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Birds and crocodylians are the only remaining members of
Archosauria (ruling reptiles) and they exhibit major differences
in posture and gait, which are polar opposites in terms of
locomotor strategies. Their broader lineages (Avemetatarsalia
and Pseudosuchia) evolved a multitude of locomotor modes in
the Triassic and Jurassic periods, including several occurrences
of bipedalism. The exact timings and frequencies of bipedal
origins within archosaurs, and thus their ancestral capabilities,
are contentious. It is often suggested that archosaurs ancestrally
exhibited some form of bipedalism. Euparkeria capensis is a
central taxon for the investigation of locomotion in archosaurs
due to its phylogenetic position and intermediate skeletal
morphology, and is argued to be representative of facultative
bipedalism in this group. However, no studies to date have
biomechanically tested if bipedality was feasible in Eupakeria.
Here, we use musculoskeletal models and static simulations in
its hindlimb to test the influences of body posture and muscle
parameter estimation methods on locomotor potential. Our
analyses show that the resulting negative pitching moments
around the centre of mass were prohibitive to sustainable
bipedality. We conclude that it is unlikely that Euparkeria was
facultatively bipedal, and was probably quadrupedal, rendering
the inference of ancestral bipedal abilities in Archosauria unlikely.
1. Introduction
Shifts in locomotor modes and postures, from quadrupedal
to bipedal, or vice versa, were pivotal in the evolution of
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Figure 1. Euparkeria model. (a) Skeletal reconstruction of Euparkeria capensis, modified from Cuff et al. [27]. (b) Articulated digital
skeleton of Euparkeria and hull and cavity models used for centre of mass (COM) (crossed circle) and inertia calculations. Modelled
body posture and ground reaction force (GRF) vector in caudal view (c) and right lateral view (d ). The body segments are shown in
orange and the body cavities (lung, trachea, cranial sinus/pharynx) in blue; dots denote modelled joint centres. Note that the COM is
cranial to both the hip joint and the GRF vector. rx and rz, respectively, represent the roll and pitch moment arms of the GRF vector
F about the COM, producing the COM roll and pitch moments τx and τz. COM, centre of mass; COP, centre of pressure; BA, body
angle; TA, tail angle. Angle deviations in the body and tail were measured from horizontal. All drawings to scale, scale bar = 5 cm.
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tetrapods [1–6]. While these postural shifts are relatively rare, bipedalism has evolved independently in
Squamata and Mammalia, and multiple times within Archosauria [1,5,7–10]. Birds and crocodylians, the
last surviving lineages of Archosauria, are polar opposites in terms of posture and gait, the former being
a habitual and erect biped and the latter a quadruped with a more sprawling-type gait [11–20].
However, throughout their evolutionary history, the two archosaurian clades Avemetatarsalia and
Pseudosuchia explored a multitude of different locomotor modes [21–27], including multiple occurrences
of bipedalism, such as their independent acquisition in pseudosuchians (i.e. poposaurids and
shuvosaurids) and Postosuchus, and in Avemetatarsalia perhaps in lagerpetids and pterosauromorphs,
such as Scleromochlus [9,10,28–31]. The abundant fossil record of archosaurs facilitates detailed studies of
their morphological and locomotor evolution [2,21,31–33]. However, the exact timing and frequency of
the emergence of a more upright gait and bipedalism remain contentious [2,10,21,25–27,31,34,35].

The early archosauriform Euparkeria capensis from the Middle Triassic of South Africa [33,36] is a key
taxon for disentangling the early locomotor evolution of archosaurs due to its plesiomorphic skeletal
morphology, i.e. small-bodied, gracile, terrestrial and cursorial (see [37]; figure 1a), with a presumed
posture that was intermediate between that of earlier, sprawling taxa and the fully erect stance seen in
later taxa [25–27,37]. Together, these traits resemble the expected ancestral body plan for Archosauria
[36–38]. This ancestral form and function are further supported by its stable phylogenetic position as
sister taxon to Archosauria in both Bayesian and parsimony-based analyses [37,39]. The exact
locomotor mode of Euparkeria has been a subject of debate. It has been classified as a facultative biped
[9,24,33,40], mainly based on limb proportions. Contrastingly, other studies have instead classified
Euparkeria as a habitual quadruped [10,30] with a relatively sprawling posture based on skeletal
forelimb [41], hindlimb and ankle morphology [33,42], or alternatively with a more erect limb posture
due to the similarity of the hindlimb bones and joints with those of crocodylians [21,22,43] or
quantitative and functional analyses of the hindlimbs [26]. While joint mobility of its hindlimbs [26]
or its muscle leverage in a comparative context [27] has been investigated, the locomotor performance
of Euparkeria remains to be quantitatively tested.

Herein, we aim to overcome previous qualitative locomotory reconstructions, based on limb bone
morphologies and their comparisons with potentially (but not necessarily) analogous taxa and/or
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somewhat ambiguous assessments solely based on limb proportions, using quantitative and biomechanical
principles. Musculoskeletal models can provide valuable insights into musculoskeletal function, which
cannot otherwise be directly measured in physical experiments [20,44], and have become an increasingly
popular tool in palaeobiology to estimate locomotor function and biomechanics [27,44–46]. A holistic
approach, combining musculoskeletal modelling and other biomechanical tools, such as mechanical
modelling of pitch moments around the centre of mass (COM) (e.g. [47,48]), enables the testing of
bipedal capabilities in Euparkeria.

