
1 

 

Research Article 

Differential effects of Urban Particulate Matter on BV2 microglial-like 
and C17.2 neural stem/precursor cells 

 

Rebecca H. Morrisa,b, Gwladys Chabriera, Serena J. Counsellb, Imelda M. McGonnella and Claire 

Thorntona,b 

 

a Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK  

b Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s 

College London, London, UK  

 

 

Short Title: Cell-specific responses to particulate matter exposure 

 

Corresponding Author:  

Claire Thornton 

Department of Comparative Biomedical Sciences 

Royal Veterinary College,  

4 Royal College Street, 

London, NW1 0TU, UK. 

Tel: + 44 (0)20 7121 1919 

E-mail: cthornton@rvc.ac.uk 

 

Number of Tables: 0 

Number of Figs: 4 

Word count: 3365 

Keywords: Air pollution, neurodevelopment, oxidative stress, mitochondria 



2 

 

Abstract 

Air pollution affects the majority of the world’s population and has been linked to over 7 million 

premature deaths per year. Exposure to particulate matter (PM) contained within air pollution is 

associated with cardiovascular, respiratory and neurological ill health. There is increasing evidence 

that exposure to air pollution in utero and in early childhood is associated with altered brain 

development. However, the underlying mechanisms for impaired brain development are not clear. 

While oxidative stress and neuroinflammation are documented consequences of PM exposure, cell-

specific mechanisms that may be triggered in response to air pollution exposure are less well 

defined. Here we assess the effect of urban (U)PM exposure on two different cell types, microglial-

like BV2 cells and neural stem / precursor-like C17.2 cells. We found that, contrary to expectations, 

immature C17.2 cells were more resistant to PM-mediated oxidative stress and cell death than BV2 

cells. PM exposure resulted in decreased mitochondrial health and increased mitochondrial ROS in 

BV2 cells which could be prevented by mitoTEMPO antioxidant treatment. Our data suggest that not 

only is mitochondrial dysfunction a key trigger in PM-mediated cytotoxicity, but that such deleterious 

effects may also depend on cell type and maturity. 
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Introduction 

Air pollution is a serious common public health concern, increasingly associated with morbidity and 

mortality and resulting in an estimated 7 million premature deaths per year, 4.2 million of which are 

directly related to outdoor air [1].  Air pollution comprises gases such as nitrogen dioxide (NO2), 

ozone (O3), sulphur dioxide (SO2) and carbon monoxide (CO) as well as particulate matter (PM), 

composed of metals, soil/dust and organic chemicals derived from Traffic Related Air Pollution 

(TRAP), domestic fuel burning, industry and manufacturing [2]. Over 90% of the population routinely 

experience levels of PM2.5 (PM comprising particles less than 2.5µm in size) that are significantly 

higher than World Health Organisation recommendations (5µg/m3, annually[1]) with low-to-middle 

income countries (LMIC) such as India and China reporting levels up to ten-fold higher than Europe 

and the USA [3].  

 

Exposure to air pollution increases the risk of developing cardiovascular (CV) and respiratory disease 

and the central nervous system is also a proposed target organ [4-7]. Numerous large-scale studies 

indicate an association between chronic exposure to high levels of PM and neurodegenerative 

disease such as Alzheimer’s disease [7-10]. Within the last few years, concerns have increased that 

poor air quality and exposure to air pollution, both during pregnancy and in early life, can impact 

child health. Epidemiological studies link PM exposure during pregnancy and early childhood with 

reduced cognition, impaired learning and memory, attentiveness and communication [11-13]. Early 

life exposure to PM is also associated with an increased risk of neurodevelopmental disorders such as 

Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder (ASD; [14-16]).  

 

Routes of exposure of the brain to PM can be direct or indirect; in both human and animal studies, 

ultrafine PM and PM2.5 have been found redistributed to the cortex and cerebellum via olfactory 

nerves and additional PM can arrive at the blood brain barrier (BBB) via the lungs and bloodstream 

[7]. An additional route of particular relevance to early life is in utero exposure via the placenta. 

