1	TTTLE: Can MRI differentiate between ring-enhancing gliomas and intra-axial abscesses?
2	
3	AUTHORS: Andrea Carloni ^a , Marco Bernardini ^{a,b} , Chiara Mattei ^a , Angela Vittoria De
4	Magistris ^a , Francisco Llabres-Diaz ^c , Jonathan Williams ^c , Rodrigo Gutierrez-Quintana ^d , Anna
5	Oevermann ^e , <u>Daniela Schweizer-Gorgas^e</u> , Cyrielle Finck ^f , Isabelle Masseau ^f , Valentina
6	Lorenzo ^g , Annalisa Sabatini ^h , Barbara Contiero ^b , Swan Specchi ^a
7	
8	AFFILIATIONS:
9	^a Diagnostic Imaging department, Veterinary Hospital "I Portoni Rossi" Anicura Italy, Zola
10	Predosa (BO), Italy.
11	^b Department of Animal Medicine, Production and Health, Clinical Section, University of
12	Padua, Legnaro, Padua, Italy.
13	^c Royal Veterinary College, Hatfield, UK.
14	^d School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University
15	of Glasgow, UK.
16	^e Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
17	^f Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal,
18	Saint-Hyacinthe, Qc, Canada.
19	^g Neurología Veterinaria, Getafe, Madrid, Spain.
20	^h Veterinary Hospital "Gregorio VII", Roma, Italy.
21	
22	CORRESPONDENCE:
23	
24	KEYWORDS: brain; neoplasia; infection; dog; cat;

. .

26 CONFLICT OF INTEREST DICLOSURE: The authors have no conflict of interest	to declare
---	------------

28	PRESENTATION DISCLOSURE:

- 29
- 30 EQUATOR NETWORK DISCLOSURE: An EQUATOR network checklist was not used
- 31 when preparing this manuscript.
- 32

33 ABSTRACT

34	Gliomas may appear as expansile ring-enhancing masses, mimicking the radiological	
35	appearance of intra-axial abscesses. The aims of this study were to compare the MRI features	
36	of ring-enhancing gliomas and intra-axial brain abscesses in dogs and cats and to identify the	
37	characteristics that might help differentiate them. For this multicenter, retrospective, and	
38	descriptive study inclusion criteria were the following: a) a definitive diagnosis of glioma or	
39	abscess based on cytological or histopathological examination following CSF collection or	
40	surgical biopsy/necropsy, respectively; b) MRI study performed with a high or low field MRI	
41	scanner, including a same plane T1W pre- and post-contrast, a T2W and a T2 FLAIR	
42	sequence in at least one plane. ; b) confirmed diagnosis of glioma or abscess through brain	
43	histology, CSF analysis surg Delayed T1W post-contrast and T2*W GE sequences were also	
44	evaluated when available.	
45	A total of 31 cases met the inclusion criteria. Sixteen patients were diagnosed with ring-	
46	enhancing gliomas and 15 with intra-axial abscesses. A homogenous signal on T1W or T2W	
47	sequences, a T2W or T2*W GE peripheral hypointense halo and, an even enhancing capsule	<
48	were significantly associated with brain abscesses. A progressive central enhancement on	
49	T1W delayed post-contrast sequences was correlated with ring-enhancing gliomas. Despite	
50	identifying multiple overlapping MRI features between ring-enhancing gliomas and brain	
51	abscesses, some of the features helped prioritizing the MRI diagnosis. In particular, the	
52	presence of a homogeneous T1W or T2W signal intensity, of a T2W or T2*W GE peripheral	
53	hypointense halo and an even enhancing capsule suggested brain abscess. The central	
۱ 54	progression of the enhancement on delayed T1W post-contrast sequences was indicative of	

Commented [LDF1]: Even or continuous better than regular?

Commented [CF2]: I also find the term "regular" not that precise. You would also have to define the term in you MM

55 glioma.

