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Abstract
Objective. Fast neural electrical impedance tomography is an imaging technique that has been
successful in visualising electrically evoked activity of myelinated fibres in peripheral nerves by
measurement of the impedance changes (dZ) accompanying excitation. However, imaging of
unmyelinated fibres is challenging due to temporal dispersion (TP) which occurs due to variability
in conduction velocities of the fibres and leads to a decrease of the signal below the noise with
distance from the stimulus. To overcome TP and allow electrical impedance tomography imaging
in unmyelinated nerves, a new experimental and signal processing paradigm is required allowing
dZ measurement further from the site of stimulation than compound neural activity is visible. The
development of such a paradigm was the main objective of this study. Approach. A finite
element-based statistical model of TP in porcine subdiaphragmatic nerve was developed and
experimentally validated ex-vivo. Two paradigms for nerve stimulation and processing of the
resulting data—continuous stimulation and trains of stimuli, were implemented; the optimal
paradigm for recording dispersed dZ in unmyelinated nerves was determined.Main results.While
continuous stimulation and coherent spikes averaging led to higher signal-to-noise ratios (SNRs)
at close distances from the stimulus, stimulation by trains was more consistent across distances and
allowed dZ measurement at up to 15 cm from the stimulus (SNR= 1.8± 0.8) if averaged for
30 min. Significance. The study develops a method that for the first time allows measurement of dZ
in unmyelinated nerves in simulation and experiment, at the distances where compound action
potentials are fully dispersed.

1. Introduction

Electroceuticals or bioelectronic medicines [1] are
a novel emerging set of techniques aimed at treat-
ing diseases by selective stimulation of nervous tissue
and neuromodulation of the internal organs innerv-
ated by it. The main nerve of interest is the vagus
nerve (VNS) which is the longest autonomic nerve
in the body serving as an interface between the cent-
ral nervous system and major internal organs. Elec-
trical stimulation of the VNS and neuromodulation
of the internal organs or areas of the brain supplied by

it is a clinically approved technique for treatment of
drug-resistant epilepsy [2, 3] and depression [4], and
has a great potential for treatment of heart failure [5],
rheumatoid arthritis [6] and a variety of inflammat-
ory diseases via modulation of the cholinergic anti-
inflammatory pathway [7–9]. However, despite the
good clinical efficacy and great potential of VNS, it is
prone to adverse effects with an incidence rate of up
to 50% [10, 11] originating from non-targeted elec-
trical stimulation of the VNS that induces modula-
tion of all organs supplied by it leading to undesired
physiological effects. To reduce side effects, selective
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stimulation of the specific fascicle within the nerve
leading to a particular organ in the single direction
of this organ is required.

To allow selective stimulation of fascicles in the
nerve, it is essential to know their precise location
within this nerve. Moreover, organisation of a closed
feedback loop neuromodulation of the desired organ
relies on themeasurement of functional activity of the
fascicle supplying this organ. Both capabilities can be
achieved with fast neural electrical impedance tomo-
graphy (EIT), a novel method capable of imaging
electrical activity in nerves in their cross-section.

1.1. Fast neural EIT
In fast neural EIT, the same as in conventional EIT,
the impedance of the tissue is measured by inject-
ing sinusoidal electric current through a pair of elec-
trodes and recording voltages through other pairs of
available electrodes [12–15]. Since the applied current
amplitude is constant, the measured voltage amp-
litudes are directly proportional to the tissue imped-
ance according to Ohm’s law. Then, the electrode
pairs are switched, and this procedure is repeated for
all electrode pairs so that numerous voltage meas-
urements with different current injections can be
obtained.

EIT recordings usually contain background noise
with physiological or hardware-related origin. In fast
neural electrical impedance tomography, physiolo-
gical noise is primarily caused by neural activity and
accounts for up to 95% of total noise [16], with the
remaining hardware-related noise including but not
limited to thermal effects, current source noise, digit-
ization noise and stray capacitance [17].

Using the recorded voltages, images of the internal
electrical impedance of the tissue can be reconstruc-
ted by solving an inverse problem with the use of
various numericalmethods [12]: signal-to-noise ratio
(SNR) exceeding 4 is usually required to obtain repro-
ducible EIT images [18]. Previously, fast neural EIT
was capable of reconstructing images of functional
activity of the brain [13, 14] and peripheral nerves
in their cross-section [12, 15, 19] with temporal and
spatial resolutions of <1 ms and <200 µm respect-
ively [12, 19]. In addition, EIT imaging in nerves was
validated against micro-computed tomography and
histology [19].

The physiological basis of fast neural EIT relies
on a principle of activation of nerve fibres involving
voltage-dependent ion channels. When a fibre depol-
arizes, ion channels switch to an opened state and the
impedance of the tissue decreases, so that electric cur-
rent which is externally applied in EIT, flows through
them as the path of the least resistance. The changes
usually recorded in fast neural EIT are small and equal
up to 0.1%–1% of the baseline values in the brain
andmyelinated nerves [12, 19–21], andmuch smaller
(<0.01%) in mammalian unmyelinated nerves [22].
This requires the noise threshold in the recordings to

be <0.01% which can theoretically be achieved using
the existing EIT systems [16] if long-enough aver-
aging of the signal is performed.

1.2. Temporal dispersion
Although fast neural EIT is reliable for imaging neural
activity in the brain and peripheral nerves, ima-
ging in autonomic nerves is more challenging for
two reasons. First, autonomic nerves mainly consist
of small unmyelinated C fibres [23, 24] producing
lower impedance changes; second, conduction velo-
cities (CVs) of C fibres are significantly slower and
more variable [25, 26]. As a result, the amplitude
of the compound action potentials (CAPs) being an
aggregate sumof action potentials (APs) of individual
fibres rapidly decreases along the nerve from the site
of its activation. This effect is referred to as temporal
dispersion (TD) [26–29] which leads to a fall of the
CAP below the noise threshold beyond a few centi-
metres or in some cases even a few millimetres from
the stimulus [22, 26, 30].

The last point is especially important for the
achievement of the goals stated for bioelectronic
medicines. First, mammalian, including human,
VNSs are largely unmyelinated [23, 31]. Second,
for selective stimulation of the specific fascicles and
closed-loop neuromodulation of the internal organ
which they supply, the neural activity propagating
from the organ must be recorded and imaged at
the cervical level. The length of the nerve from the
internal organs to the neck in humans is around half
a metre [32] that is significantly larger than the the-
oretical limit of approximately 4 cm allowed by TD
in unmyelinated fibres [22]. To overcome this limita-
tion, a method capable of measuring dZ further from
the onset than allowed by TD is required.

The feasibility of this objective can partly be justi-
fied by the fact that CAPs in nerves have more pro-
nounced phasic nature than dZs which are mainly
monophasic, as was measured experimentally in
crabs [33], rats [12, 19] and large animals [34] as
well as confirmed in the current study (figure 6 in
section 3). Therefore, the expectation is that CAPswill
decrease in amplitude much faster than dZ so that dZ
will be visible further from the stimulation point than
CAPs are.

In addition, study [35] showed that when the
stimulation paradigm had been changed from a tra-
ditional continuous nerve stimulation to application
of a high-frequency series of stimuli separated by rest-
ing intervals, it was theoretically possible to record dZ
at 20 cm from the stimulus with SNR of 4 if aver-
aging for 30 min, while the traditional approach can-
not be used at >5 cm [22]. However, this approach
was based on a simple statistical model of an arbit-
rary C fibre nerve which significantly differs from
real mammalian autonomic nerves. Also, the experi-
mental parameters such as the noise, geometry of the
electrodes and electrical parameters were arbitrarily
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chosen based on the previously performed experi-
ments in peripheral nerves [12].