Chronic nasal exposure to air pollution in pregnant rabbits resulted in impaired placenta function and 

growth retardation in the offspring [17]. PM was found in both the maternal and fetal blood stream 

indicating that nano-sized PM is capable of passing the placental barrier [17]. This initial evidence of 

fetal PM exposure has subsequently been supported in human studies through a label-free 

identification of black carbon particles in the placenta using femtosecond pulsed illumination. Every 

placenta screened showed evidence of black carbon particles accumulating on the fetal side, with the 

quantity of particles correlating with residential exposure [18]. In vitro and in adult rodent models of 
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fetal exposure, PM reduces the integrity of tight junctions at the BBB suggesting that PM circulating 

in the fetal blood stream may also penetrate the BBB, resulting in direct exposure [19,20]. Maternal 

exposure to air pollution is associated with epigenetic alterations in the placenta and cord blood [21-

23]. In addition, maternal PM exposure is linked to offspring with low birth weight, increased 

incidence of preterm birth and increased risk of developmental disorders [24].  

 

The cellular effects of exposure to PM include oxidative stress and neuroinflammation, which can 

negatively impact the highly regulated process of neurodevelopment [25,26]. Glial cell activation 

occurs in response to PM exposure of all sizes and types, increasing the production of 

proinflammatory cytokines and reactive oxygen species (ROS, [27-29]). In vivo and in mature rodent 

neurons in vitro, PM exposure results in increased ROS and reactive nitrogen species (RNS), as well as 

expression of markers of oxidative stress, leading to lipid peroxidation and membrane damage 

[30,31]. ROS and lipid peroxidation was also observed in offspring of rodents exposed to PM during 

gestation [32]. Cellular energy impairment and mitochondrial dysfunction has also been observed 

following PM treatment; ATP production was significantly decreased in primary neurons and 

dissipation of mitochondrial membrane potential, accompanied by reduced mitochondrial 

respiration has been reported in vivo [33,34]. Long-term PM exposure (< 10 months) significantly 

altered the rat brain proteome with significant changes in protein components of the electron 

transport chain [35].  

 

In rodent models, gestational exposure to TRAP leads to anxiety-like behaviours and impaired spatial 

learning in offspring suggesting that PM-mediated cellular responses can alter neurodevelopment 

[36]. Here we have compared the effect of urban (U)PM exposure between microglial-like BV2 cells 

and neural stem / precursor-like C17.2 cells chosen to represent cell-types of differing origin and 

maturity. We hypothesized that neuroinflammation would be driven by BV2 and that neurotoxicity 

would be most apparent in C17.2, but that common mechanisms exist, such as oxidative stress, 

which would exacerbate the overall pathology.  
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Materials and Methods 

BV2 and C17.2 Cell culture 

BV2 cells, provided by Professor R. Donato (University of Perugia, Italy), were derived from raf/myc-

immortalised female murine neonatal microglia [37]. C17.2 cells were derived from male murine 

cerebellar multipotent neural stem cells (ECACC 07062902). Both cell types were maintained in 

Dulbecco’s Modified Eagle’s Medium (Gibco, #2130737) supplemented with 10% Foetal Bovine 

Serum (FBS, Gibco, #15070-063) and 1% Penicillin/Streptomycin (Gibco, #15140122), incubated at 

37˚C/5%CO2 and passaged twice weekly. For treatments, BV2 cells (passages 2-17) were transferred 

to medium containing 5% FBS. C17.2 cells were used between passages 4 and 23. 

