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Abstract: Haemodynamic wall shear stress varies from site to site within the arterial system and
is thought to cause local variation in endothelial permeability to macromolecules. Our aim was to
investigate mechanisms underlying the changes in paracellular permeability caused by different
patterns of shear stress in long-term culture. We used the swirling well system and a substrate-
binding tracer that permits visualisation of transport at the cellular level. Permeability increased
in the centre of swirled wells, where flow is highly multidirectional, and decreased towards the
edge, where flow is more uniaxial, compared to static controls. Overall, there was a reduction in
permeability. There were also decreases in early- and late-stage apoptosis, proliferation and mitosis,
and there were significant correlations between the first three and permeability when considering
variation from the centre to the edge under flow. However, data from static controls did not fit the
same relation, and a cell-by-cell analysis showed that <5% of uptake under shear was associated
with each of these events. Nuclear translocation of NF-κB p65 increased and then decreased with
the duration of applied shear, as did permeability, but the spatial correlation between them was not
significant. Application of an NO synthase inhibitor abolished the overall decrease in permeability
caused by chronic shear and the difference in permeability between the centre and the edge of the
well. Hence, shear and paracellular permeability appear to be linked by NO synthesis and not by
apoptosis, mitosis or inflammation. The effect was mediated by an increase in transport through
tricellular junctions.

Keywords: leaky junction; cell death; cell division; FITC-avidin; transport; orbital shaker; atherosclerosis;
hotspots; tricellular junction

1. Introduction

Haemodynamic wall shear stress (WSS) and endothelial permeability both vary from
site to site within the arterial system. The variation in WSS is likely to account, at least in
part, for the variation in permeability [1], and this influence has been associated with the
initiation of atherosclerosis: the disease is hypothesised to develop in regions where WSS is
low in magnitude [2], oscillatory [3] or multidirectional [4] and where macromolecules cross
the endothelium particularly rapidly [5–7]. However, there has been long-standing debate
on the shear-sensitive route by which macromolecules pass through the endothelium into
the arterial wall.

One widely investigated possibility is that macromolecules cross the endothelial bar-
rier predominantly via particularly leaky junctions between neighbouring cells [8]. Leaky
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junctions can arise when an endothelial cell is dying or dividing, and an association in vivo
between foci of elevated permeability and dying or dividing cells has been demonstrated
by direct visualisation of tracer uptake [9–14]. The foci tend to occur more frequently at
atherosclerosis-prone sites, but the relationship with flow is hard to assess in such studies.
Surgical interventions and in vitro experiments have demonstrated that endothelial cell
apoptosis and proliferation are increased by the types of flow implicated in atherogene-
sis [15–17] and that they are associated with elevated permeability [18–22]. However, none
of these studies directly visualised transport around apoptotic and proliferating cells; the
association was investigated indirectly, by assessing the correlation between permeability
and the number of such cells.

We previously used direct visualisation of tracer uptake to examine how putatively
pro- and anti-atherosclerotic flows influence macromolecule permeability in vitro [23].
Our data suggest that low-density lipoprotein (LDL)-sized tracers cross the endothelium via
a vesicular mechanism; the rate of transport is determined by the extent of multidirectional
flow, an effect that is mediated by endothelial secretion of follistatin-like 1 [24]. High-
density lipoprotein (HDL)- and albumin-sized tracers cross by a paracellular pathway [23].
The junctions where three or more cells meet (here termed tricellular junctions for simplicity)
play a major role, and they are also affected by multidirectional flow [23,25]; however, the
mechanisms have not been established.

Here we investigated mechanisms linking the extent of multidirectional flow to para-
cellular permeability. We initially focused on the roles of early- and late-stage apoptosis,
proliferation and mitosis. Since the data failed to demonstrate an unequivocal link between
any of these phenomena and elevated permeability at the cellular scale, we additionally
studied the roles of proinflammatory changes and decreased NO synthesis, both of which
are early events in atherosclerosis, influenced by WSS and known to affect transport [26–31].
The data did not support a role for inflammation, but an inhibitor of NO synthesis abolished
effects of multidirectional flow on permeability.