56 INTRODUCTION

57	Gliomas are primary neuroepithelial tumors accounting for approximately 35–37% of all	
58	primary brain tumors in dogs. sneyder 2006, Song 2013) Glial tumors are less common in cats,	
59	representing approximately 8% of feline primary brain tumors. ^(Troxel 2003) Common MRI	
60	features of gliomas include single, intra-axial, T1-weighted (T1W) iso- to hypointense and	<
61	T2-weighted (T2W) iso- to hyperintense to normal brain parenchyma cyst-like or necrotic	
62	lesions, with variable distribution and degree of contrast enhancement. (Sneyder 2006, hect 2018, wisner	
63	2011, young 2011, Bentely 2013) Intratumoral hemorrhages component have also been reported. (Benteley	
64	2013)	
65	Brain abscesses are uncommon in companion animals and may occur via a hematogenous	
66	entry of bacteria, direct invasion/contiguity, or contamination of cerebrospinal fluid. (Thomas	
67	1999, Sonneville 2017, Radaelli 2002, Costanzo 2011, Klopp 2000, Mateo 2007, Rosenblatt 2014, Seiler 2001) A brain abscess	
68	begins as a localized area of neutrophilic encephalitis and, if untreated, may progress into	
69	liquefactive necrosis containing viable and degenerate neutrophils (pus) surrounded within 1	
70	to 2 weeks by a well-vascularized fibrovascular capsule. (Thomas 1999, Sonneville 2017) On MRI, a	
71	brain abscess has been reported as a focal, T2W hyperintense and T1W hypointense lesion	<
72	compared to normal brain parenchyma, with a necrotic non-enhancing center, surrounded by a	
73	thick and strongly contrast-enhancing peripheral rim. (Costanzo 2011, Klopp 2000, Mateo 2007, Seiler 2001, Bach	
74	2007)	
75	A recent review in veterinary literature reports up to 45% of gliomas having partial or	
76	complete ring-enhancement; Miller 2019 therefore, gliomas may appear as expansile ring-	
77	enhancing masses, mimicking the radiological appearance of intra-axial abscesses ^{Huisman 2009} .	
78	In human medicine, multiple MRI studies using specific sequences have attempted to find	
79	unique characteristics to distinguish between ring-enhancing gliomas and abscesses. A	

80 hypointense peripheral capsule on T2W images caused by paramagnetic free radicals within

Commented [LDF3]: To normal parenchyma Commented [AC4R3]: Added Commented [LDF5]: same Commented [AC6R5]: Added

Commented [LDF7]: same
Commented [AC8R7]: Added

Commented [RGQ9]: If any previous papers report the percentage of gliomas that present as ring-enhancing masses, it will be nice to add the information.

Commented [AC10R9]: We add a reference, Miller 2019 on Frontiers, Table 1

- 81 phagocytic macrophages, often associated with susceptibility artifact in T2W gradient echo
- 82 (T2*) and to a double rim sign in susceptibility-weighted imaging (SWI), is considered a
- distinguishing feature of brain abscesses in humans.^(Haimes 1988, Toh 2012) Abscesses commonly
- 84 show restricted diffusion in diffusion weighted imaging (DWI) while gliomas usually do
- 85 not.^(kim 1998, Toh 2011, Chiang 2009, Huisman 2009) However, overlapping imaging features have been
- 86 reported.^(Reddy 2006, Reiche 2010, Hakymez 2005)
- 87 Since the two diseases require very different treatment and have a different prognosis^{(Costanzo})</sup>
- 88 <u>2011,Bersan 2020, Bilderback 2009, Miller 2019</u>, a correct imaging interpretation is paramount.
- 89 The aims of this study were to compare the MRI features of confirmed ring-enhancing
- 90 gliomas and intra-axial brain abscesses in dogs and cats and to identify the imaging features
- 91 that might help to differentiate them.
- 92

93 MATERIALS AND METHODS

- 94 CASE SELECTION CRITERIA
- 95 This was a multicenter, retrospective, descriptive study. All animals included were client-
- 96 owned and underwent MRI examinations of the brain. Previous informed written consent was
- 97 obtained from all dog owners. All the procedures performed complied with the European
- 98 legislation "on the protection of animals used for scientific purposes" (Directive
- 99 2010/63/EU).
- 100 The databases of the Veterinary Hospital "I Portoni Rossi" Anicura Italy, the Veterinary
- 101 Teaching Hospital of the University of Bern, the Royal Veterinary College, the University of
- 102 Glasgow, the University of Montreal, the Veterinary Clinic "Neurología Veterinaria" and the
- 103 Veterinary Hospital "Gregorio VII" were searched for dogs and cats diagnosed with a single
- 104 ring-enhancing intra-axial lesion. Patients' age, sex, and breed were recorded.

Commented [LDF11]: I think usually editors prefer past tense but happy if you want to use present tense throughout, just check.

Commented [AC12R11]: We check thanks. There should be only past tense now.

- 105 Inclusion criteria were the following: (1) a definitive diagnosis of glioma or abscess based on
- 106 <u>cytological or histopathological examination following CSF collection or surgical</u>
- 107 <u>biopsy/necropsy, respectively;</u> (2) a MRI study performed with a high or low field MRI
- 108 scanner, including at least a same plane pre- and postcontrast T1W and a T2W sequence in at
- log least one plane and at T2 FLAIR sequence in any plane. If available, T2*W GE, DWI/ADC,
- 110 SWI and delayed postcontrast T1W sequences were analyzed.
- **111** Because the aim of the study was to describe the MRI features of brain abscesses and to
- 112 compare them with ring-enhancing gliomas in doubtful cases, the presence of MRI changes
- 113 related to bite wounds were recorded, but not considered as imaging criteria.
- 114