 

UPM preparation and treatment  

Stock solutions were prepared by suspending urban particulate matter (UPM, Sigma, #NIST1648A, 

certified reference material) in DMEM growth medium (100µg/ml and 100mg/ml) and stored in 

aliquots at -80°C until use. BV2 and C17.2 cells were seeded in 12-well plates with a density of 0.8 x 

105 cells per well and allowed to settle overnight. Working solutions of UPM were prepared from the 

appropriate stock solution by sonication for an hour (22W, Fisherbrand Ultrasonic Bath) and 

subsequent dilution in DMEM growth medium containing 5% FBS, to final treatment concentrations 

(0-100µg/ml). Growth medium was removed from the cells and replaced with medium alone controls 

or UPM-containing medium. Plates were incubated for 24h at 37˚C/5% CO2.  

 

Cytotoxicity detection 

The presence of extracellular lactate dehydrogenase (LDH), released from UPM-treated BV2 and 

C17.2 cells, was used as a surrogate for cell damage/toxicity. Duplicate aliquots of medium (50µl) 

were mixed 1:1 with LDH reaction buffer (Cytotoxicity Detection LDH Kit, Roche, #11644793001), 

prepared following manufacturer’s instructions and LDH release determined by colorimetric 

reduction of tetrazolium salt, measured at 490 nm (BMG), subtracting background 680nm 

measurements. A medium-alone blank was also included to compensate for residual LDH present in 

the FBS-supplemented growth medium.  

 

Quantification of Cell Number 

UPM-treated and control cells were incubated in DMEM growth medium containing Hoechst reagent 

(10µg/ml bisBenzimide H 33258, 30 min, 37˚C Sigma, B2883). Following incubation, the cells were 

rinsed with PBS, and then replaced with fresh, pre-warmed DMEM. BV2 and C17.2 cell nuclei were 
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visualised using the DAPI block on the EVOS M5000 microscope. Six fields of view were imaged per 

technical replicate (i.e. 18 images per treatment condition) for a minimum of three independent 

experiments. Images were analysed in Fiji (Image J) using the Cell Count plugin and mean data 

reported for each condition.  

 

Gene Expression analysis 

RNA from BV2 and C17.2 cells was prepared and analysed by qRT-PCR as described previously [38] 

scraped from 12-well plates into TRIzol Reagent (ThermoFisher) and RNA purified using the Direct-zol 

RNA miniprep kit (Zymo Research) as per manufacturer’s instructions. Concentration and quality of 

column-eluted RNA were determined using a NanoDrop Spectrophometer, diluted to 100ng/µl in 

RNAse-free dH2O and stored at -20C. One-step qRT-PCR (RNA-to-CT, Thermofisher) was carried out 

on 200ng RNA according to manufacturer’s instructions and using the following Taqman primers 

(ThermoFisher): IL-6 (Mm00446190_m1), IL-1β (Mm00434228_m1), TNFα (Mm00443258_m1), IL10 

(Mm01288386_m1), NRF2 (Mm00477784_m1) and GAPDH (Mm99999915_g1). Relative gene 

expression was determined by normalization to both GAPDH expression and experimental controls 

[39].  

  

Detection of Reactive Oxygen Species (ROS) and mitochondrial membrane potential 

Changes in intracellular ROS following UPM exposure were determined using dihydroethidium 

staining (DHE, 10µM, ThermoFisher), and mitochondrial membrane potential analysed by incubation 

with Tetramethylrhodamine (TMRM, 200nM, ThermoFisher). Following incubation (30 min, 

37˚C/5%CO2), cells were rinsed with PBS and imaged (RFP block, EVOS M5000). Levels of cellular 

fluorescence were determined using ImageJ analysis and calculating corrected total cell fluorescence 

(CTCF) where CTCF = integrated density – (area of selected cell x mean fluorescence of background 

reading).  

 

MitoTEMPO antioxidant treatment 

BV2 cells were pre-treated with mitochondria-targeted antioxidant, mitoTEMPO (10μM in DMEM, 

MedChemExpress USA) for 30 minutes prior to UPM exposure for 24 hours. Detection of ROS and 

quantification of cell number were carried out as above. 