2. Results
2.1. Effect of Shear on Permeability

Chronic application of shear reduced FITC-avidin tracer accumulation underneath the
monolayer by 30% overall (Figure 1A). Figure 1B shows FITC-avidin accumulation as a
function of radial distance from the centre of the well. There was no effect of distance for
static monolayers. With shear, tracer accumulation was elevated in the central region of the
well, where putatively proatherogenic flow occurs, and reduced towards the edge of the
well, where putatively antiatherogenic flow occurs. Figure 1C shows representative tile
scans of FITC-avidin accumulation along the radius of static and sheared wells. A gradient
is visible in the sheared case but not in the static one.
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Figure 1. FITC-avidin accumulation, measured in relative fluorescence units (RFU), underneath 
static and sheared monolayers (A) for the entire well and (B) as a function of radial distance from 
the centre of the well. Mean + SEM, n = 8 isolations. (C) Representative tile scan of FITC-avidin 
accumulation (green spots) across a static well and a sheared well. Bar = 1 mm. 
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of apoptotic cells varied widely between donor aortas under static conditions but became 
more consistent under shear. There was no obvious effect of radial distance on early- or 
late-stage apoptosis under static conditions (Figure 2C,D). When shear was applied, 
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Figure 1. FITC-avidin accumulation, measured in relative fluorescence units (RFU), underneath static
and sheared monolayers (A) for the entire well and (B) as a function of radial distance from the centre
of the well. Mean + SEM, n = 8 isolations. (C) Representative tile scan of FITC-avidin accumulation
(green spots) across a static well and a sheared well. Bar = 1 mm.

2.2. Effect of Shear on Apoptosis, Proliferation and Mitosis

Chronic application of shear reduced the number of cells in early- and late-stage
apoptosis by 95% and 97% overall (Figures 2A and 2B, respectively). The number of
apoptotic cells varied widely between donor aortas under static conditions but became
more consistent under shear. There was no obvious effect of radial distance on early-
or late-stage apoptosis under static conditions (Figure 2C,D). When shear was applied,
regional differences appeared: the number of early-stage apoptotic cells between radial
distances of 5 and 8 mm was 57% lower than between 0 and 3 mm (Figure 2C,E; p = 0.03).
The equivalent figure for late-stage apoptotic cells, although not significant, was 41%
(Figure 2D,F; p = ns).
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Figure 2. Frequency of endothelial cells in (A) early- and (B) late-stage apoptosis averaged across
the entire well for static and sheared monolayers. There were approximately 750 cells/mm2 on the
base of the well. Frequency of (C) early-and (D) late-stage apoptotic cells as a function of radial
distance from the centre of the well under both conditions. Sheared results from (C,D) are presented
on an expanded scale in (E,F), respectively. Frequency across the entire well of (G) proliferating
and (H) mitotic cells under static conditions and shear. Frequency at different radial distances from
the well centre of (I) proliferating and (J) mitotic cells under both conditions. Effects of shear were
significant at all radial locations for (C,D,I) and, unless otherwise indicated, in (J). Mean ± SEM,
n = 5 isolations.
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Chronic shear reduced the number of proliferating cells by 77% (Figure 2G) and the
number of mitotic cells by 55% (Figure 2H). The number of proliferating cells was consistent
with a previous study [32] and, as in that study, independent of radial distance, both under
static and shear conditions (Figure 2I). The number of mitotic cells (Figure 2J) was also
consistent with a previous study [20] where mitotic figures were identified by haematoxylin
staining. There was, again, no clear trend with radial distance, with or without shear, but
the absolute number of events was small, and, hence, the data are noisy.

2.3. Correlation of Permeability with the Number of Apoptotic, Proliferating and Mitotic Cells

Tracer accumulation at different radial distances from the centre of the well under
shear is plotted against the frequency of early- and late-stage apoptosis, proliferation
and mitosis at the same radial location in Figure 3A–D, respectively. The correlation was
positive and significant for the first three cases, but not for mitosis (for which the data were
noisy—see above).