Therefore, in order to provide accurate predic-
tions and determine whether it was realistic to meas-
ure dZ in autonomic nerves at distances from the
stimulation where CAPs were cancelled out, this
approach must have been optimised. It should have
accounted for realistic nerve histology and fibre com-
position as well as included a variety of exper-
imental parameters utilised in impedance meas-
urement experiments performed with mammalian
nerves. Then, following the development and optim-
isation of themethod, the predictionsmust have been
verified experimentally.

1.3. Purpose
The main purpose of this study was to develop and
optimise a method to overcome TD and allow EIT
recordings of phasic activity at far distances from the
onset along the nerve where compound activity is dis-
persed. This brings up the opportunity to image fas-
cicles of the autonomic nerves with fast neural EIT
at the distances where the CAPs fall below the noise
and facilitate the development of bioelectronic medi-
cines for selective stimulation of the VNS, neuromod-
ulation of internal organs and treatment of associated
drug-resistant disorders. Specific questions addressed
in this study were as follows:

(a) What are the optimal stimulation and signal pro-
cessing strategies and parameters producing the
largest impedance changes at different distances
(15, 20 and 50 cm) from the onset?

(b) How much averaging is required (1) to obtain a
measurable signal (SNR > 1) and (2) to image
neural activity with EIT (which requires SNR> 4
[18]) at 15, 20 and 50 cm from the site of stimu-
lation?

(c) Are simulated results confirmed with the exper-
imental data?

The first part of the study included the devel-
opment of the accurate model of dispersion in the
porcine subdiaphragmatic nerve (SN) which was fol-
lowed by the development and optimisation of the
method for overcoming dispersion and recording dZ
at far distances from the stimulation site.

2. Methods

2.1. Experimental design
The study was divided into the following steps:

(a) Development of an experimentally driven stat-
istical model of the SN of the pig.
The model combined (a) previously developed
accurate finite element (FEM)model of a C fibre
[36] and (b) statistical model for simulation of

TD of CAPs and dZs [22] in a complex nerve,
consisting of a composition of unmyelinated and
myelinated fibres [37]. The parameters of the
model were chosen on the basis of ex-vivo exper-
imental recordings (CAP and dZ) obtained using
a SN of the pig subjected to repetitive continuous
stimulation. As a result, the model could accur-
ately simulate CAPs and impedance changes at
∼3 cm from the stimulus and could be therefore
utilized for the development and optimisation of
a new method for overcoming TD and measure-
ment dZ at further distances, where CAPs were
cancelled out due to dispersion.

(b) Development of a method for overcoming dis-
persion.
Using the developed model, the optimal stimu-
lation and signal processing paradigms to record
impedance changes at the distances where com-
pound APs were dispersed were obtained. For
this, the modelled nerve fibre was subjected to
repetitive stimuli at various frequencies. For dZ
extraction, the resultant signals were processed
in two ways—(1) averaging and band-pass fil-
tering as single spikes and (2) averaging as trains
of spikes allowing band-pass filtering around the
whole train thus significantly reducing the band-
width of the filter. The optimal parameters for
dZmeasurement at various distances from stim-
ulation were determined, the SNR at these dis-
tances was obtained. The final predictions of the
model have then been subjected to experimental
verification using a preparation of the porcine
SN ex vivo (N = 18).

2.2. Versatile statistical model of dispersion in
nerve
2.2.1. FEM model of a single fibre
Impedance changes accompanying neural activity
were obtained using the FEM models of mammalian
C fibre (d = 1 µm) bi-directionally coupled with the
extracellular space (figure 1) [36]. Two variants of the
FEM model were designed in the study. In the first
variant (figure 1(a)), the C fibre (d = 1 µm) was
surrounded by a cylinder of extracellular space with
the diameter equal to the one of the ring electrodes
(D= 0.01 mm). The second variant (figure 1(b)) was
designed to represent the ex-vivo experiments per-
formed using multielectrode cuffs. When the silic-
one cuff is placed tightly around the nerve, as in the
ex-vivo experiment performed in the current study
(figure 2), there is a significantly smaller amount
of saline solution inside the cuff (in the electrode-
nerve interface) than along other parts of the nerve.
The shape of the recorded CAP, in this case, differs
from the one recorded using hook electrodes [33],
where the saline solution occupies uniform volume
along the nerve (as in figure 1(a)). Therefore, to sim-
ulate the activity of the C fibre in the conditions
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Figure 1. Axisymmetric representation of the model of a mammalian C fibre, based on [36, 38]. The axon is depicted by a blue
line, the axis of symmetry is shown by the red dash-dotted line. The AP was induced from the end of the fibre; DC or AC were
applied through two external electrodes (blue) placed 7.8 and 7.82 mm from the axon’s end (distance between injecting electrodes
∆xI = 0.02 mm); the electric field was recorded by an external electrode (green) placed before the injecting ones, 7.7 mm from
the proximal end of the fibre (distance between recording and injecting electrodes∆xR = 0.1 mm). (a) Initial model [36]; (b) the
same model with the change in the structure of extracellular space to simulate the condition of ex-vivo experiments with the nerve
cuff. For this, the width of the extracellular space was increased 50-fold outside the region along the nerve where electrodes were
located (Lcuff = 0.3 mm). Shapes of extracellular action potential (EAP) and impedance change (dZ) produced with each model
as well as their triangular FEM meshes are depicted on the right.

Figure 2. (a) Experimental setup consisted of four multi-electrode cuffs placed around the nerve. The first cuff was used for
stimulation, the subsequent cuffs were placed at 3, 15 and 20 cm from the first one were used for measurement of CAPs and dZ.
For dZ measurement, constant sinusoidal current (1–6 kHz, 200–300 µA) was injected through two last electrodes on each cuff,
and voltage was measured on the remaining electrodes in respect to the last electrode on the last cuff. The 2nd cuff which was
closest to the stimulation site was used for control and model development as C fibre CAPs were clearly measurable there, cuffs 3
and 4 were far enough so that the APs corresponding to C fibres were dispersed, only myelinated fibres’ CAPs were visible.
(b) Multi-electrode cuff design. Six identical electrodes per cuff with a surface area of 0.46 mm2 each were used.

similar to those when the cuff is present, the width
of the extracellular space cylinder was increased 50-
fold outside the 0.3 mm region along the nerve where
electrodes were located (figure 1(b)).

The electric field in the extracellular space
was simulated using volume conduction Poisson’s

equation, and the fibre was modelled using the
conductance-basedHodgkin–Huxley type Tigerholm
model of a mammalian C nociceptor [38]. The Tiger-
holm model was chosen as it could accurately rep-
resent the active behaviour of mammalian C fibre
(porcine SNs mainly consist of C fibres [31]) and was
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validated experimentally [38]. In addition, the model
has previously shown itself capable of optimising
experimental parameters for obtaining the largest
impedance changes in unmyelinated nerves as well
as explaining the biophysical origin of experimental
recordings [36].

The Tigerholmmodel contained ten ion channels
and variable concentrations inside and outside of the
fibre; these concentrations, together with other para-
meters, affected the membrane conductance which,
in turn, led to changes in electric potentials inside
and outside the membrane (equations (27) and (28)
in the supplementary material of [36]). The imped-
ance change (dZ) signal measured in the model is
related to a change in the membrane conductance
which is, among other parameters, influenced by vari-
able extra- and intracellular ionic concentrations.