 

Statistics  

Results are expressed as mean (± SEM) where a minimum of 3 biological replicates were performed 

(1-2 passages between each experiment), each experiment having 2-3 technical replicates. Data were 
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analysed using GraphPad Prism v9 Software (GraphPad Software, San Diego, USA) for statistical 

significance by one-way or two-way ANOVA dependent on the number of variables, and if significant, 

followed by appropriate post hoc tests (e.g. Sidak’s, Dunnett’s, shown in figure legend). A p-value of 

less than 0.05 was considered significant. 
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Results 

BV2 microglial cells are more sensitive to UPM exposure than immature neural stem/precursor-like 

C17.2 cells  

The cytotoxic effect of UPM exposure was investigated using microglial (BV2) and neural 

stem/precursor (C17.2) cell lines. Cells were exposed to increasing concentrations of UPM for 24h 

and assessed for cell survival. BV2 toxicity, measured by LDH release, was significantly increased after 

exposure to both 30 µg/ml (p<0.0001) and 100µg/ml UPM (p<0.0001) compared with control 

untreated cells (Fig.  1A, F=4.576) and cell number also decreased, reaching significance for 10 (p= 

0.0448), 30 (p<0.0001) and 100µg/ml (p<0.0001) UPM exposure (Fig.  1B, F=34.32). In contrast, 

although there was a slight increase in C17.2 cell toxicity at higher PM concentrations, (this did not 

reach significance, Fig.  1C) and there was little cell loss (Fig.  1D). UPM had little effect on doubling 

time of either BV2 or C17.2 cells. These data suggest that neural stem/precursor-like and microglial-

like cell types have different tolerances to similar concentrations of UPM when evaluating toxicity. 

 

UPM exposure evokes a concentration-dependent inflammatory response that is more profound in 

BV2 cells  

Previous studies have highlighted that exposure to PM upregulates the inflammatory response 

particularly driven by microglia [27,40]. We therefore investigated whether UPM exposure induced a 

similar, concentration-dependent response in BV2 and C17.2 cells. We first confirmed that candidate  

gene targets (IL-6, IL-1β, TNFα, IL-10) were expressed to a similar extent in both C17.2 and BV2 cells 

by analyzing raw threshold values; comparable baseline gene expression was observed for both cell 

types (data not shown). Increases in proinflammatory gene expression in BV2 cells were apparent 

following exposure to 100 µg/ml UPM (IL-6, p<0.0001; IL-1β, p=0.0208; TNFα, p<0.0001; Fig.  2A-C) 

compared with control, with IL-1β expression also significantly increased at 30 µg/ml UPM (p=0.005; 

Fig.  2C). For C17.2 cells, no significant change was observed in IL-6, IL-1β or TNFα (Fig. 2A-C) and 

two-way ANOVA revealed global significant differences in the two cellular responses for IL-6 

(p=0.0340, F=4.950) and IL-1β (p=0.0263, F=5.460). Anti-inflammatory IL-10 expression was not 

altered in either BV2 or C17.2 cells regardless of UPM exposure (Fig.  2D).  

 

UPM exposure results in ROS production in BV2 cells but not C17.2 cells 

Previous studies have also highlighted that oxidative stress may occur in the brain as a consequence 

of systemic exposure to PM [41,42]; production of Reactive Oxygen Species (ROS) can also contribute 

to the development of pollution-induced inflammation and vice versa [42]. To determine whether 
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UPM alters ROS production, UPM-exposed BV2 and C17.2 cells were incubated with DHE, which 

fluoresces in the presence of superoxide. BV2 cells exhibited increased fluorescence at 30 µg/ml 

(p=0.0045) and 100µg/ml UPM (p=0.0035, Fig.  3A, F=5.290) compared with control untreated cells. 

Unexpectedly, UPM exposure did not stimulate ROS production in C17.2 cells (Fig.  3B, F=2.572). In 

previous studies of rat brain, acute and chronic exposure to PM2.5 triggers increased expression of 

anti-oxidant NRF2 [43,44]. We therefore measured NRF2 gene expression in our cell samples 

following a 24h UPM exposure. Although basal expression of NRF2 was similar between C17/2 and 

BV2, increased NRF2 expression was observed in C17.2 cells compared with BV2 cells (p=0.0003, 

F=15.74), most noticeably at the higher concentrations of UPM (30µg/ml, p=0.0085) whereas there 

was no change in BV2 cells (Fig 3C). 