115 IMAGE ANALYSIS

- 116 Images were analyzed by a board-certified radiologist (SS), a board-certified neurologist
- 117 (MB) and a second-year resident in diagnostic imaging (AC) not blinded to the final
- 118 diagnosis. The final decision on the imaging characteristics was reached on a consensus basis.
- 119 The studies were randomly reviewed using a DICOM (i.e., Digital Imaging and
- 120 Communications in Medicine) viewer program (OsiriX DICOM viewer, Pixmeo, Geneva
- 121 Switzerland). The three observers were asked to fill in a pre-defined standardized
- 122 commercially available spreadsheet (Microsoft Excel 2020, Microsoft, Redmond, Wash). The
- following MRI features were assessed: T1W and T2W signal heterogeneity/homogeneity as
- 124 well as the intensity (hypo-, iso-, hyper-) of the signal <u>compared to normal parenchyma</u> on the
- same sequences; presence of a peripheral hypointense halo in T2W sequences <u>compared to</u>
- 126 <u>contents of the lesion;</u> presence of a T2 FLAIR attenuated component within the lesion;
- 127 presence and grade (0, no; 1, mild; 2, moderate; 3, severe) of perilesional white matter edema
- based on subjective evaluation; pattern of ring enhancement (even/uneven); presence of
- 129 progressive central enhancement on delayed post-contrast sequences (delayed post-contrast

Commented [LDF13]: Different to the abstract Commented [AC14R13]: We added it to the abstract

Commented [CF15]: Did you analyse ADC images in conjunction with the DWI images?usually the analysis is done in combination to avoid any T2 shine through confusion. I would specify ita s "DWI/ADC"

 $\label{eq:commented_commented_commented_commented_commented} Commented [AC16R15]: Yes we always analyzed DWI and the corresponding ADC map. Now in the text we put DWI/ADC$

Commented [IM17]: Any reason for not looking at precise location of lesion and size?

Commented [SS18R17]: No particular reason, we didn't consider it as criterion

Commented [LDF19]: Compared to....

Commented [AC20R19]: Added

Commented [LDF21]: May be better low signal? Or hypointense to 1)contents of the lesion or 2) surrounding parenchyma

Commented [CF22R21]: I would have the same comment. I know a lot of people use the terms hypointense or hyperintense without any more precision but technically it is hypo or hyperintense to something in reference. Alternatively you could use the terms low or high signal alone.

Commented [CF23]: Was this grade subjective or based on previous litterature? I think you need to specify it (for example the grade was established based on a scoring system established by the authors/adaptated from previous litterature

Commented [AC24R23]: We subjectively graded the vasogenic edema reaching a consensus. I clarify in the text that point.

- 130 enhancement was assessed in different planes if the same plane was not available) and the
- 131 ratio between lesion diameter and maximum capsule thickness in the immediate T1 post
- 132 contrast images. In cases in which T2*W GE sequences, DWI or SWI were available,
- additional data were collected such as the presence of susceptibility artifact (i.e., hemorrhage)
- and a hypointense peripheral halo <u>compared to lesion content</u> in T2*W GE sequences; the
- presence of abnormal diffusion restriction in DWI/ADC; the presence of "dual-rim sign"
- 136 (e.g., defined as two concentric rims at lesion margins with the outer one being hypointense
- 137 and the inner one hyperintense relative to cavity contents) in SWI as described by Toh et al in
- 138 2012.
- 139

140 STATISTICAL ANALYSIS

- 141 Count data regarding the abscesses/gliomas diagnosis were crossed referenced the MRI
- 142 findings to obtain contingency tables. Chi-square test was applied to analyse data, using Yates
- 143 correction for 2x2 contingency tables and Fisher's exact test when frequencies inside tables
- 144 were less than 5. When a significant association (P<0.05) was found between an MRI
- 145 qualitative predictor and abscess/gliomas classification, the relative risk and 95% confidence
- 146 interval (95%CI) were calculated.
- 147 The ratio between the lesion diameter and capsule thickness in the immediate T1 post-contrast
- 148 sequences was analyzed using a ROC approach to identify the cut-off that could best
- 149 discriminate between abscesses and gliomas. The threshold was calculated using the Youden
- 150 criterion. All analyses were performed with commercial software (MedCalc, Software Ltd,
- 151 Ostend, Belgium).
- 152
- 153 RESULTS
- 154 A total of 31 cases met the inclusion criteria. Sixteen patients were diagnosed with ring-

Commented [IM28]: How were they diagnosed? Necropsy? Biopsy? CSF cytology? Commented [AC29R28]: We added these informations.

