012.02515.x

39. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev

Immunol. (2009) 9:799–809. doi: 10.1038/nri2653

40. Laegreid A, Otnaess AB, Fuglesang J. Human and bovine milk: comparison

of ganglioside composition and enterotoxin-inhibitory activity. Pediatr Res.

(1986) 20:416–21. doi: 10.1203/00006450-198605000-00008

41. Rueda R, Maldonado J, Narbona E, Gil A. Neonatal dietary gangliosides. Early

Hum Deve. (1998) 53:S135–47. doi: 10.1016/S0378-3782(98)00071-1

42. Schaffer SW, Jong CJ, KC R, Azuma J. Physiological roles of taurine in heart

and muscle. J Biomed Sci. (2010) 17:S2. doi: 10.1186/1423-0127-17-S1-S2

43. Birdsall TC. Therapeutic applications of taurine. Alternat Med Rev: J Clin

Therap. (1998) 3:128–36.

44. Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S,

Hosokawa Y, et al. Taurine (2-aminoethanesulfonic acid) deficiency creates

a vicious circle promoting obesity. Endocrinology. (2006) 147:3276–

84. doi: 10.1210/en.2005-1007

45. Schuller-Levis GB, Park E. Taurine: new implications for

an old amino acid. FEMS Microbiol Lett. (2003) 226:195–

202. doi: 10.1016/S0378-1097(03)00611-6

46. Son M, Ko JI, Kim WB, Kang HK, Kim BK. Taurine can ameliorate

inflammatory bowel disease in rats. In: Schaffer S, Lombardini JB, Huxtable

RJ, editors. Taurine 3: Cellular and Regulatory Mechanisms, Advances in

Experimental Medicine and Biology. Boston, MA: Springer US. (1998). p. 291–

98.

47. Liu Y, Wang X, Hu C-AA. Therapeutic potential of amino acids in

inflammatory bowel disease. Nutrients. (2017) 9:920. doi: 10.3390/nu9090920

48. Kathrani A, Allenspach K, Fascetti AJ, Larsen JA, Hall EJ. Alterations in serum

amino acid concentrations in dogs with protein-losing enteropathy. J Vet

Internal Med. (2018) 32:1026–32. doi: 10.1111/jvim.15116

49. Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S,

et al. Cross sectional evaluation of the gut-microbiome metabolome

axis in an Italian cohort of IBD patients. Sci Rep. (2017)

7:9523. doi: 10.1038/s41598-017-10034-5

50. Murphy G. Polyamines in the human gut. Eu J Gastroenterol Hepatol. (2001)

13:1011–4. doi: 10.1097/00042737-200109000-00002

51. Rubio CP, Martínez-Subiela S, Hernández-Ruiz J, Tvarijonaviciute A,

Cerón JJ, Allenspach K. Serum biomarkers of oxidative stress in dogs

with idiopathic inflammatory bowel disease. Vet J. (2017) 221:56–

61. doi: 10.1016/j.tvjl.2017.02.003

52. Tian T, Wang Z, Zhang J. Pathomechanisms of oxidative stress in

inflammatory bowel disease and potential antioxidant therapies. Oxid Med

Cell Longev. (2017) 2017:4535194. doi: 10.1155/2017/4535194

53. Fiehn O. Metabolomics – the link between genotypes and phenotypes.

Plant Mol Biol. (2002) 48:155–71. doi: 10.1007/978-94-010-

0448-0_11

54. Chandra L, Borcherding DC, Kingsbury D, Atherly T, Ambrosini

YM, Bourgois-Mochel A, et al. Derivation of adult canine intestinal

organoids for translational research in gastroenterology. BMC Biol. (2019)

17:33. doi: 10.1186/s12915-019-0652-6

55. Ambrosini YM, Park Y, Jergens AE, Shin W, Min S, Atherly T, et al.

Recapitulation of the accessible interface of biopsy-derived canine intestinal

organoids to study epithelial-luminal interactions. PLoS ONE. (2020)

15:e0231423. doi: 10.1371/journal.pone.0231423

56. Catassi C, Fabiani E, Iacono G, D’Agate C, Francavilla R, et al. A

prospective, double-blind, placebo-controlled trial to establish a safe gluten

threshold for patients with celiac disease. Am J Clin Nutri. (2007) 85:160–

6. doi: 10.1093/ajcn/85.1.160

Frontiers in Veterinary Science | www.frontiersin.org 11 July 2020 | Volume 7 | Article 451



Ambrosini et al. Lipid Metabolism in Canine IBD

57. Brenna JT, Plourde M, Stark KD, Jones PJ, Lin YH. Best practices for the

design, laboratory analysis, and reporting of trials involving fatty acids. Am

J Clin Nutri. (2018) 108:211–27. doi: 10.1093/ajcn/nqy089

58. Borcherding DC, Ambrosini YM, Segarra S, Glanemann B, Garden O, Atherly

T, et al. Su1812 – treatment with hydrolyzed diet supplemented with prebiotics

and glycosaminoglycans improves abnormalities in lipid metabolism in

a canine model of inflammatory bowel disease. Gastroenterology. (2019)

156:S621–2. doi: 10.1016/S0016-5085(19)38449-5

Conflict of Interest: SS is employed by the company Bioiberica SAU, Spain. KA

does scientific consultancy for Bioiberica SAU. The authors declare that this study

received funding from Bioiberica SAU. The funder had the following involvement

with the study; providing the compounds used in the study. AJ, JM, and KA

are founders of LifEngine Animal Health Laboratories, Inc., Rochester, MN, and

co-founders of 3DHealth Solutions, Inc., Ames, IA. The terms of this arrangement

have been reviewed and approved by Iowa State University in accordance with its

conflict of interest policies.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Copyright © 2020 Ambrosini, Neuber, Borcherding, Seo, Segarra, Glanemann,

Garden, Müller, Adam, Dang, Borts, Atherly, Willette, Jergens, Mochel and

Allenspach. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Veterinary Science | www.frontiersin.org 12 July 2020 | Volume 7 | Article 451