 

Exposure to UPM decreases mitochondrial health 

Although ROS can be produced in a variety of subcellular locations, the majority is generated within 

the mitochondrion through electron leakage during oxidative phosphorylation [45]. To determine 

whether mitochondrially-derived ROS was driving the increased DHE staining observed in the 

previous experiment, we treated BV2 cells with mitoTEMPO, a mitochondrially-targeted antioxidant, 

followed by exposure to UPM. There was a general decrease in DHE fluorescence observed in BV2 

cells treated with UPM+mitoTEMPO compared with UPM alone (p<0.0001, F=6.009) and post hoc 

analysis determined a significant reduction for the highest UPM concentration (100µg/ml, p>0.0001; 

Fig.  4A). As mitochondrial ROS was clearly increased following UPM exposure, we measured 

mitochondrial membrane potential through the accumulation of TMRM in BV2 cells. There was a 

dose-dependent decrease in TMRM fluorescence, reaching significance at the highest UPM dose 

(p=0.155, F=3.015) indicating a dissipation of mitochondrial membrane potential and a decrease in 

active mitochondria within the cell (Fig.  4B). Finally, in cells receiving UPM + mitoTEMPO compared 

with UPM alone, cell numbers were sustained (p<0.0001, F=3.582). Post hoc tests revealed that this 

protection was most noticeable at the higher UPM concentrations (30 µg/ml UPM, p=0.0362; 

100µg/ml UPM p=0.0003, Fig.  4C). Our data suggest that abrogation of mitochondrial ROS conferred 

cell survival benefits on BV2 microglial-like cells following UPM exposure. 
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Discussion/Conclusion 

There is increasing evidence that the developing brain is sensitive to early life exposure to air 

pollution, in particular PM. As such, there is an urgent need to understand the cellular pathways 

triggered in response to this exposure. In this study, we examined the consequences of exposure to 

UPM on microglial-like BV2 cells and neural precursor stem cell-like C17.2 cells, initially predicting 

that C17.2 cells may be more vulnerable than BV2. However, we found that in measures of 

cytotoxicity, ROS generation and proinflammatory response was greater in BV2 cells than in C17.2 

cells following exposure to UPM.  

Activation of microglia following exposure to air pollution is a recognized outcome in both cell 

studies and animal models (reviewed in [26]). Indeed, microglia activation by PM can be direct 

(inhaled nasally, bypassing the blood brain barrier) or through systemic inflammation (via the 

respiratory system; [46]). Exposure in rodents to diesel exhaust particles or PM2.5 alters microglial 

morphology and increases the expression of proinflammatory cytokines [47,48]. Our results also 

extend previous studies using BV2 exposed to black carbon and diesel exhaust particulate matter, 

which increased proinflammatory gene expression and which was abrogated with pretreatment by 

corticosteroids [49]. 

Although the majority of glial cell research has focused on alterations in the microglial response 

following exposure to air pollution, astrocytes and oligodendrocytes are also affected. Increased 

GFAP expression (a marker of astrocyte activation) was observed both in primary cells in vitro [50], as 

well as in vivo following PM2.5 treatment [51,52]. A recent study found that chronic exposure to 

nanoscale-sized PM in mice results persistent microglial-mediated neuroinflammation accompanied 

by decreased oligodendrocyte cell number and damage to the white matter fibres in the corpus 

callosum [53]. However, increased cell death and neurotoxicity in response to PM exposure are more 

usually identified in neurons [27]. Our data suggest that neural stem/precursor cells may be more 

resistant to the pathological effects of UPM than terminally differentiated neurons or microglia. 