Commented [LDF25]: Same
Commented [AC26R25]: Added

Commented [CF27]: diffusion restriction? You need to analyse the ADC conjointly with the DWI to assess for diffusion restriction and identify T2 shine through artefacts so I would precise "DWI/ADC images" instead of just "DWI"

- enhancing gliomas through necropsy (15/16) or surgical biopsies (1/15); Intra-axial abscesses
- were diagnosed in 15 patients through necropsy (5/15), CSF analysis (7/15) and surgical
- 157 <u>biopsies (3/15)</u>. Within the abscess group 6/15 had evidence of bite wounds/perforating
- 158 <u>lesions visible as temporal muscle myopathy and calvarial focal defects in</u>
- 159 <u>continuity/contiguity with the intra-axial mass.</u>
- 160 MRI scanning techniques were similar for each institution. The coil selection was based on
- 161 individual patients and the availability of the single institution. All the animals were imaged
- 162 in sternal recumbency, under general anesthesia.
- 163 MRI studies were performed with both low- and high-field MRI scanners; specific
- 164 characteristic of each MRI scanner are listed in Appendix 1.
- 165 T2*W GE sequences were available in 13 cases of ring-enhancing glioma and in 9 cases of
- 166 intra-axial abscessation. DWI sequences were obtained in 6 cases with ring-enhancing glioma
- 167 and in one patient with brain abscess. SWI was available in only one patient with ring-
- 168 enhancing glioma.
- 169 Delayed T1W post-contrast sequences were available in 12 glioma cases and on 10 intra-axial
- abscess cases.
- 171 In the ring-enhancing gliomas group there were 13 dogs and 3 cats. The canine breeds
- 172 represented in the study were Boxer (n = 3), French Bulldog (n = 2), Labrador Retriever (n = 1)
- 173 2), Jack Russell terrier (n = 2), Lhasa Apso, Boston Terrier, Springer Spaniel and mixed-
- 174 breed (n = 1 each). Two Domestic short-haired and 1 Sacred Birman cat represented the feline
- 175 group. Of the 13 dogs, 6 were males (4 neutered) and 7 females (3 spayed). The 3 cats were 2
- 176 spayed females and 1 male. The mean age was 7 years (range: 5-11) for dogs and 9 years
- 177 (range: 5-15) for cats.
- 178 In the intra-axial abscesses group, there were 10 dogs (3 mixed-breed, 1 Boxer, 1
- 179 Staffordshire Bull Terrier, 1 West Highland White Terrier, 1 Border Terrier, 1 Miniature

Commented [CF30]: Did you get these numbers/repartition within groups by "chance" after all the pertinent cases from the institutions were included, or did you aim to get roughly the same number of patients in each group and look for additional patients until the number you aimed was reached (or left out some cases in one group if there were too many)? If so you should probably precise it in the MM. If not, please disregard my comment and leave things as they are!

Commented [SS31R30]: By chance!

Commented [IM32]: Even if this was an inclusion criteria (certain types of sequences), perhaps some details about planes vs. sequences performed in all dogs would be helpful here. Did all dogs have a similar number of sequences?

Commented [AC33R32]: The number of sequence was pretty variable. Some institution performed the same sequences on multiple planes and other did not. Some institution obtained FLAIR in dorsal plane and other in transverse and so on.... So, as Swan write in the comment below we would stand by and eventually add it in an addendum in case reviewers will ask

Commented [IM34]: What coils were generally used?

Commented [SS35R34]: Pretty complicated to add all coils for different patients from different institutions... I would stand by on this one and eventually add it in case reviewers will ask (maybe in an addendum, not within the article)

- 180 Schnauzer, 1 Chihuahua and 1 Golden Retriever) and 5 cats (4 Domestic short-haired and 1
- 181 Domestic long-haired cat). Of the 10 dogs 4 were males (1 neutered) and 6 females (3
- 182 spayed). The 5 cats were 4 neutered males and 1 spayed female. The mean age was 4.9 years
- 183 old (range: 1-11) for dogs and 8.4 years old (range: 5-12) for cats.
- 184 MRI findings of ring-enhancing gliomas and brain abscesses are summarized in table 1.
- 185
- 186 RING-ENHANCING GLIOMAS vs. BRAIN ABSCESSES
- 187 Brain abscesses showed a more homogeneous signal on T1W (P = 0.049) and T2W sequences
- 188 (P = 0.042) compared to ring-enhancing gliomas. A peripheral hypointense halo on T2W (P =
- 189 0.005) and T2* (P = 0.046) sequences was significantly associated with brain abscesses rather
- 190 than ring-enhancing gliomas (Figure 1).
- 191 On postcontrast T1W sequences, abscesses showed a more <u>even</u> ring-enhancing capsule
- 192 compared to the ring-enhancing gliomas (P = 0.002), while ring-enhancing gliomas were
- 193 more likely to have a progressive central enhancement on T1W delayed postcontrast
- 194 sequences (P = 0.009) (figure 2<u> and 3</u>).
- 195 Based on the receiver-operating characteristic (ROC) analysis, a cut-off value of >12 in the
- 196 ratio between lesion diameter and capsule thickness in the immediate T1 post contrast
- 197 sequences had a 43.75% sensitivity and 85.71% specificity in the detection of ring-enhancing
- 198 gliomas.
- 199 The overall homogeneity of the lesions, the intensity of the lesions (hyperintense, isointense
- 200 or hypointense) compared to the gray matter, the presence of a T2 FLAIR attenuating
- 201 component within the mass, the presence and grade of T2 FLAIR perilesional vasogenic
- 202 edema, the presence of intralesional susceptibility artefacts, and the restriction to
- 203 diffusediffusion restriction in DWI/ADC were not statistically significant.
- 204 <u>Comparison between groups for MRI characteristics is detailed in Table 2.</u>