Note that values obtained under static conditions, which would not follow the same
relation, are excluded from Figure 3.
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Figure 3. Correlation between tracer accumulation and the corresponding number of (A) early-stage
apoptotic cells, (B) late-stage apoptotic cells, (C) proliferating cells and (D) mitotic cells under shear.
Pearson correlation coefficient (r), R squared and p-value are shown above each graph. Each point
represents the mean ± SEM at one radial location (n = 5 isolations).
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2.4. Colocalisation Studies

Confocal images of static monolayers stained for early-stage apoptosis, late-stage apop-
tosis, proliferation and mitosis are shown in the first column of Figure 4A–D. Subsequent
columns show tracer accumulation, endothelial nuclei and an overlay of all three channels
for the same field of view. In all cases, the large majority of FITC-avidin hotspots (green)
were separated by many nuclei from the cellular events indicated by immunostaining (red,
yellow, turquoise or purple).
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Figure 4. Representative confocal images of endothelial cells. The first column shows staining for
(A) early-stage apoptosis (red), (B) late-stage apoptosis (yellow), (C) proliferation, (C’) a proliferating
cell that is dividing (turquoise) and (D) mitosis (purple). The second and third columns show FITC-
avidin accumulation (green) and nuclei (blue) for the same field of view. The last column shows the
overlay of all three channels. Bar = 50 µm.
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Quantitatively, hotspots in the vicinity of early-stage apoptotic, late-stage apoptotic
and proliferating cells each accounted for less than 15% of total tracer accumulation under
static conditions and for less than 5% after chronic exposure to shear (Figure 5A–C). The
equivalent figures for mitotic cells were 2% and 1% (Figure 5D). Collectively, they accounted
for approximately 32% under static conditions and approximately 7% under shear.
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The distribution of the total tracer accumulation with radial distance from the centre
of the well did not correlate with the distributions of tracer accumulation due to early-stage
apoptotic, late-stage apoptotic, proliferating or mitotic cells (Figure 5E, Table 1).

Table 1. Pearson correlation coefficient (r), R squared and p for the total FITC-avidin uptake versus
each of the colocalised datasets shown in Figure 5E.

Early-Stage Apoptosis Late-Stage Apoptosis Proliferation Mitosis

r 0.33 0.48 0.01 −0.48
R squared 0.11 0.23 0.21 0.23

p-value 0.43 0.23 0.98 0.22

Few instances of high FITC-avidin accumulation were seen around early-stage or
late-stage apoptotic cells. For proliferating cells, high tracer accumulation was seen only
when the cell nucleus was densely concentrated, suggesting that the cell was undergoing
mitosis. High tracer accumulation was always seen around cells that stained positively for
mitosis itself (e.g., Figure 4D).

Quantitatively, <15% of early-stage apoptotic or proliferating cells and <30% of late-
stage apoptotic cells were associated with spots of tracer uptake under static conditions
(Figure 5F–H). However, approximately 100% of mitotic cells were associated with spots
(Figure 5I). In the first three cases, the percentages tended to drop when shear was applied
but the differences were not significant. For mitosis, the percentage was unchanged.

2.5. Effect of Shear on Inflammation and Tracer Uptake

The nuclear/cytoplasmic ratio of NF-κB p65 was approximately uniform with radial
distance from the centre of the well under static conditions and after 7 days of shear, and
was approximately the same under both conditions (Figure 6A). There was no significant
correlation between translocation and tracer accumulation at different radial locations
under shear (data not shown).

Since NF-κB p65 translocation shows cyclical changes in response to inflammatory
stimuli, we also determined its behaviour and the corresponding values of tracer accumu-
lation over time. Tracer accumulation, averaged across the well, tended to increase above
static levels after 2 h of shear exposure, although the effect was not significant. It returned
to the baseline at 4 h and then continued to decrease until reaching approximately two
thirds of its static level (Figure 6B), the latter value being consistent with Figure 1. The
decrease from the initial values reached statistical significance by day 1. Translocation
showed a broadly similar trend (except that the values at 4 h were proportionately lower)
but none of the changes reached significance (Figure 6C).

Equivalent data subdivided according to radial distance from the centre of the well
are shown in Figure 6D,E. There was no significant correlation between tracer accumula-
tion under sheared monolayers and levels of NF-κB p65 translocation at different radial
distances for any duration of shear except 2 h (Table 2).

Table 2. Pearson correlation coefficie©(r), R squared and p for tracer accumulation versus NF-κB p65
translocation at varying radial distances from the centre of the well after different durations of shear.