Previous studies have highlighted that resistance to environmental stress may be a property of stem 

cells contributing to their potential as therapeutics [54]. In the CNS, stem cells are partially resistant 

to metabolic stress and subsequent toxicity, supporting the survival of surrounding neurons [55,56]; 

this property may have contributed to our observations in C17.2 cells.  Such cellular robustness in 

this immature cell type may be attributed to their role in development [54]. However, toxicity has 

been reported in microglia-neuron co-culture experiments in response to pollution [28,57], 

highlighting a critical role for microglia in pollution-driven neurodevelopmental impairment.  
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Epidemiological and systematic reviews of data suggest that there is a marked association between 

gestational exposure to PM and risk of ASD, and that this linkage is driven by exposure to smaller 

particles e.g. <PM2.5 [58,59].  However, data on the risks associated with other air pollutants such as 

NO2 and O3 are more variable as is the identification of a critical “exposure window” during 

gestation. Given our data from the immature C17.2 cells, the deleterious effects of gestational 

exposure to ultrafine PM may depend not only on pathological activation of glial cells but also on 

neuronal maturity. Future work will extend our study to primary neurons to establish the effect of 

repeated low dose PM exposure on neuronal maturation. 

In this study we identified that cellular exposure to PM increased ROS production in microglial cells, 

in line with previous findings investigating a variety of sources of PM including UPM, DEP, PM2.5 and 

PM10 [41,43]. We also found that, in contrast with C17.2, BV2 cells were not able to mount an 

antioxidant NRF2-mediated response. This may mimic the situation in the neonatal brain where 

there is reduced antioxidant capacity in the compared with adult brain, due to limited scavenging 

and increased free iron [60]. However, the NRF2 antioxidant response alone may be insufficient to 

counteract the impact of PM as protection by NRF2 can be overcome by fine and ultrafine PM 

exposure [61]. Left unchecked, the consequences of oxidative stress include lipid peroxidation, 

energy impairment and cell death and therefore these may play a more significant role in the 

developing brain compared with adult.  

We found that PM-mediated ROS production in BV2 cells emanated primarily from mitochondria, 

and that this was accompanied by decreased mitochondrial membrane potential.  Mitochondria may 

be emerging as new targets in mediating the effects of PM exposure [26]. In line with our 

mitoTEMPO findings, administration of a mitochondrially-targeted antioxidant (MitoQ) to rats prior 

to exposure to simulated vehicle exhaust prevented mitochondrial ROS production, restored ATP 

production and rebalanced mitochondrial dynamics [62]. Similar to our observation of impaired 

mitochondrial membrane potential, recent studies suggest that mitochondrial morphology and 

dynamics are also vulnerable to the effects of PM exposure [61,63]. A longitudinal brain proteomics 

study of rats exposed to coarse, fine or ultrafine PM identified evidence of electron transport chain 

impairment at all timepoints (1/3/10 months), limited to the fine / ultrafine PM groups [35]. Evidence 

of air pollution-mediated mitochondrial dysfunction in humans is also emerging. Increased levels of 

the mitochondrial oxidative stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) were found in 

maternal blood sampled throughout pregnancy and in cord blood of newborns, correlating with 

exposure to PM [64]. Metabolomics analysis of serum taken from women during pregnancy 

correlated oxidative stress and inflammation with exposure to traffic-related air pollution [65]. 
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Further interrogation of these biobanked samples correlated impairments in the TCA cycle and 

mitochondrial function with increased exposure to traffic-related air pollution and an increased risk 

of ASD in their offspring [66]. Such evidence, combined with in vitro and preclinical PM exposure data 

suggest that maintaining mitochondrial function may provide protection following chronic exposure 

to air pollution. More work is required to determine whether intervention post exposure can be 

effective.   