Commented [CF36]: Diffusion restriction? Commented [AC37R36]: We modified it

206 DISCUSSION

- 207 <u>Our study showed that ring</u>-enhancing gliomas share several MRI features with intra-axial
- 208 brain abscesses. However, a homogenous signal on T1W and T2W sequences, a T2W and
- 209 T2*W GE peripheral hypointense halo, and an even enhancing capsule were more likely
- 210 associated with brain abscesses. Progressive central enhancement on T1W delayed
- 211 postcontrast sequences was strongly associated with ring-enhancing gliomas while this
- feature was only present in a single dog with a brain abscess.
- 213 The presence of bite wounds/perforating lesions in continuity/contiguity with an intra-axial
- 214 <u>mass makes a brain abscess the very most likely differential diagnosis. However, we did not</u>
- 215 consider them as imaging criteria because we aimed to focus on those MRI findings that can
- 216 <u>help the clinician in a doubtful clinical situation.</u>
- 217 In our cohort of patients, brain abscesses had a significantly more homogeneous signal on
- 218 T1W and T2W sequences likely reflecting the presence of necrotic/fluid content in the
- abscess. ^{Costanzo 2011, Klopp 2000, Mateo 2007, Seiler 2001, Bach 2007} In contrast, ring-enhancing gliomas
- 220 usually showed a more heterogeneous T1W or T2W signal due to the presence of variable
- 221 content in these tumors, including hemorrhage, necrotic tumor tissue, cysts or altered cellular
- density. Lipsitz 2003, wisner 2011, young 2011, Bentely 2013, Miller 2019
- 223 There was absence of statistical significance in the evaluation of the type of T1 and T2 signal
- 224 compared to the grey matter in both gliomas and abscesses. This is related to the tumor
- 225 heterogeneity in gliomas and the variable ratio between cellular/proteins content in abscesses
- 226 depending on the stage respectively. During their development, abscesses begin as a focal
- 227 area of encephalitis histologically defined by a perivascular infiltration of neutrophils,
- 228 lymphocytes, and plasma cells within the brain parenchyma with an ill-defined central
- 229 necrotic zone composed of inflammatory cells, cellular debris, and microorganisms.

Commented [IM38]: The reader doesn't know from reading this sentence if this is meant to refer to literature or to the study. If this refers to the study you might want to consider: Our study showed that ring-encing gliomas share several MRI features with intra-axial brain abscesses.

Commented [AC39R38]: We rephrased it

Commented [OA(40]: Grade or stage? I guess rather stage Commented [AC41R40]: We put stage

230	Subsequentely, the necrotic center increases in size and becomes more well defined. As the
231	abscess becomes more chronic the central necrosis decreases and if left untreated and the
232	patient survives, the abscess will heal as a collapsed fibrotic glial scar. Klopp 2000
233	Our study demonstrates a significant correlation between a peripheral hypointense halo on
234	T2W and T2*W GE sequences and brain abscesses. This halo is due to paramagnetic free
235	radicals within phagocytic macrophages and it has already been described in both human and
236	veterinary medicine. Haimes 1988, Costanzo 2011, Seiler 2001, Bach 2007, Kim 1998, Thomas 1990, Nagendran 2021.
237	However, in our study this halo was seen in most, but not all the abscesses; moreover, it was
238	also visible in the MRI study of one patient with a glioma. A T2W and T2*W GE peripheral
239	hypointense halo has been described in both veterinary and human literature in several
240	conditions such as gliomas, chronic hematomas, metastases, granulomatous lesions,
241	infarctions, meningiomas, and radiation necrosis. Haimes 1988, Klopp 2000 Despite its statistical
242	significance, it cannot therefore be regarded as pathognomonic for brain abscesses.
243	Another MRI finding that statistically correlated with brain abscesses was the presence of an
244	even regular enhancing capsule. This may be explained by the pathophysiology of brain
l 245	abscesses formation, which includes four different stages: the first two stages represent the
246	"early" and "late encephalitis" phases without collagenous capsule; during stage 3, called
247	"early capsule", there is an initial deposition of collagen at the periphery of the necrotic center
248	is followed by ingrowth of granulation tissue and neovascularization; in the fourth or "late
249	capsule" stage there is complete formation of the capsule surrounding the necrotic center. Klopp
250	²⁰⁰⁰ Ring enhancing gliomas are not truly encapsulated, and the peripheral enhancing portion
251	of the lesion represents expanding neoplastic tissue with microvascular proliferations
252	surrounding a central necrotic core. Lipsitz 2003 The intrinsic neoplastic nature of this tissue may
253	explain both its <u>uneven</u> peripheral enhancement pattern and the progressive central

enhancement noted in 9 out of the 12 T1W delayed postcontrast sequences, that correlated

Commented [OA(42]: To my understanding it is the microvascular proliferation (in high grade gliomas) that causes peripheral enhancement. Not the neoplastic tissue itself.