2 h 4 h 8 h 1 Day 4 Days 5 Days

r 0.73 0.34 0.30 0.30 0.21 0.35
R squared 0.53 0.12 0.0092 0.089 0.042 0.13

p 0.039 0.41 0.47 0.47 0.62 0.39
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2.6. Effect of L-NAME on Permeability with and without Shear

The NO synthase inhibitor L-NAME had no effect on tracer accumulation averaged
across the well under static conditions (Figure 7A). Chronic application of shear reduced
tracer accumulation as before. Under chronic shear, prior treatment with L-NAME in-
creased tracer accumulation to a level that was greater not only than in the monolayers
without L-NAME but also than in the monolayers under static conditions (Figure 7A). The
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lack of effect of L-NAME under static conditions suggests an absence of non-specific toxic
effects at the dose employed.
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Figure 7. FITC-avidin accumulation averaged across the well for (A) static and sheared monolayers,
with or without prior L-NAME treatment. FITC-avidin accumulation as a function of radial distance
from the centre of the well for (B) static and (C) sheared monolayers, with or without prior L-NAME
treatment. Mean + SEM, n = 3 isolations.

When the data were subdivided according to radial distance from the centre of the well,
L-NAME had no significant effect on permeability at any location under static conditions
(Figure 7B). Under shear, however, L-NAME not only increased permeability at all locations
but abolished the influence of the radial location (Figure 7C).

Further analysis of the effect of L-NAME examined the role of tricellular junctions.
The fraction of tricellular junctions associated with spots of FITC-avidin uptake was approx-
imately 25% at all radial locations under static conditions, and was unaffected by L-NAME
(Figure 8A). When chronic shear was applied, the fraction was approximately unchanged
at the centre of the well but decreased towards the edge. Adding L-NAME increased the
fraction to around 35–40% at all radial locations (Figure 8B).
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Figure 8. Percentage of permeable tricellular junctions of monolayers cultured under (A) static
conditions and (B) shear. Percentage of the total accumulation due to tricellular junctions for the cells
cultured under (C) static conditions and (D) shear. Mean tracer accumulation per permeable tricellular
junction under (E) static conditions and (F) shear. All panels show data as a function of distance from
the centre of the well, obtained with and without L-NAME treatment. (G) Confocal images of tracer
accumulation (green spots) under PAEC monolayers cultured under static and sheared conditions,
with and without L-NAME treatment. Red lines of anti-VE-cadherin immunostaining show cell
boundaries. Bar = 100 µm. Mean ± SEM, n = 3 isolations.
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Tricellular junctions accounted for approximately 80% of tracer accumulation un-
der all conditions: the proportion was unaffected by radial location, shear or L-NAME
(Figure 8C,D). The mean tracer accumulation under each leaky tricellular junctions was
unaffected by radial distance or L-NAME under static conditions (Figure 8E), but under
shear it was higher at the centre than at the edge of the well. L-NAME abolished the latter
difference, giving values for tracer accumulation that were slightly above those in the centre
of the well in the absence of L-NAME everywhere (Figure 8F). Example confocal images
acquired for the different conditions are given in Figure 8G.

3. Discussion

In a previous study [23], we showed that transendothelial transport of FITC-labelled
avidin and neutravidin occurs by a paracellular route. We also showed that when wells
containing endothelial monolayers were swirled on an orbital shaker, permeability to
FITC-neutravidin increased in the centre and decreased towards the edge. A subsequent
study [25] showed that most FITC-avidin is transported through tricellular junctions and
that the number of leaky tricellular junctions increases—and that each of these has higher
permeability—at the centre than at the edge of swirled wells.

Here, we sought to investigate the mechanisms underlying these phenomena, and
specifically the roles of apoptosis, proliferation, mitosis, proinflammatory transcription
factors and NO production, all of which have been implicated in determining endothelial
permeability. The study employed arterial endothelial cells of low passage number [23],
swirling well configurations for which shear stresses have been characterised by computa-
tional fluid dynamics [33], chronic rather than acute exposure to flow [20,23], staining for
both early- and late-stage apoptosis, and an avidin-based tracer that binds to the biotiny-
lated endothelial substrate and whose accumulation can consequently be compared to the
state of the individual cells immediately overlying it [23,34].

We found, as before, that permeability to FITC-avidin was increased in the centre
of the well and decreased towards the edge of the well by swirling. The rate at which
permeability fell with increasing distance from the centre was initially slow but increased
after 2 mm; permeability reached a plateau by 5 mm that was maintained out to 8 mm,
the maximum distance examined. As previously discussed [23], this pattern of perme-
ability does not strongly resemble the trend in either the time-averaged WSS, which is
approximately constant, or the oscillatory shear index (OSI), which decreases in a nearly
linear fashion [33]. There is also a poor correlation with transverse WSS (transWSS, a
measure of multidirectionality which averages those components of WSS during one cycle
that act at right angles to the mean WSS direction [35]): it, like the time-averaged WSS, is
approximately constant over the 0–8 mm range.