For measurement of impedance change, con-
stant direct current of small amplitude (1.25 µA, or
4 mA cm−2) was continuously applied to the fibre
during stimulation through two external ring elec-
trodes. The reason was that using DC was less com-
putationally intensive than AC, especially at high
frequencies, and it was previously shown that dZ
obtained with small amplitude DC and AC had the
same biophysical origin [36].

Voltage was measured simultaneously using the
recording electrode placed before the injecting ones
with respect to ground (figure 1), the same as in
[36]. Since the constant current was applied, and
because the phase shift∆φ between the injected cur-
rent andmeasured voltage is close to zero [34, 39], the
measured impedance change dZ may be expressed as
follows:

dZ=
Z(t)−Z(tAP)

Z(t)
=

|V(t)|ej∆φ − |V(tAP)|ej∆φAP

|V(t)|ej∆φ

≈ |V(t) |−|V(tAP)|
|V(t)|

= |dZ| . (1)

In the equation, impedance change dZ is equal to
the relative change of the impedance Z(tAP) when
AP passes under the electrodes with respect to the
baseline impedance of the systemZ=Z(t). Using (1),
the complex dZ and absolute |dZ| can be expressed in
terms of the measured voltages V = V(t) and V(tAP).

To extract dZ, DC was applied twice in differ-
ent polarities with positive and negative electrodes
switched [36]. These voltage signals were subtracted
from each other so that the identical APs were can-
celled out, while the dZ which modulates the recor-
ded voltage, doubled, and could be easily extracted.
In the experiments performed in the study, this sub-
traction step was not required as high AC frequen-
cies (⩾2 kHz) were used and CAPs were removed by
bandpass filtering around the carrier frequency (as
the characteristic frequency of the CAP is <1 kHz
[40]) (figure 4).

The parameters and geometrical design of the
model as well as all the equations describing it can be
found in [36].

2.2.2. Statistical model of a complex nerve
The APs and impedance changes (dZs) obtained with
the FEM model were incorporated into the statistical
model for simulation of the dispersed compound sig-
nals of a multi-fibre porcine SN. The modelled nerve
included 40 000 unmyelinated C fibres and 4000 fast
myelinated fibres [37] fibres uniformly distributed in
the cross-section of the nerve, with normally distrib-
uted CVs (table 2). Normal distribution of the CV
was considered based on the histological studies in
various nerves [23, 41, 42] where the distributions of
fibres’ diameters (which are directly proportional to
CVs [22]) close to normal were obtained; the same
assumption was also made in the recent modelling
study [22].

The compound dZ was obtained as the sum of
single impedance changes of each fibre at the required
distance from the site of stimulation:

CAP(x, t) =
NC=40000∑

i=1

EAPCi (x, t)+
NM=4000∑

i=1

EAPMi (x, t)

dZ(x, t) =
NC=40000∑

i=1

dZC
i (x, t)+

NM=4000∑
i=1

dZM
i (x, t)

(2)

where CAP and dZ are APs and impedance changes
of the compound nerve, EAPiC, EAPiM, dZi

C and
dZi

M represent single extracellular AP and dZ corres-
ponding to C fibres andmyelinated fibres respectively
(figure 1).

Due to the difference in geometric and elec-
trical parameters utilised in the single-fibre FEM
and the experimentally-based statistical multiple-
fibre model, the single APs and dZs simulated with
the FEM model (subsection A) were scaled in amp-
litude before summation, as in [22]. However, com-
pared to [22] where electrode diameter and connect-
ive tissue resistivity were only considered, multiple
parameters differing between the FEM and statistical
models were introduced, so that the predictions of the
final model closely agree with experimental data.

For scaling, the obtained extracellular AP and dZ
were multiplied by the coefficients kAP =

∏
i
kAPi and

kdZ =
∏
i
kdZi, where kAPi and kdZi accounted for vari-

ous parameters that differed in the FEMand statistical
models and affected AP and dZ respectively:

EAPstat = kAP · EAPFEM

dZstat = kdZ · dZFEM. (3)

The considered parameters affecting the dZwere [36]:
the electrodes’ diameter (d), extracellular resistivity
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(ρ), the current density of the applied dZ meas-
uring current (J), the distance between recording
and injecting electrodes (∆xR, figure 1), the distance
between injecting electrodes (∆xI, figure 1). The lat-
ter three parameters were found to strongly influ-
ence the dZ measurements in the previously per-
formed study [36]. For scaling APs, the electrodes’
diameter (distance between the electrode and the
fibre) and conductivity of the extracellular space were
considered, as other parameters did not have any
effect on its value. The final equations for scaling APs
and dZs are presented below:

kAP =

(
dFEM(

1− 1/
√
2
)
· dstat

)3

· ρstat
ρFEM

(4)

kdZ =

(
dFEM(

1− 1/
√
2
)
· dstat

)4

·
(

ρstat
ρFEM

)2

· Jstat
JFEM

·
dZ∆xRstat

dZ∆xRFEM

·
dZ∆xIstat

dZ∆xIFEM

. (5)

In the equations, index stat corresponds to the
value used in the experiments and in the stat-
istical model, and FEM—in the FEM model.
The detailed strategy for evaluation of the scal-
ing coefficients as well as their values are presen-
ted in supplementary material (available online
at stacks.iop.org/JNE/19/026054/mmedia) and in
table 1(A).

In addition to the introduced scaling coefficients,
CVs of the fibres in the model were chosen so that
simulated CAP and dZ closely match the experi-
mental ones recorded using the ex vivo preparation
of the porcine SN. The porcine SN mainly consists
of unmyelinated C fibres and is a good represent-
ation of the subdiaphragmatic branches of human
VNSs [31].

For the preparation, nerves of 20–25 cm length
were sourced from the terminally anaesthetized pigs
used in other experimental studies. The nerves were
held in an organ bath perfusion chamber filled with
oxygenated Krebs-Ringer solution kept at ∼30 ◦C.
Three silicone rubber cuffs with six radially arranged
electrodes each were placed around the nerve 3, 15 &
20 cm from a cuff for electrical stimulation so that
the TD of CAPs can be observed (figures 2(a) and
(b)). The stainless-steel electrodes (0.2 × 2.3 mm2,
figure 2(b)) embedded into a medical-grade silicone
rubber base were fabricated using a laser cutter and
coated with PEDOT:pTS providing the lowest con-
tact impedance and phase shift (∼300 Ω and 1.5◦ at
1 kHz) among the popular coating electrodematerials
[34].

The choice of six-electrode design was done (1)
for verification purposes—dZ must be equal on
electrodes 1–4 if the measuring current is applied

through electrodes 5 and 6, and (2) to account for
possible failures of one or more electrodes on the
cuff. These may have happened due to multiple
reasons including un-soldered connection, broken
wire, increased contact impedance due to initially
low-quality or detached PEDOT:pTS coating as well
as bad contact of the particular electrode and the
nerve.

With the designed setup, dZ and CAPs were
recorded using the 2nd cuff placed at approximately
3 cm from the site of the onset with respect to the
electrode on the last cuff using continuous stimu-
lation with frequency f stim = 2 Hz, current Istim =
20–40 mA depending on the thickness of the nerve,
pulse width PW = 50 µs, frequency and amplitude
of the applied impedance measuring current f AC =
1–6 kHz, IAC = 200–300 µA (28 nerves in total).