Commented [AC43R42]: We added the microvascular proliferation

255	with ring-enhancing gliomas. In both veterinary and human literature, intra-axial lesions	
256	usually show progressively increased conspicuity on delayed postcontrast sequences. Song 1995,	
257	Mai-Brain Neoplasia-Hecht, Abstract Carmel Moreover, the presence of tumor angiogenesis along with	
258	poorly vascularized peripheral neoplastic tissue surrounding the necrotic center may play a	
259	role in the delayed central progression of the enhancement. Lipsitz 2003	
260	In one brain abscess a very mild progressive central enhancement was indeed seen. In this	
261	case, immediate and delayed postcontrast T1W sequences were acquired in different planes	
262	and the progressive central enhancement may therefore not be real. Other possible	
263	explanations are a partial volume artifact due to the capsule's thickness or the presence of a	
264	very thick capsule that necessitated more time to enhance completely.	
265	When evaluating the ratio between the lesion diameter and the capsule's thickness in the	
266	immediate postcontrast T1W sequences, a cut-off >12 (43.75% sensitivity and 85.71%	
267	specificity) can be proposed for the detection of ring-enhancing gliomas. The irregular-uneven	
268	peripheral enhancement pattern of ring-enhancing gliomas due to the presence of	
269	microvascular proliferation compared to the more regular even and smooth capsule of brain	
270	abscesses Klopp 2000, Lipsitz 2003 would explain why ring-enhancing gliomas had higher lesion	
271	diameter:capsule thickness ratio than abscesses.	
272	T2 FLAIR sequences have been proposed to characterize fluid collections and differentiate	
273	fluid-cavitary lesions from other parenchymal T2 high signal lesions. Bentely 2013 Cystic or	
274	necrotic regions are typical of canine glioblastoma but can also occur in approximately one-	
275	third of low-grade canine gliomas; Lipsitz 2003, Bentely 2013 On the other hand, brain abscesses	
1		

- during their development show a necrotic core that may mimic the signal intensity and the
- 277 cellular density of a ring-enhancing glioma Klopp 2000, Lipsitz 2003 explaining the lack of statistical
- 278 significance of an intralesional T2 FLAIR attenuating component in our study.
- 279 The grade of the perilesional vasogenic edema was not statistically significant; vasogenic

Commented [OA(44]: Again, it is not the neoplastic tissue. It should be the newl formed microvascular proliferations/or glomeruloid proliferations.

Commented [AC45R44]: We modified it

Commented [LDF46]: check As before, I think explaining in slightly more detail (or using one of your figures) to show what you mean by regular / irregular

Commented [OA(47]: Necrosis does not really occur in lowgrade gliomas, as necrosis is one criterium for high grade.

Commented [AC48R47]: We remove the word "necrotic".

280	edema is secondary to the disruption of the blood-brain-barrier (BBB) and represents a	
281	nonspecific feature of several brain diseases including neoplasm and infectious disorders ^{Ho}	
282	^{2012, Patel 2014} . In humans, two patterns of vasogenic edema have been described: type 1 is seen	
283	in the immediate vicinity of low-grade and nonglial tumors and is thought to be secondary to	
284	parenchymal compression with secondary ischemia and necrosis; type 2 occurs with high-	
285	grade glial tumors and is characterized by fingerlike projections reflecting tumor	
286	microinvasion causing additional derangements of the BBB. ^{Ho 2012} Further studies are needed	
287	to investigate the relationship between the severity of perilesional vasogenic edema, brain	
288	abscesses and low- and high-grade gliomas.	
289	The presence of intralesional T2*W GE susceptibility artifact was observed in 4/13 patients	
290	with ring-enhancing gliomas and only in 1/9 with brain abscesses, failing to achieve statistical	
291	significance, probably due to the small sample of patients. These susceptibility artifacts were	
292	likely consistent with hemorrhage or neovascularization, which are more commonly reported	
293	in gliomas. Lipsitz 2003, wisner 2011, young 2011, Bentely 2013, Weston 2020 A recent article in veterinary	
294	medicine describes the presence of neovascularization in 74.1% of intracranial tumors	
295	included in the study, Weston 2020 A fine, linear, and continuous structure may be more likely	Commented [OA(49]: But these are responsible for contrst
296	interpreted as neovascularization, while a signal void usually represents an intralesional	Commented [AC50R49]: Yes they are but in this point we
297	hemorrhage. However, in our study, T2*W GE intralesional susceptibility artifacts were seen	highlight susceptibility artifact that can represent also neovascularization rather than only hemorrhages
298	in one feline patient with brain abscess. These artifacts likely have to be related with	
299	hemorrhages secondary to the recent bite wound reported in the medical record	Commented [IM51]: These artifacts may have represented
800	Only seven MRI studies included a DWI/ADC sequence. This sequence was not included as	memormagic focisities bits would swere reported in the medical record of this dog?cat?
301	part of the standard MRI brain protocol for many of the institutions. In patients (n=6) with	Commented [AC52K51]: Yes we have specified it in the text
302	ring-enhancing gliomas for whom DWI sequence was available, all showed an increased	Commented [CF53]: DWI/ADC sequences
303	diffusion of the lesion whereas the only patient with a brain abscess showed, instead, an	
304	abnormal restriction to diffusion (figure 3). These findings agree with what is reported in	