Nevertheless, the trend in permeability is well-explained by multidirectionality: it
closely resembles the trend in the transWSSmin, which is the transverse shear experienced
by cells that are oriented so as to minimise it rather than oriented with the mean shear
vector. Our recent data [36] show that endothelial cells do not align with the mean shear
vector; under the flow conditions used here, they align between the mean WSS direction
and the direction that minimises the transWSS. They are therefore expected to experience a
pattern of transverse shear that is intermediate between the transWSS (constant) and the
transWSSmin (sigmoid with respect to radial distance)—that is, a sigmoid trend, albeit
with a less extreme range than the transWSSmin.

After chronic exposure to shear, there were significant correlations of permeability
with the rates of early-stage apoptosis, late-stage apoptosis and proliferation when vari-
ation with radial distance from the centre of the well was considered. There was also a
convincing correspondence between changes in permeability and changes in NF-κB p65
translocation, both averaged across the well, as a function of time after shear stress was
first imposed. There was no significant correlation between radial variation in permeability
and the rate of mitosis, but absolute numbers of mitotic events were low and the data were
consequently noisy.
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Despite these correlations, the data, when taken as a whole, are not consistent with any
of the cellular events dominantly determining the pattern of permeability across the well.
First, early-stage apoptosis, late-stage apoptosis, proliferation and mitosis were all drasti-
cally reduced by chronic shear stress when averaged across the well, whereas permeability
was only moderately decreased; for this reason, the data from the static controls do not
fit with the correlations obtained under shear. Notably, apoptosis in the centre of the well
was reduced by an order of magnitude by shear whereas permeability was significantly
increased by it. Second, NF-κB p65 translocation was little changed from the static control
levels by chronic shear and, when examining radial variation, there was no correlation
between translocation and permeability at any duration of imposed shear beyond 2 h.
Third, and most importantly, when individual patches of tracer accumulation in swirled
wells were compared with the cells above them, the fraction of the total accumulation that
was associated with early-stage apoptosis, late-stage apoptosis, proliferation or mitosis did
not exceed 5% for any of these events.

Thus, when comparing spatial variation in permeability with spatial variation in apop-
tosis and proliferation, there was a significant correlation at the millimetre scale but not at
the cellular level. Similarly, permeability and nuclear NF-κB staining showed comparable
temporal trends when their levels were averaged over the whole well but no correlation
at the cellular level. These apparent contradictions, not previously reported, can be ex-
plained if flow characteristics determine permeability and cellular events independently of
one another.

It is well-established that endothelial NO production influences permeability and
that these effects depend on WSS, albeit in complex ways. The present study found that
inhibiting NO production was without effect under static conditions, perhaps because
the cells produced insufficient NO to alter permeability, but, consistent with our earlier
study [20], that it prevented a decrease in average permeability caused by chronic shear.
A new finding was that L-NAME also abolished the difference in permeability between the
centre and the edge of the well under chronic shear. Note that NO production may also be
responsible for the variation in cellular events: it is well-established that endothelial NO
production is antiapoptotic, antiproliferative and anti-inflammatory.

Combining measurements of permeability at a cellular scale with automated semantic
segmentation of tricellular junctions enabled identification of novel mechanisms by which
shear and NO affect permeability. Shear reduced the number of patent tricellular junc-
tions in non-central locations and slightly reduced the permeability of each one, together
accounting for the reduced permeability seen in these regions. At the centre of the well,
shear did not noticeably increase the number of patent tricellular junctions but did increase
the permeability of each one. L-NAME had no effect on the number of patent tricellular
junctions or their permeability under static conditions, but under shear it led to high values
of both variables and eliminated differences from the centre to the edge.

Although the results support the view that it is NO production which mediates the
effects of shear stress characteristics on paracellular permeability, there are unexplained
aspects of the data. We had expected that L-NAME would simply abolish the effects of
chronic shear on permeability, bringing permeability back to the constant level seen at all
radial locations under static conditions. L-NAME did produce a constant level, but it was
almost double the one seen under static conditions. Hence, permeability in the absence
of NO production seems higher in swirled wells than in static wells, suggesting that an
additional factor may be involved.