To obtain satisfactory SNR, averaging was
required; for this purpose, CAPs were recorded for
20 s, and the dZ—for 10 min. Based on the recorded
CAP and dZ, the CV (mean and S.D.) of the fibres
constituting the statistical model were determined.
This was done using times of the negative peaks of
the CAPs related to fast (Ab) and slow (C) fibres as
well as their widths. Knowing the distances of the
recording cuff from the stimulation, the CV could be
calculated.

The average level of the Gaussian noise present
in the ex-vivo experiments (3.5 µV RMS before aver-
aging) was added to the resultant modelled signals as
the last step. Addition of noise allowed to determ-
ine the optimal parameters for maximisation of the
SNR, defined as the amplitude of the signal divided
by the standard deviation of the noise. The optimal
parameters to be determined include, among oth-
ers, the bandwidth of filtering which will be influ-
enced by type and levels of noise present in the
recordings.

The resulting finalised model could utilise EAP
and dZ produced with the FEM model (figure 1(b))
subjected to an arbitrary stimulation paradigm and,
on this basis, it could accurately predict values of
CAP and dZ produced by the porcine SN at any
distance from the onset of the stimulus. Therefore,
the model is versatile and could be used to determ-
ine the optimal stimulation paradigm for overcoming
dispersion and recording dZ further than CAPs are
visible.

The COMSOL and MATLAB model files used for
FEM and statistical modelling are provided online in
the EIT-lab GitHub repository.

2.3. A method for overcoming TD in autonomic
nerves
2.3.1. Model setup
The developed model was utilised to determine the
optimal paradigm for dZ measurement at various
distances from the stimulation site where CAPs are

6
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Table 1. Initial stimulation and processing parameters used in the model.

Parameter Value

Stimulation (train) frequency 1 Hz 2 Hz 5 Hz 10 Hz 20 Hz 50 Hz
Nspikes/train 10 20 40 24 14 10
Duration of the train 10 s 10 s 8 s 2.5 s 0.75 s 0.25 s
Time between trains 0 s (continuous) 3 s
Duration of the simulation 30 min
Ntrains/30 min 180 180 163 327 480 553
Filtering bandwidth (single pulses) 200 Hz
Theoretical bandwidth (trains) 0.2 Hz 0.2 Hz 0.25 Hz 0.8 Hz 2.7 Hz 8 Hz
Distances of measurement 3, 15, 20, 50 cm

dispersed (>5 cm from the stimulus in mammalian
unmyelinated nerves [22]).

For this, the FEMmodel of a C fibre (figure 1(b))
was subjected to series of repetitive bipolar mono-
phasic stimuli (50 µs pulse width, 5 nA) which
were applied intracellularly across 0.1 mm at the end
of the fibre. Two stimulation paradigms were used
(figure 3(a)): (1) continuous stimulation with the fre-
quency of 1 and 2 Hz (at these frequencies, the fibre
never loses the ability to excitation); (2) stimulation
with trains of stimuli of 5, 10, 20 and 50 Hz separ-
ated by resting intervals to allow the nerve recovery
between the consecutive trains (table 1).

During repetitive stimulation at 5–50 Hz, the
amplitudes of the consecutive APs were decreas-
ing until the fibre lost the ability to excitation
(figure 3(b)) that also happens experimentally due to
the accumulation of potassium ions in the periaxonal
space adjacent to the membrane [44, 45]. Therefore,
in case stimulating trains would last longer than the
nerve is capable to be activated, the ratio of nerve
firing time to the duration of the stimulation (duty
cycle) would be reduced.

Thus, durations of the trains were chosen so that
(1) the time when the nerve is in the active state (and
hence the dZ) is maximised, that includes maxim-
isation of the number of APs per train and the duty
cycle, and (2) the nerve survives for the long term
(>∼3 h in the saline bath) in the ex-vivo experiment
(figure 2(a)), as increasing SNR to satisfying values
may require prolonged averaging. The maximal dur-
ations allowing reaching the highest duty cycle were
8, 2.5, 0.75 and 0.25 s at 5, 10, 20 and 50 Hz respect-
ively that was equal to 40, 24, 14 and 10 spikes per
train at these frequencies (table 1). The resting time
Trest between the 5–50 Hz trains was chosen to be 3 s
(figure 3(a) and table 1).

In order to achieve long-term survival of the stim-
ulated nerves so that they are stable during the exper-
imental day period (CAPs are not changing for >6 h),
these parameters were adjusted following testing per-
formed in three nerves (table 3 in section 3). For this,
CAP amplitudes in the nerves were extracted follow-
ing their initial stimulation with the maximal train
durations provided above and in table 1. Then, if the
CAPs’ amplitudes did not sustain for the duration of

the experiment, the number of pulses and associated
train durations were halved—this was repeated up to
two times until the CAPs stable over several hours
were achieved. To further improve stability, the rest-
ing time was also iteratively increased and its effect on
the CAPs were observed.

In contrast to the APs, the amplitudes of the
single-fibre impedance changes were increasing dur-
ing stimulation (figure 3(c)). The reasons for this
behaviour are supposedly similar to the ones for the
APs (figure 3(b)): accumulation of potassium ions
in the periaxonal space and sodium ions inside the
fibre modifies reversal potentials of these ions and
sensitises the associated ion channels thus leading to
increased total conductance of the fibre during excit-
ation. This effect is expected to improve the exper-
imental dZ response during repetitive stimulation.
However, it is hard to evaluate it experimentally since
at least 1200 averages are required to reliably detect
single spike dZ (10 min averaging at 2 Hz stimula-
tion, section 2.2.2), and this would average out the
progressively increasing dZ amplitudes. In addition,
the number of spikes in the train and the resting time
between trains was found to significantly affect nerve
survival (6 pulses/train, 5 s between trains, table 3
in section 3)—it was vital for the purposes of the
study, and the gradually increasing behaviour of dZ
had therefore not been investigated further.

The obtained dZ trains (figure 3(c)) were incor-
porated into the statistical model for simulation of
the dispersed compound dZ of a multi-fibre nerve
described in the previous subsection. The SNR (ratio
of mean signal to S.D. of the noise) at 3, 15, 20 and
50 cm from the onset of the stimulus was determined
using two signal processing paradigms described in
the next subsection. For averaging and noise reduc-
tion, the total duration of each simulation was chosen
to be 30 min (table 1). 50 models were simulated in
total to obtain statistics.

2.3.2. Signal processing
To extract compound impedance changes from
the dispersed signals obtained in the statistical
model, the following signal processing paradigms
were performed; SNRs using these paradigms were
obtained.
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Figure 3. (a) Stimulation paradigms applied to the nerve fibre: 1–2 Hz continuous stimulation and 5, 10, 20, 50 Hz trains.
Durations of the trains (Ttrain) and time between trains (Trest) can be found in table 1. (b) Trains of actions potentials (APs) at 1,
2, 5, 10, 20 and 50 Hz. The amplitudes of consecutive APs are decreasing, the rate of the decrease is larger at higher frequencies. At
1 and 2 Hz, the amplitudes of APs were approximately the same. The shape of a single AP is embedded into the last subplot.
(c) Trains of impedance changes (dZ) of a single C fibre at 1, 2, 5, 10, 20 and 50 Hz, simulated using the updated FEMmodel of C
fibre [36] (figure 1(b)). Only a single train is shown at each frequency, although multiple trains were present at >10 Hz during the
10 s interval. In contrast to the APs, the amplitudes of consecutive dZ in the train are increasing. The shape of a single dZ is
embedded into the last subplot.