305	human medicine ^{Kim 1998, Desprechin 1999, Chiang 2009} and one recent case report in a cat. ^{Nagendran 2021} In
306	humans, atypical diffusion (e.g., restriction to diffusion in gliomas and abnormally increased
807	diffusion in brain abscess) is reported in 5-21% of the cases, however it is a characteristic that
308	has not yet been reported in the veterinary literature. Reddy 2006, Reiche 2010, Hakymez 2005
309	In humans, the "dual rim sign" in SWI is the most specific imaging feature to distinguish
310	gliomas and abscesses. ^{Toh 2012} This sign is typically seen in pyogenic abscesses while it has
311	never been reported in gliomas. Toh 2012 In our population, only one patient of the glioma group
312	had a SWI available, showing some intralesional foci/tubular susceptibility artifacts without
313	evidence of "dual rim sign". The lack of visualization of "dual rim sign" in this patient agrees
314	with what is reported in human medicine. Unfortunately, due to the retrospective nature of our
315	study, a SWI sequence was not included in the MRI protocol of any patient of the abscess
316	group. Future studies are needed to investigate the utility of SWI sequence in veterinary
317	medicine.
318	The major limitation of this study is the use of different MRI equipment and protocols. Low-
319	field MRI might have failed in detecting small lesions. The different planes in some studies
320	between the immediate and the delayed postcontrast T1W sequences might have biased the
321	effective progression of the central enhancement.
322	Another limitation is that, due to the retrospective and multicenter nature of the study over a
323	long period, different histological classification systems were used from different veterinary
324	pathologists with different backgrounds. For this reason, we decided not to make a distinction
325	between high- and low-grade ring-enhancing gliomas.
326	In conclusion, even if several overlapping MRI features between ring-enhancing gliomas and
827	brain abscesses do exist, some features can help to prioritize the MRI diagnosis. The presence
328	of a homogeneous T1W or T2W signal intensity, a T2W or T2*W GE peripheral hypointense
829	halo and a <u>n even</u> enhancing capsule may indicate a brain abscess. The central progression of
1	

- the enhancement on delayed postcontrast T1W sequences is indicative of glial neoplasia. The
- addition of DWI and SWI sequences available on high-field MR scanners should be
- 332 considered for assessment of intra-axial brain lesions which cannot be easily discriminated
- 333 using standard MRI sequences.

Commented [IM54]: My suggestion: The addition of DWI and SWI sequences available on high-field MR scanners should be considered for assessment of intra-axial brain lesions.

Commented [AC55R54]: Thanks, we rephrased it.

334	REFERENCES
335	
336	
337	

339 Table 1: MRI features of ring-enhancing gliomas and brain abscesses.

			Glioma (n = 16)	Abscess (n = 15)
Signal homogeneity	T1W	Homogeneous	4/16	10/15
		Heterogeneous	12/16	5/15
	T2W	Homogeneous	0/16	5/15
		Heterogeneous	16/16	10/15
Signal intensity	T1W	Hypointense	11/16	14/15
		Isointense	4/16	1/15
		Hyperintense	1/16	0/15
	T2W	Hypointense	0/16	3/15
		Isointense	0/16	1/15
		Hyperintense	16/16	11/15
T2/T2*W GE peripheral hypointense halo	Presence		1/16	9/15
	Absence		15/16	6/15
T2 FLAIR intralesional attenuating component	Presence		10/16	9/15
	Absence		6/16	6/15
T2 FLAIR white matter perilesional edema	Grade 0		5/16	1/15
	Grade 1		3/16	1/15
	Grade 2		4/16	4/15
	Grade 3		4/16	9/15
Pattern of ring-enhancement	Even		1/16	10/15
	Uneven		15/16	5/15
Progressive central enhancement of delayed T1W post-	Presence		9/12	1/10
contrast	Absence		3/12	9/10
Susceptibility artifacts on T2*W GE/SWI	Presence		4/13	1/9
	Absence		9/13	8/9
Behavior on DWI/ADC	Increased	diffusion	6/6	0/1
	Decreased diffusion		0/6	1/1
"Dual rim sign" on SWI	Presence		0/1	N/A
	Absence		1/1	N/A