Next, we compared our results with previous in vitro studies concerning the roles of
dying and dividing cells. Cancel et al. [18] showed that 44% of albumin transport under
static conditions occurred through the leaky junctions associated with such cells. This figure
was obtained from data collected in the presence of a pressure-driven transendothelial
water flux and by using a mathematical model of a three-pore system. Nevertheless, the
value is comparable with the 32% we obtained by direct visualisation of the similarly sized
FITC-avidin, albeit without the pressure gradient. The figure we obtained under the more
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physiological condition of chronic shear, however, was only around 7%. Note that there
is evidence for receptor-mediated transcellular transport of albumin [37] and that this is
unlikely to occur for FITC-avidin.

For LDL transport, Cancel et al. [18] obtained a value of at least 90%, and further
evidence supporting a substantial role for mitosis and apoptosis in LDL transport was
obtained by manipulating these phenomena [19,21,22]. If such results were confirmed by
direct visualisation, the greater importance of apoptosis and mitosis would presumably be
explained by the much larger size of the LDL particle and its lower diffusion coefficient.
However, a different, transcellular route was observed in our study of an LDL-sized
quantum dot tracer [23].

The role of endothelial mitosis and apoptosis in creating “hotspots” of elevated uptake
has also been studied in vivo. For example, Lin et al. showed that 99% of mitotic cells [9]
and 63% of dead or dying cells [11] were associated with hotspots of albumin uptake
in the rat aorta. The number for mitosis is identical to the figure we obtained for FITC-
avidin uptake under shear; the number for dead and dying cells is substantially higher
than the one we obtained for apoptosis, perhaps reflecting the wider definition: Lin et al.
identified dead and dying cells by their uptake of IgG. What is missing from such studies
is an estimate of the fraction of the total uptake caused by apoptotic and mitotic cells.
We recently addressed that issue using en face confocal microscopy to detect uptake of
rhodamine-labelled albumin in the vicinity of aortic branches and found that uptake in
hotspots was an order of magnitude lower than the total uptake [38]. That is consistent
with the present study where proliferating, mitotic and apoptotic cells together accounted
for less than 10% of the total uptake under shear. Again, the importance of hotspots could
be greater for larger molecules such as LDL.

Finally, we consider the physiological and pathological relevance of our in vitro data.
Inhibiting NO production has complex effects on transport in the intact artery—like perme-
ability, flow multidirectionality and the prevalence of atheromata [39], the effects differ be-
tween regions upstream and downstream of branch points, and change with age [30,40,41].
Reducing NO may not always increase paracellular permeability. Furthermore, it is hard to
assert that raised paracellular permeability is necessarily proatherogenic. We have shown
that LDL-sized particles, which are thought to be responsible for lipid accumulation within
the arterial wall, cross the endothelium dominantly by a transcellular route [23,24]. It is
HDL-sized particles, which are thought to be protective, and other smaller molecules that
enter by the paracellular route. According to this concept, raised paracellular permeability
might be beneficial. However, convective flux of water also occurs by the paracellular
route in vivo and will likely affect the accumulation of macromolecules. The relations
between flow multidirectionality, NO synthesis, permeability and atherosclerosis require
further investigation.

4. Methods and Materials
4.1. Cell Culture

Porcine aortic endothelial cells (PAECs) were isolated using the methods of Bogle et al. [42]
and cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10%
foetal bovine serum (FBS), 2.5 µg/mL−1 amphotericin B, 100 U/mL−1 penicillin,
100 µg/mL−1 streptomycin, 50 µg/mL−1 gentamycin, 5 mM L-glutamine, 90 µg/mL−1

heparin and 5 µg/mL−1 endothelial cell growth factor in a humidified incubator at 37 ◦C
under 5% CO2. Their purity was confirmed using DiI-acetylated LDL as previously de-
scribed [20]. The medium was replaced every two days until the cells were confluent.
The cells were then seeded in 12-well plates coated with biotinylated gelatine [34] and
cultured until confluent again. All experiments were carried out at passage 2 because
permeability increases with passage number [23].
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4.2. Application of Shear Stress

To apply flow, the cells were cultured in multi-well plates that were swirled on the
platform of an orbital shaker. This method produces a putatively proatherogenic flow in
the centre of the well and a putatively antiatherogenic flow towards the edge; it permits
high throughput and chronic application of shear, and is the only method in which useful
numbers of cells can be exposed to multidirectional flow–see [43].