(i) Averaging of single spikes (coherent spikes aver-
aging).This approach has traditionally been used
in previous studies involving dZ measurement
[12, 15, 19, 33]. In those studies, the record-
ings were cut into single spikes segments with
the time window corresponding to the stimula-
tion frequency around each spike (figure 4(a)).
Those segments were then (1) band-pass filtered
using the bandwidths of 100–3000 Hz depend-
ing on the characteristic frequency of these sig-
nals (characteristic frequency of A fibres ≫ C

fibres), (2) demodulated using the absolute of
Hilbert transform (since the phase shift induced
by the membrane is insignificant [34, 36], and
the dZ is approximately equal to |dZ|, equation
(1) and (3) averaged together. In the current
study, BW was chosen to be 200 Hz to account
for the characteristic frequency of the simu-
lated non-dispersed dZ (figure 1). The result-
ing signals were averaged across all 50 com-
puted models. SNR was calculated using the
formula:
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Figure 4. Schematic representation of the signal processing approaches used in the study: (a) coherent spikes averaging—single
spikes were cut from the recording (Step 1), band pass-filtered with bandwidth (BW) of 200 Hz (Step 2), demodulated and
averaged together (Step 3). (b) Processing as trains—cutting trains as a whole (Step 1), filtering them with low bandwidths
(0.2–16 Hz) around the whole trains (Step 2), demodulation and averaging of the resultant signals (Step 3). AC frequencies
shown in the figures do not represent real (higher) frequencies used in the study. In Step 2, the amplitude of the carrier sine wave
is very large and is therefore not depicted in full, so the dashed line in the middle was introduced to demonstrate how the
impedance change looks following band-pass filtering step on the top and bottom parts of the carrier wave.

SNRsingle = Asignal
/
σNoise

(6)

where Asignal is the maximal amplitude of the
measured signal, σnoise is the standard deviation
of the noise after filtering.

(ii) Processing trains of spikes as a whole. Instead of
cutting the recordings into single spikes, pro-
cessing was conducted on the entire trains of
spikes (figure 4(b)). This allowed band-pass fil-
teringwith bandwidths aroundwhole trains last-
ing up to a few seconds. As a result, the theor-
etical bandwidths for band-pass filtering could
be significantly lower at 0.2–8 Hz, determined
as BW2 = 2/Ttrain

where Ttrain is the duration of

the specific train (table 1). This could allow a
significant reduction of the noise without long-
continued averaging. However, to differentiate
the dZ signal of the C fibres from the signal
of myelinated fibres, stimulation artefacts and
low-frequency noise present in the recordings,
these theoretical filtering bandwidths had to be
increased (table 3 in section 3).

SNR at 3, 15, 20 and 50 cm from the onset
of the stimulus was computed according to (6),
where Asignal and σnoise corresponded to a new
approach for signal processing. Due to the pres-
ence of stimulation artefacts (see the detailed
description below) as well as fast myelinated
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fibres in the experimental recordings (figures 7
and 9), only the ending portions of the dispersed
dZ corresponding to the slow C fibres could be
recovered. Therefore, the last 100–500 ms in the
processed dispersed dZ trains were considered
for dZ and SNR calculation (figure 8 in the
section 3). Although only the ending portions of
the signals were used to measure dZ, the entire
spike train signals were filtered: leaving the dZ
in the central part of the signal allowed avoid-
ing the filtering edge artefacts. Another arte-
fact appearing due to presence of spikes at the
end of the train when filtering the whole sig-
nal was of much shorter duration (in the order
of tens of milliseconds) than the expected and
observed dispersed dZ signal lasting up to 500ms
(figure 8), so they could be easily differentiated.
Based on the obtained results, the optimal stimu-
lation paradigm for recording dZ at far distances
from the stimulus was determined.

Stimulation artefacts are inevitable when neural
activity is evoked and recorded with the use of
external electrodes [12, 19, 33]. Since the mem-
brane of nerve fibres is more resistive than the sur-
rounding connective tissue and physiological solu-
tion interface, part of the current applied during
stimulation will flow through the conductive path-
ways along the nerve and an increase in the potential
will be therefore measured by the recording elec-
trodes (figure 5). In addition, the voltage gener-
ated by the stimulation current is usually orders of
magnitude higher than the recorded physiological
voltages, so, the insufficient input range of the amp-
lifier or small charge imbalance between stimulation
electrodes may lead to saturation of the recording cir-
cuits which can last significantly longer than stim-
ulation pulse itself [46, 47]. To avoid saturation in
the current study, charge-balanced biphasic stimula-
tion was used together with an actiCHamp amplifier
(Brainproducts GmbH, Gilching, Germany) having a
wide input range of±400 mV [16].

The influence of stimulation artefact can gener-
ally be minimised by placing the recording electrodes
as far from the stimulating ones as possible. This is
challenging in ex vivo conditions: surgically, it was
not possible to extract intact undamaged SNs longer
than ∼20 cm from the anesthetised pig in the cur-
rent study. However, in vivo approach is much more
promising as stimulation and recording can be done
in different parts of the VNS (cervical and subdia-
phragmatic); this is an essential part of the future
work (see Discussion).

Stimulation artefacts obtained in the current
study were nonsaturating [46] so that they could be
minimised, and genuine CAP and dZ signals could
be extracted through filtering. However, these arte-
facts could not be completely eliminated that severely
affected signal processing in the case when the nerve

was stimulated by trains of spikes (figure 4(b)): only
ending parts of the dispersed dZ signals had to
be studied and the SNR could have therefore been
reduced (see sections 3 and 4).

2.3.3. Experimental evaluation of the method using
porcine SN ex vivo
All experimental procedures complied with regula-
tions in the UK Animal (Scientific Procedures) Act,
1986 and were reviewed and approved by the Animal
Welfare and Ethical Review Board. For experimental
evaluation of the developed method, an ex-vivo setup
with the SNs of the pig was used. In addition to por-
cine SNs being similar in fibre composition to the
subdiaphragmatic branches of the VNSs in humans
[31], they are very endurant—the stability of por-
cine SNs allowed to frequently manipulate them in
the saline bath and conduct experiments lasting for
more than 8 h, in accordance with survival times of
other mammalian nerves [48, 49]. This is a signific-
ant advantage over other unmyelinated nerves com-
monly used in ex-vivo setting such as a walking leg
nerve of the crab [33, 50] (figure A2 in supplementary
material).

The experimental design was the same as in
section 2, (b) describing the experimental adjust-
ment of the model. Shortly, porcine SN were held
in an organ bath perfusion chamber filled with con-
tinuously oxygenated saline solution. Three silicone
rubber cuffs each having six radially arranged elec-
trodes made from stainless steel and coated with
PEDOT:pTS were placed around the nerve 3, 15 &
20 cm from the same cuff used for electrical stimu-
lation (fstim = 2 Hz, Istim = 20–40 mA, PW = 50 µs,
figure 2(a)). Impedance changes were measured
by sequential application of the sinusoidal current
through two last electrodes on each cuff, and the
voltage was recorded on the remaining electrodes
on the same cuff in respect to the last electrode on
the last cuff (figure 2(a)). Then, dZ was obtained by
demodulation of the recorded voltage using the abso-
lute of the Hilbert transform (1). Parameters of the
applied sinusoidal current were: fAC = 1–6 kHz, IAC =
200–300 µA.