-

	Gliomas	Abscesses	Chi-square	Р	Relative	95%CI
	N=16	N=15	test		risk	
T2W homogeneous lesion	0	5	4.13	0.042	2.6	1.6-4.23
T1W homogeneous lesion	4	10	3.87	0.049	2.4	1.08-5.45
T1W and T2W homogeneous lesion	0	3	1.62	0.202		
Intensity of the lesion on T2W sequences			4.90	0.050		
- hyper	1	0	0.001	0.974		
- iso	4	1	0.81	0.369		
- Нуро	11	14	1.63	0.202		
T2 FLAIR attenuating component	10	9	0.05	0.821		
T2 FLAIR perilesional edema			5.56	0.162		
- grade 2-3	8	13	3.23	0.072		
- grade 0-1	8	2	1.63	0.202		
Peripheral T2 hypointense halo	1	9	7.92	0.005	3.15	1.55-6.39
Peripheral T2*W GE hypointense halo	1	5	3.97	0.046	3.33	1.33-8.37
Susceptibility artifacts on T2*W GE sequences	1	4	0.32	0.572		
Regular Even profile of the capsule on T1W + C	1	10	9.85	0.002	3.64	1.66-7.95
sequences						
Central progression of the contrast medium on	9	1	6.86	0.009	0.13	0.02-0.88
delayed T1W + C						

345 Table 2: Comparison between MRI findings in ring-enhancing gliomas and brain abscesses.

l

847	Figure 1: Transverse T2W image of a_one-year-old, neutered male, American Staffordshire
348	Terrier with left thalamic abscess. Note the peripheral hypointense halo (arrow) surrounding a
349	homogeneous hyperintense center. There is a moderate mass effect on the third ventricle
350	(arrowheads) along with moderate T2 hyperintense vasogenic edema surrounding the lesion.
351	
352	Figure 2: Immediate post-contrast T1W transverse (A) and dorsal delayed post-contrast T1W
353	(B) images of a 9-year-old, male neutered, DLH cat with a right temporo-parietal lobe abscess
354	secondary to a bite wound with temporal myopathy (arrows). Despite the different acquisition
355	planes the thickness of the abscess' capsule does not increase over time (white arrowheads).
356	Immediate post-contrast T1W (C) and delayed post-contrast T1W (D) transverse images of a
357	9-year-old, female spayed, Labrador Retriever with left cerebellar ring-enhancing glioma.
358	Note the conspicuous central progression (black arrowheads) of the enhancement on the
359	delayed post-contrast sequence.
360	
361	Figure 3: (A-C) 9-year-old, male neutered, DSH cat with right parietal lobe abscess secondary
362	to a bite wound. A well-defined ring-enhancing lesion with hypointense center (arrow) is
363	visible on the T1 post-contrast sequence (A); right temporal myopathy and a calvarial defect
864	are also visible (you may need to add some annotation on the image to show this)(dashed
865	arrow). On the transverse DWI (B) the central portion of the abscess is strongly hyperintense
366	(black asterisk) while it shows low values (white asterisk) on the ADC map (C), consistent
367	with restriction to diffusion. (D-F) 5-year-old, male, French Bulldog with ring-enhancing
368	glioma of the right fronto-parietal lobe. The T1W post-contrast sequence shows an irregularly
369	unevenly marginated ring-enhancing glioma (arrowheads) (D). On the transverse DWI (E) the
1 370	central portion of the lesion is hypointense (white §) while on the ADC map (F) it shows high
871	signal (black §), consistent with increased diffusion.
1	

Note the difference between the even enhancing capsule of the brain abscess (A) compared to

873 <u>the unevenly marginated ring-enhancing glioma (D).</u>

374

376 Appendix 1: MRI scanners characteristics for each institution.

Institution	MRI machine
Veterinary Hospital "I Portoni Rossi",	1.5T, Vantage Elan, Canon Medical Systems Europe B.V., Zoetermeer,
Anicura Italy	the Netherlands
	0.22, T MrJ, Paramed, Genua, Italy
Royal Veterinary College	1.5 T, Philips Intera, Philips Medical System, Guildford, UK
School of Veterinary Medicine, University of	University of Glasgow
Glasgow	1.5 T, Magnetom, Siemens, Camberley, UK
	Glasgow Burgess
	1.5 T, Gyroscan ACS NT, Philips Medical System,
	Eindhoven, The Netherlands
Vetsuisse Faculty, University of Bern	1.0 T, Philips Panorama HFO, Philips Medical Systems, Best, The
	Netherlands
	3.0 T, Achieva, Philips Healthcare, Best, the Netherlands
Faculty of Veterinary Medicine, University	1.5T, GE Signa EchoSpeed HD, GE Healthcare, Chicago, Illinois, USA
of Montreal	
Neurología Veterinaria	1.5T, Gyroscan Intera, Philips, Eindhoven, The Netherlands
Veterinary Hospital "Gregorio VII"	0.33 T MrV, Paramed, Genua, Italy