Wells of confluent PAEC monolayers with an average medium height of 2 mm were
placed on the shaker (PSU-10i, Grant Instruments, Shepreth, UK) in an incubator and
swirled for 7 days unless stated otherwise. The platform translated with an orbital diameter
of 10 mm in the horizontal plane and a rotation rate of 150 rpm. Flow characteristics were
obtained using computational simulations that included surface tension and wetting [33].
Static controls for each experiment were carried out using cells from the same aorta.

4.3. Application of Tracers

Permeability was measured using the technique of Dubrovskyi et al. [34], in which
labelled avidin is added to the medium above the endothelial monolayers grown on
biotinylated gelatine. The avidin binds to the biotin on crossing the endothelium; its
concentration is quantified using confocal microscopy and can be related to characteristics
of the overlying cells and the flow to which they were exposed [23–25].

The medium was replaced with DMEM supplemented as above except that the con-
centration of FBS was reduced to 5%. After 24 h, FITC-avidin dissolved in DMEM was
applied to the wells at a final concentration of 0.38 µM, following which the wells were
returned to the incubator for 3 min under swirling or control conditions. The tracer solution
was then removed, and the wells were rinsed three times with PBS and fixed with 4%
paraformaldehyde for 10 min. Note that the rate of macromolecular transport through the
endothelium in vivo is much slower than transport within the liquid (i.e., blood) phase [44];
the same is expected in the swirling well, where substantial convection occurs. There will
not be a significant concentration boundary layer, and swirling should, therefore, not affect
transport through indirect mixing effects.

4.4. Staining

PAECs were immunostained for either cleaved caspase-9 (“early-stage apoptosis”),
cleaved caspase-3 (“late-stage apoptosis”), Ki-67 (“proliferation”), phospho-Ser/Thr–Pro
MPM-2 (“mitosis”) or NF-κB p65 (“inflammation”). Nuclei were stained with DRAQ5
(Biostatus), and cell borders were delineated by immunostaining for vascular endothelial
(VE)-cadherin. Antibodies, labels and dilutions are listed in Table 3. In all the cases, fixed
PAECs were permeabilised and blocked at room temperature with 0.1% Triton X and
2% bovine serum albumin solution for 1 h. After blocking, they were incubated with the
primary antibody overnight at 4 ◦C followed by 1 h incubation with the secondary antibody
at room temperature.

Table 3. List of primary and secondary antibodies used for immunofluorescence staining.

Antigen Primary Antibody Secondary Antibody

Cleaved
caspase-9

Rabbit monoclonal anti-cleaved caspase 9, 1:800 (Cell
Signalling Technology, Danvers, MA, USA)

Goat anti-rabbit Alexa Fluor 546, 1:1200
(Invitrogen, Waltham, MA, USA)

Cleaved
caspase-3

Rabbit polyclonal anti-cleaved caspase 3, 1:1000 (Cell
Signalling Technology)

Goat anti-rabbit Alexa Fluor 546,
1:1500 (Invitrogen)

KI67 Rabbit polyclonal anti-Ki67, 1:1000 (Abcam,
Cambridge, UK)

Goat anti-rabbit Alexa Fluor 546,
1:1500 (Invitrogen)

Phospho-Ser/Thr–Pro MPM-2
Mouse monoclonal anti-phospho-Ser/Thr–Pro

conjugated to Cy5,
1:800 (Merk, Darmstadt, Germany)

N/A

NF-κB p65 Rabbit polyclonal anti-NF-κB p65, 1:200 (Santa
Cruz Biotechnology, Dallas, TX, USA)

Goat anti-rabbit Alexa Fluor 546,
1:300 (Invitrogen)

VE-cadherin Goat polyclonal anti-VE-cadherin, 1:200 (Santa Cruz
Biotechnology)

Donkey anti-goat Alexa Fluor 568,
1:300 (Invitrogen)
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4.5. Inhibition of Nitric Oxide Production

Nω-nitro-L-arginine methyl ester (L-NAME, 500 µM final concentration) was added
to the medium 24 h prior to the addition of a tracer. The monolayers being sheared were
returned to the orbital shaker after the addition.