The optimal stimulation paradigm for recording
dispersed dZ determined with the model was applied
toN = 28 nerves to sequentially record dZ using cuffs
3 and 4 at 15 and 20 cm from the onset, where CAPs
were dispersed and not measurable (figure 2(a)).
SNRs at these distances were obtained; implications
for imaging unmyelinated nerves with fast neural EIT
were investigated.

Statistical significance of the recorded dZ was
verified using a two-sample t-test algorithm by com-
parison of the measurement amplitude straight after
the stimulation artefacts (600–1000 ms, figure 8)
with the dZ at all other points following this period
(1000–3000 ms).
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Figure 5. Overall design of the study. The study could be divided into the five main steps: (1) FEM model of a single C fibre was
developed to simulate AP and dZ signals resulting from repetitive stimulation (figure 1). (2) Based on the simulated signals,
statistical model of the complex nerve with 40 K unmyelinated and 4 K myelinated fibres was developed, and compound
dispersed signals were simulated at the chosen distances. (3) The developed statistical model was adjusted to correspond with the
amplitudes, durations, and latencies of CAP and dZ signals recorded experimentally (figure 6). For this, porcine SNs, ex vivo)
were subjected to continuous 2 Hz stimulation, AC was applied and the CAP/dZ signals were measured at∼3 cm from the
stimulus. (4) Experimentally adjusted model was utilised for optimising the method for measurement of a dispersed dZ at up to
50 cm from stimulation. Two stimulation and signal processing approaches were used: (a) continuous stimulation with averaging
of coherent spikes and (b) stimulation with short trains of stimuli with processing the whole trains (figure 4). The method
providing the highest SNR was determined. (5) The optimised method was evaluated experimentally using ex vivo preparation of
porcine SNs (porcine SN, N = 18).

The overall design of the study, including
the workflow from development of the mod-
els to experimental verification, is presented in
figure 5.

The MATLAB code written for data processing is
provided in the EIT-lab GitHub repository; all the
recorded unprocessed data will be available online
in the SPARC portal (https://sparc.science/) after
approval.

3. Results

3.1. Experimental adjustment of the statistical
model of the porcine SN
Initial recordings of CAPs and impedance changes at
3 cm from the stimulation site (cuff 2,N = 28 nerves,
figure 2(a)) allowed adjusting the statistical model
to correspond to experimental data (figure 6 and
table 2).
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Table 2.Main parameters of the statistical models.

Parameter Modified statistical model

C fibres number 40 000
C fibres CV 0.8± 0.3 m s−1

Myelinated fibres number 4000
Myelinated fibres CV 8± 3 m s−1

Noise, RMS before averaging 3.5 µV

The CAPs recorded at cuff 2 were equal to
34 ± 17 µV for myelinated fibres and 69 ± 44 µV
for unmyelinated fibres (mean ± s.d., figure 6(a)).
The peak of myelinated fibres CAP was observed
on average at 5 ms from the stimulus, peak of
C fibres CAP—at 30 ms from the stimulus that
allowed to determine their CVs: vfast = 8 ± 3 m s−1,
vC = 0.8 ± 0.3 m s−1 (mean ± s.d., table 2). The
amplitude of the CAP of fast myelinated fibres was
lower in the experiment than in the model because
part of it was covered by stimulation artefact thus
decreasing its amplitude (figure 6(a)). The dZ were
equal to (1.42 ± 1.11) × 10−4% (0.16 ± 0.19 µV)
and (6.96 ± 4.61) × 10−4% (0.74 ± 0.58 µV) in
fast myelinated fibres and unmyelinated C fibres
respectively.

3.2. Optimisation and experimental evaluation of
the method for measurement of the dispersed dZ
3.2.1. Method development and optimisation
Using the designed statistical model of dispersion in
the porcine SN, the method for recording dZ further
from the site of the onset than CAPs are measurable
was developed and optimised.

Images of the dispersed dZ with and without fast
myelinated fibres (the real porcine SN case and arti-
ficial unmyelinated case) show that the C fibre activ-
ity is more dispersed and constitute a low-frequency
component in the resultant signal, while myelinated
fibres correspond to a high-frequency component
(figure 7, blue and red lines). Therefore, to measure
dZ of the C fibres in the mixed porcine SN nerve, the
ending parts of the signals were considered.

By stimulation of three nerves with trains of
pulses of 5, 10, 20 and 50 Hz with 3 s intervals
between trains, and following the approach described
in section 2.3.1, it was found that to achieve long-term
(>6 h) survival of the nerves, the number of pulses
in each train must not exceed six and the interval
between trains must be increased to 5 s, independent
of the applied train frequency. The model was modi-
fied accordingly (table 3).

The developed model has shown that the SNR
obtained using the coherent spike averaging approach
for signal processing (table 1 and figure 4(a)) were
larger at short distances from the onset while falling
exponentially at longer distances (solid lines in

figure 8 and table 4). The second approach involving
processing of whole trains (table 1 and figure 4(b))
led to smaller SNR at 3 cm from the stimulus, but
increased to >1 at 15 and 20 cm from the site of
the stimulus after 30 min of averaging (figure 8 and
table 4).

Therefore, the optimal parameters for measure-
ment of dZ at far distances from the site stimulation
predicted with the model were: stimulation with 5 or
10 Hz trains, six pulses per train, 5 s interval between
trains (table 4). Filtering bandwidth was increased to
10 Hz to differentiate the dZ signal of the C fibres
from the signal corresponding to myelinated fibres,
stimulation artefacts and low-frequency noise present
in the recordings (figures 7 and 9).

Even with the optimal parameters, averaging for
30min only produces SNRmarginally higher than the
limit of detectability at 15 and 20 cm from the stim-
ulus (1.8 ± 0.8 at 10 Hz, 15 cm, table 4). Therefore,
to measure dZ at longer distances as well as to obtain
an SNR of 4 which is minimally required for repro-
ducible imaging of fast impedance changes with EIT
[18], longer averaging will be required (see Discus-
sion for details).

3.2.2. Experimental evaluation of the developed
approach
The optimal stimulation and signal processing
paradigm for recording dispersed dZ in unmyelin-
ated fibres determined in the modelling study (10 Hz
trains, 6 pulses/train, 5 s interval between trains, fil-
tering bandwidth 10 Hz) were applied to 28 porcine
SNs ex-vivo, out of which N = 18 recordings had
a satisfactory level of noise smaller than 4 µV RMS
before averaging, in agreement with the developed
modified model.

For each nerve, the dZ measurement was sequen-
tially performed using cuff 3 and cuff 4, located at
15 and 20 cm from the site of stimulation respect-
ively (figure 2). Due to the presence of fast myelin-
ated fibres and stimulation artefacts in the recordings
(figures 7 and 9),measurementswere done at the end-
ing stages of the dispersed dZ, from 0.6 to 1.1 s and
from 0.65 to 1.15 s for the used 10 Hz trains at cuff 3
and cuff 4 respectively (figure 7(b)).