In conclusion, we provide in vitro evidence of cell-specific effects of UPM exposure that impact 

pathways including inflammation, oxidative stress and mitochondrial impairment, dependent on cell 

maturity. In microglial-like BV2 cells, mitochondrial dysfunction is apparent through increased ROS 

production and reduced mitochondrial membrane potential. Mitochondrially-targeted antioxidants 

may improve microglial cell health and have the potential to reduce chronic inflammation. However, 

high-level strategies are clearly required to limit maternal exposure to air pollution during pregnancy 

to reduce the risk of lifelong neurological impairment. 
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Figure  Legends 

Fig. 1. Exposure to high concentrations of UPM adversely alters BV2 cell health. (A) Increased LDH 

release, indicating cytotoxicity, was observed following BV2 exposure to 30µg/ml and 100µg/ml 

UPM for 24h.  (B) Increased cytotoxicity correlated with BV2 cell number as measured by Hoechst 

staining of live cells (inset). (C) No significant increase in C17.2 cytotoxicity or cell death (D) was 

observed. Data were analysed by one-way ANOVA followed by Dunnett’s post hoc test where 

appropriate. Biological replicates are as indicated on the graphs (n=3-6) and expressed as mean ± 

SEM. *p<0.05; **** p<0.0001. Scale bar indicates 100µm. 

Fig. 2. UPM exposure evokes a concentration-dependent inflammatory response that is more 

profound in BV2 cells. RNA was prepared from UPM-exposed cells and qRT-PCR performed using 

primers specific for the genes shown. All values are compared against GAPDH and an experimental 

control. Increased expression of IL-6 (A), TNF⍺ (B) and IL-1β (C) was observed for BV2 cells compared 

with C17.2 cells following UPM exposure with no significant difference in anti-inflammatory IL-10 

gene expression in either cell type.  Data were analysed by two-way ANOVA followed by Sidak’s post 

hoc test where appropriate. Biological replicates are as indicated on the graphs (n=3-6) and 

expressed as mean ± SEM. *p<0.05; **p<0.01;**** p<0.0001. 

Fig. 3. Exposure to high concentrations of UPM increases ROS production. Alterations in ROS 

production (DHE) were determined after UPM exposure in BV2 (A) and C17.2 (B) cells. UPM 

treatment significantly increased ROS production in BV2 cells (A) following exposure to 30 µg/ml and 

100 µg/ml UPM, but no change was observed in C17.2 cells (B).  Data were analysed by one-way 

ANOVA followed by Dunnett’s post hoc test where appropriate. Biological replicates are as indicated 

on the graphs (n=3-6) and expressed as mean ± SEM. **p<0.01. Scale bar indicates 100µm (C) qRT-

PCR was performed on C17.2 and BV2 RNA as previously described to determine the expression of 

NRF2. Increased expression was observed in C17.2 cells compared with BV2 cells particularly at 

higher concentrations of UPM exposure. Data were analysed by two-way ANOVA followed by 

Dunnett’s post hoc test (n= 4-5, **p<0.01)  

Fig. 4. Exposure to UPM decreases mitochondrial health. (A) ROS production was evaluated after 

UPM exposure in BV2 cells pretreated with mitochondrially targeted antioxidant mitoTEMPO (M, 

grey bars), compared with cells that did not receive pretreatment. MitoTEMPO prevented the UPM-

mediated increase in DHE fluorescence. (B) BV2 cells were exposed to UPM at the concentrations 

shown and then labelled with TMRM. A decrease in TMRM fluorescence was observed (inset) which 

reached significance at the highest UPM concentration indicating decreased mitochondrial 
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membrane potential. Scale bar indicates 75µm (C) BV2 cells were pretreated with mitoTEMPO (M, 

grey bars) and cell number determined following UPM exposure. For (A) and (C), data were analysed 

by two-way ANOVA followed by Sidak’s post hoc test. Biological replicates are as indicated on the 

graphs (n=3) and expressed as mean ± SEM. *p<0.05; **p<0.01. For (B) data were analysed by one-

way ANOVA followed by Dunnett’s post hoc test. Biological replicates are as indicated on the graphs 

(n=3) and expressed as mean ± SEM. *p<0.05. 
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