4.6. Imaging and Image Processing

Images were obtained with a Leica SP5 inverted confocal microscope using a×10 0.40 NA
objective and subsequently processed with MATLAB 2017a code unless stated otherwise.
For display purposes, some static cultures were imaged in 96-well plates rather than in
12-well plates.

4.6.1. Quantification of Tracer Accumulation and Frequency of Apoptotic and Mitotic Cells

The Leica tile scanning function was used to image along the radius of the well up to
a distance of 8 mm from the centre. Areas beyond this were excluded as the time-average
wall shear stress—TAWSS—is approximately constant for the distance up to 8 mm [33],
and the primary aim was to investigate effects of multidirectionality of shear. Variation in
indices of multidirectionality is discussed further below.

For each tile, a stack of images was acquired from three images below to three images
above the monolayer, and the average intensity was calculated in each vertical column.
FITC-avidin accumulation occurred in discrete patches termed “hotspots”. Thresholding
by both intensity and area was used to distinguish tracer fluorescence from background
noise. The resulting binarised images were overlaid on the original tile and used as a mask
to quantify tracer accumulation. Signal in the absence of a tracer was negligible.

Cells stained for apoptosis or proliferation markers were similarly segmented and
summed to give the number within each tile. For spatial co-registration of tracer accumula-
tion with stained cells, a circular region of interest (ROI) with a radius of 25 µm (slightly
bigger than a single cell) was centred on the centroid of each segmented cell. Images con-
taining the circular ROIs were then overlaid on the corresponding processed FITC-avidin
images to measure the extent of tracer accumulation within the ROI.

4.6.2. Quantification of NF-κB p65 Translocation

Radial tile scans of PAECs stained for nuclei, VE-cadherin and NF-κB p65 were used
to quantify translocation. VE-cadherin staining, indicating cell borders, was quantified
using the deep residual convolutional neural network proposed by Quan et al. [45] for
the segmentation of neuronal structures, implemented with the Keras open-source deep
learning library. The model was trained with data that consisted of pairs of input and
output images, where the input was an image of the monolayer stained for VE-cadherin
and the output was manually segmented cell borders. Data augmentation—namely, 90◦,
180◦ and 270◦ rotations, along with their vertical reflections—was used to supplement the
training set. Training was halted when the mean squared error between model predictions
and ground truth reached a plateau. The trained model was validated on a held-out test set.

DRAQ5-stained nuclei were segmented from the background using intensity and area
thresholding as above. The segmented cell boundaries and nuclear images were then used
as masks to quantify the mean NF-κB p65 pixel intensity value within each nucleus and
within the cytoplasm of the corresponding cell. Translocation was then calculated for each
cell as follows:

NF-κB p65 Translocation =
Mean nuclear NF-κB p65 intensity

Mean cytoplasmic NF-κB p65 intensity

For the more extensive studies investigating NF-κB p65 translocation as a function of
radial distance and different shear durations, a simpler method was used: nuclei were seg-
mented by intensity and area thresholding and used as masks to quantify the mean NF-κB
p65 pixel value inside the nucleus as above, but the cytoplasmic NF-κB p65 pixel value was
obtained by calculating the mean pixel value of NF-κB p65 outside the nuclear mask—that
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is, perfect confluence was assumed. The value of NF-κB p65 translocation was obtained us-
ing the equation above. The methods are summarised in Supplementary Figures S1 and S2.

4.6.3. Quantification of Endothelial Tricellular Junctions

Semantic segmentation of tricellular junctions and quantification was performed as pre-
viously described [25]. Briefly, the RefineNet architecture [46] was used to train a model to
identify tricellular junctions from VE-cadherin-stained images (Supplementary Figure S3),
and permeable tricellular junctions were identified based on colocalization of FITC-avidin
tracer accumulation and tricellular junctions. The data were subsequently used to analyse
the ratio of permeable tricellular junctions to the total number of tricellular junctions,
the total tracer accumulation at tricellular junctions with respect to the total transport
through the whole monolayer, and the mean tracer transport through each permeable
tricellular junction.

4.7. Statistical Methods

The results were assessed with Student’s paired t-test or the Pearson product moment
correlation (r); p < 0.05 was used as the criterion for significance; ns indicates non-significance,
and *, **, *** and **** denote p < 0.05, p < 0.01, p < 0.001 and p < 0.0001, respectively.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms23158076/s1.
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