The resulting dZ were equal to (1.11 ±
1.03) × 10−4% (0.11 ± 0.10 µV) at 15 cm
(cuff 3, figure 2(a)), and (1.17 ± 1.21) × 10−4%
(0.12 ± 0.10 µV) at 20 cm (cuff 4, figure 2(a)) from
the site of stimulation. The SNR at 15 cm after 30min
of averaging was 1.8 ± 0.7, decreasing to 1.7 ± 0.6
at 20 cm that is in agreement with the predictions
of the developed model (figure 8(b) and table 4).
The mean absolute value of the determined dZ
across all nerves was found to be significantly larger
than the mean at every other point in the recording
(P < 0.01, N = 18).
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Figure 6. (a) CAPs obtained experimentally (left) and with the statistical model (right), averaged for 20 s. Measurements
performed using cuff 2 (figure 2(a)) at∼3 cm from the site of stimulation are shown in red; measurements at 15 and 20 cm from
stimulation (cuffs 3 and 4) are shown in grey. Additional CAP simulations at 5 and 10 cm are presented in green and blue to
demonstrate the decreasing amplitude of the CAP with distance; at further distances starting from 15 cm, C fibres’ CAPs are fully
dispersed. (b) Impedance changes (dZs) obtained experimentally (left) and with the statistical model (right), averaged for 10 min.
dZs of B(Aδ) and C fibres are highlighted with yellow and red respectively. The number and types of fibres as well as their CVs
were adjusted in the modified model to closely match CAP and dZ with the experimental recordings.

Table 3. Optimised stimulation and processing parameters used in the model.

Parameter Value

Stimulation (train) frequency 1 Hz 2 Hz 5 Hz 10 Hz 20 Hz 50 Hz
Nspikes/train 10 20 6 6 6 6
Duration of the train 10 s 10 s 1.2 s 0.6 s 0.3 s 0.15 s
Time between trains 0 s (continuous) 5 s
Duration of the simulation 30 min
Ntrains/30 min 180 180 163 327 480 553
Filtering bandwidth (single pulses) 200 Hz
Corrected bandwidth (trains) 10 Hz
Distances of measurement 3, 15, 20, 50 cm

4. Discussion

4.1. Summary of results
(a) The statistical model of TD in porcine SN based

on the FEMmodel of C nociceptor andmorpho-
metric data on this type of nerve was developed
(figure 5, steps 1–3). The model was matched

to the experimental recordings of CAPs and
impedance changes measured in pig SNs at 3 cm
from the stimulation ex vivo. The designed ver-
satile model could accurately predict the shape
and amplitude of the dispersed signals observed
in porcine SN subjected to various stimulation
paradigms.
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Figure 7. (Red lines) Dispersed dZs of an artificial unmyelinated nerve obtained with a statistical model containing
40 000 C-fibres, with EAP shape based on the cuff electrode design depicted on figure 1(b). The stimulation frequencies were 1, 2,
5, 10, 20 and 50 Hz (columns), and readings were made at 3, 15, 20 and 50 cm from the stimulus (rows). Resultant dZs were
detrended after summation; noise was omitted for readability. (Blue lines) Dispersed dZs of a mixed nerve obtained with an
experimentally adjusted statistical model containing 40 000 C-fibres and 4000 fast myelinated fibres.

Table 4. SNR simulated with the experimentally adjusted model after 30 min averaging.

Signal
processing

Stimulation
frequency

SNR (mean± s.d.)a

3 cm 15 cm 20 cm 50 cm

Coherent spikes
averaging

1 Hz 2.9± 1.1 0.7± 1.0 0.6± 0.9 0.6± 1.1
2 Hz 4.3± 1.1 0.7± 1.0 0.6± 1.0 0.6± 0.8
5 Hz 3.4± 1.0 0.8± 0.8 0.6± 1.1 0.4± 0.8
10 Hz 3.5± 0.9 0.6± 0.8 0.4± 0.9 0.5± 0.9
20 Hz 2.9± 0.9 0.3± 1.2 0.5± 0.9 0.3± 1.1
50 Hz 1.0± 1.1 0.3± 1.0 0.2± 1.0 0.4± 0.9

Processing as
trains

1 Hz 0.3± 1.0 0.3± 1.1 0.3± 1.0 0.4± 0.7
2 Hz 0.4± 1.1 0.4± 1.0 0.3± 1.1 0.7± 1.1
5 Hz 0.4± 1.0 1.6± 0.7 1.8± 0.8 0.9± 1.0
10 Hz 0.5± 0.9 1.7± 0.6 1.4± 0.8 0.4± 0.8
20 Hz 0.4± 1.1 0.6± 0.8 0.4± 1.0 0.3± 0.8
50 Hz 0.3± 1.0 0.9± 0.3 0.3± 1.1 0.3± 0.9

a The stimulation frequencies where SNR⩾ 1 and the optimal train frequencies are highlighted in blue

(b) The designed model was used for the devel-
opment and optimisation of a novel stimula-
tion and signal processing paradigm to record
impedance changes in unmyelinated nerves at
the distances from the stimulus where CAPs
are dispersed (figure 5, step 4). This determ-
ined optimal paradigm was the following: 5 or
10 Hz trains with 6 pulses/train and 5 s interval
between trains, and subsequent signal processing
using 10 Hz band-pass filter to account for
the presence of myelinated fibres, low-frequency
noise and stimulation artefacts (table 1). The
resulting SNR predicted with the model with
stimulation by 10 Hz trains were 1.8 ± 0.8
and 1.4 ± 1.1 at 15 and 20 cm respectively
(figure 8 and table 4). Thus, more than 30 min

of averaging would be required to record dZ fur-
ther than 20 cm from the stimulus.

(c) The model’s predictions were evaluated experi-
mentally by stimulation of pig SNs by trains of
stimuli ex vivo (figures 9, 5 and step 5). The pre-
dictions were in good agreement with the sim-
ulations: although the levels of noise were sig-
nificantly reduced compared to the previous dZ
measurement experiments [12], SNR obtained
after 30 min of averaging (section 3) was at the
edge of detectability at 15 and 20 cm from the
onset of the stimulus. This was partly due to
low-frequency noise and stimulation artefacts
observed in the recordings that required increas-
ing the bandwidth of filtering to a minimum of
10 Hz.
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Figure 8. SNR computed using the finalised statistical model based on the recorded experimental data on the SN of the pig. Two
signal processing approaches were used (figure 4): coherent spikes averaging (depicted with solid lines) and processing trains of
spikes as a whole (dashed lines). The minimal used filtering bandwidth was equal to 10 Hz. The resulting numbers are presented
in table 4.

4.2. Answers to the stated questions
(a) What are the optimal stimulation and signal pro-

cessing strategies producing the largest imped-
ance changes at different distances (15, 20 and
50 cm) from the onset?

The optimal stimulation strategies producing the
largest impedance change signal are stimulation with
10 Hz trains, with 6 pulses per train and 5 s between
trains, for the long-term survival of the nerve neces-
sary for the desired chronic implantation.Other para-
meters were: AC current—200–300 µA amplitude, 1–
1.5 kHz frequency, stimulation current—20–30 mA
amplitude, 50 µs pulse width.

(b) How much averaging is required (1) to obtain a
measurable signal (SNR > 1) and (2) to image
neural activity with EIT (which requires SNR> 4
[18]) at 15, 20 and 50 cm from the site of
stimulation?

Given the very low experimentally achieved noise
of 3.5 µV RMS before averaging, the dZ in the por-
cine SN at 15–20 cm from the stimulus was at the
edge of detectability (SNR< 2) if averaged for 30min.
To obtain larger SNR, longer averaging would be
required. At 50 cm from the stimulus, to obtain
SNR ⩾ 2 one would need to average for approxim-
ately 1.5 h, given the noise decreases with the square
root of the number of averages (table 4).

In order to image fast neural activity in fascicles of
unmyelinated nerves in their cross-section, aminimal
SNR of 4 obtained by sequential switching between
14 electrode pairs is required [18, 19]. Therefore, to
achieve imaging with the obtained optimal paradigm,
and considering that the noise decreases with the
square root of the duration of averaging, the min-
imal averaging timewould equal to 30 min · (4/1.8)2 ·
14 electrode pairs≈ 34 h at 15 cm from the site of
stimulation. This time would increase significantly
for imaging at further distances in accordance with
the table 4.

However, even such a long duration of averaging
may be clinically feasible, for example, in implant-
able neuromodulation devices [2–4] that may run
the specified stimulation paradigm for days or even
weeks without any adverse effects to patients. In addi-
tion, if the internal organisation of the nerve being
stimulated is known, for example, using the feed-
back system based on the physiological responses
(such as respiratory breath rate or heart rate) fol-
lowing stimulation with multi-electrode cuff arrays
[51], there is no need in the execution of a full ima-
ging paradigm with 14 electrode pairs. Instead, one
could concentrate on specific electrode pairs cor-
responding to the required fascicles that may help
to decrease the duration of averaging by two- or
three-fold.

In addition, future plans include transitioning to
an in vivo experimental paradigm which has several
potential advantages over the ex vivo one used in the
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Figure 9. Selected examples of dZ traces (filtered, demodulated and averaged voltage recordings, figure 4) of the selected
experimental recordings performed with the optimal stimulation paradigm obtained in the modelling study (10 Hz trains,
BW= 10 Hz). Noisy spikes in the beginnings of the recordings are stimulation artefacts. Locations where dZ was expected and
where it was measured are highlighted in red.

current study. Although the level of noise is expec-
ted to increase in vivo (to 8–10 µV before averaging
[12, 19]), the SNR may be improved (given enough
averaging) for the following reasons:

• The contact between the cuff and the nerve should
improve due to the absence of saline solution in
and around the cuffs, and this will lead to stronger
signals.

• The whole length of the VNS can be utilised in vivo
that will significantly reduce stimulation artefacts
strongly affecting the recorded dZ signals.

In the anaesthetized animal, stimulation can be
done in the cervical part of the nerve while the
recording cuff can be placed in the subdiaphragmatic

part. This was not possible to perform ex vivo due
to the limited size of the nerve bath and complex
surgical procedures required to remove longer parts
of the nerve from the body. Removal of stimula-
tion artefacts will enable measurement of the whole
duration of the compound dZ signals, and not just
the ending parts which follow stimulation artefacts
(figure 9), and this is expected to strongly improve
the SNR.

Even with such a long averaging expected to
be required for EIT imaging, the new experi-
mental paradigm developed in the study demon-
strates the feasibility of recording impedance
changes far from the site of stimulation, which
cannot be currently achieved using other existing
methods.
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(c) Are simulated results confirmed with experi-
mental data?

The SNR measured in the performed ex-vivo
experiments were in agreement with the values
obtained with the developed model of dispersion
(figures 8, 9 and section 3)). With the average level of
noise achieved in the developed experimental setup
(3.5 µV RMS), the maximal distance from the onset
where significant reproducible dZ could be measured
in 30 min was 15 cm.

4.3. Limitations
The current study had several limitations. First, it was
the statistical model and not the FEM model which
was used for simulation of dispersion in unmyelin-
ated nerves and for obtaining the optimal paramet-
ers for dZ measurement. Since computational time
and the amount of required resources rise exponen-
tially with the number of fibres in the FEM model,
FEM simulation of 40 thousand-fibre nerve would
be very computationally intensive and will demand
unrealistic time and resources. For instance, it takes
about an hour for a 40 ms simulation of the single C
fibre FEM model described by a system of 20 differ-
ential equations, while a model with 50 fibres of the
same type required a whole week on a double-CPU
machine with 128GbRAM [22]. However, the statist-
icalmodel was based on the signals simulatedwith the
realistic mammalian C fibre FEMmodel that brought
them into accordance with real experimental data.

Second, the FEM model was not solved for each
fibre location in the cross-section of the cylindrical
external space, so that the simulations were per-
formed only for the fibre placed in the centre. This
was done for two main reasons. First, the system was
symmetric (1µm fibre in the centre of 10µmexternal
space), so that placement of the fibre in other posi-
tions inside the cylinder could be assumed to not sig-
nificantly alter the shape of the measured signal but
to mainly affect its amplitude. Also, during the trans-
ition to the multi-fibre statistical model, the diameter
of the cuff was re-adjusted so that the uniformly dis-
tributed fibres were on average equidistant from the
electrodes (supplementary material, equation (3A)),
and the error brought by small variations in the
shapes of single APs is not expected to significantly
contribute into the error of the resultant CAP. In
addition, this simplification allowed to significantly
reduce computational time: in the current study, the
fibre was stimulated with trains of pulses lasting up to
10 s (table 1) that took up to 40 h per single simula-
tion.

Third, the porcine SNs used in the ex-vivo experi-
mental study were short, of up to 20 cm long, that led
to large stimulation artefacts overlapping with the dZ
measured at these distances. In addition, since around
10% of the porcine SN consists of fast and large
myelinated fibres producing larger dZ, they produce

the artefactual signal of the same kind as stimulation
appearing during the initial phase of the dispersed sig-
nal (figure 7). Therefore, only the ending part of the
dispersed dZ not covered under these artefacts had to
be studied (figure 9), and the SNRmay have thus been
reduced. One way to significantly reduce these arte-
facts is to use longer nerves, and this can be achieved
in the in vivo experiments which are planned as the
next step of the presented study.

4.4. Future work
In order to remove or significantly reduce the stimu-
lation artefacts and the artefacts caused by the pres-
ence of the myelinated fibres, the future work will
be to perform an experimental study in paralysed
pigs in vivo with stimulation on the cervical part of
the VNS and recording on the subdiaphragmatic part
which is around one metre apart. This will allow
measurement of the pure dZ signal not contaminated
by this type of artefact. In addition, in vivo setup may
provide better contact between the cuff electrodes and
the nerve due to the absence of a highly conductive
saline interface present in the ex vivo bath; this will
potentially lead to larger signals and the SNR.

5. Conclusion

It is challenging to measure CAPs and impedance
changes in unmyelinated nerves starting from a
few centimetres from the site of stimulation. The
developed experimentally adjusted computational
model of TD in nerve allowed simulation of com-
pound APs and dZs at various distances from the
variable stimulus. With the model, optimal stim-
ulation and signal processing parameters for dZ
measurement were determined. It was shown that
stimulation of the nerve by trains of stimuli allows
recording impedance changes further from the onset
than it is possible with a traditional continuous stim-
ulation and averaging of consecutive spikes. The find-
ings were evaluated experimentally using the porcine
SN ex vivo. This work enables a new way for meas-
urement of impedance changes accompanying excita-
tion at distances from the stimulation where standard
approaches are not feasible.

The models of dispersion in complex-fibre nerves
designed for optimisation of the experimental para-
meters in the current study can be used by research
community for studying the dispersion-related prop-
erties in any types of nerves and the development of
novel techniques for sensing neural activity in unmy-
elinated nerves. The latter can be particularly use-
ful for facilitation of the novel field of bioelectronic
medicines aimed at neuromodulation of internal
organs via stimulation of the VNS: development of
novel closed-loop solutions involving stimulation of
the nerve in response to the recorded physiological
signals will enhance the treatment outcomes for a
variate of drug-resistant disorders including, among
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others, epilepsy, depression, and cardiovascular
diseases.
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