Forward acceleration generates a pitch moment around the COM and lifts the forelimbs off the
ground, thus inducing bipedal postures, and that acceleration ends as soon as the velocity becomes
constant and, consequently, the pitch moment dissipates [47,49]. Acceleration-induced bipedalism is,
therefore, inherently unsustainable. By contrast, recent theoretical and experimental studies have
shown that temporal asymmetry in the ground reaction force (GRF), in which the vertical component
is skewed so that higher forces are exerted early in the stance phase, play a crucial role in achieving
steady bipedal locomotion in birds and lizards [8,15,48,49], because their COM is situated cranial to
the hips. An early skewed GRF profile increases the total amount of force that is applied along a
resultant vector cranial to the COM during a stride, resulting in a larger nose-up pitch moment
around the hips [8,48,49]. Additionally, angular acceleration of the trunk and tail about the hips are
important factors in destabilizing quadrupedalism and facilitating bipedal locomotion instead [1,48].
Other forces such as aerodynamic lift play only a minor, effectively negligible role [49].

Here, we used musculoskeletal modelling and static simulations to investigate the bipedal capabilities
of E. capensis and to test (i) if this species could have sustained a peak GRF expected during bipedal
locomotion, and (ii) if the pitching moment about the COM facilitated sustainable bipedal locomotion.
We then revisit the potential stance (habitually quadrupedal, facultatively or habitually bipedal) of
ancestral Archosauria in light of our conclusions.
2. Material and methods
2.1. Model creation
The digital skeleton of E. capensis was assembled as composite of four µCT-scanned specimens (table 1)
which were scaled to the holotype SAM PK 5867, the most complete specimen [26,33]. The bones were
segmented in AVIZO 9.7 LITE (Thermo Fisher Scientific Inc., Waltham, MA, USA; https://www.
thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.
html) and MATERIALISE MIMICS 22.0 (Materialise NV, Leuven, Belgium; https://www.materialise.com/en/
healthcare/mimics-innovation-suite/mimics) and rearticulated in a standard reference pose [16,50,51] in
AUTODESK MAYA 2019 (Autodesk Inc., San Rafael, CA, USA; https://www.autodesk.com/products/
maya/overview) following anatomical and joint coordinate system creation using geometric primitive
shape-fitting [26,50,51]. The majority of the tail is not preserved in any of the µCT-scanned specimens of
Euparkeria; it was, therefore, reconstructed based on photographs of several additional specimens
(table 1; electronic supplementary material, figure S1). The model was posed in an osteologically feasible
posture [26] for body segment modelling and COM estimation [50,52,53] and volumetric muscle creation
[54,55] (figure 1b). We used a previously published three-dimensional musculoskeletal reconstruction of
Euparkeria [27,55], which is briefly described here. Muscle origins and insertions were identified based on
muscle scarring the extant phylogenetic bracket (EPB) [56,57] in combination with ancestral state
reconstruction for ambiguous muscles following Bishop et al. [50] (see electronic supplementary material,
figure S2 for muscle map). Euparkeria was, therefore, rescored based on new observations in the revised
matrix [50] for osteological correlates of hindlimb musculature initially outlined by Hutchinson [58] and
ambiguous muscle states reconstructed via maximum-parsimony analysis in MESQUITE 3.40 [59] (http://
www.mesquiteproject.org). Volumetric muscles were subsequently created in AUTODESK MAYA 2019,
constrained by tomographic sections of alligator hindlimbs [55] due to their similarity in limb
morphology and proportions [33] and evolutionarily conserved myology [55], and their lines of action
estimated following previously established protocols [20,55,60].

2.2. Musculoskeletal simulations
GRFs and body segment orientations were directly informed by the kinetics and kinematics of lizards
[49,61–63]. This is unlike previous studies, for which the GRF was directed vertically from exactly

https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/uk/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.materialise.com/en/healthcare/mimics-innovation-suite/mimics
https://www.materialise.com/en/healthcare/mimics-innovation-suite/mimics
https://www.autodesk.com/products/maya/overview
https://www.autodesk.com/products/maya/overview
http://www.mesquiteproject.org
http://www.mesquiteproject.org


Table 1. Specimen list. See Demuth et al. [26] for µCT scan parameters. Multiple specimens of Euparkeria are preserved on slab
SAM PK K8050 and two of them have the proximal caudal vertebrae preserved in articulation (see electronic supplementary
material, figure S1). Institutional abbreviations: SAM, Iziko South African Museum, Cape Town, South Africa; IFGT, Institute for
Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany (formerly Geologisch-Paläontologisches Institut Tübingen:
GPIT); UMZC, University Museum of Zoology Cambridge, Cambridge, UK.

µCT-scanned specimens specimen photographs

specimen elements specimen elements

SAM PK 5867 full body SAM PK K8050 (1) caudal vertebrae

SAM PK 6047A pelvic girdle and forelimbs SAM PK K8050 (2) caudal vertebrae

SAM PK K8309 hindlimbs SAM PK 13666 caudal vertebrae

UMZC T.692 fore and hindlimbs GPIT 1686.1 caudal vertebrae
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underneath the COM during mid-stance (e.g. [45,46,50]); however, this was not feasible because of the less
erect hindlimb posture of Euparkeria (see [26]). Additionally, considering the asymmetrical GRFs in extant
bipedally running lizards that peak during early stance phase [48], here it was assumed that the GRF
profile for a bipedal Euparkeria would also have peaked during early stance. The hindlimb poses were
configured accordingly and the GRF was thus applied to the centroid of the contact area (COP; figure 1c,
d) of the right foot during early stance for the static simulations (no dynamic movement was modelled,
see below). The assumed limb orientation was informed by data for the early stance phase in bipedally
running lizards, using running kinematics of Dipsosaurus dorsalis and Callisaurus draconoides [61] (see
electronic supplementary material, information S4 for joint angles). The GRF vector was adopted from
empirical data collected by Sheffield et al. [62] and thus aimed 14° medially and 8° cranially (figure 1c,d).
To test if Euparkeria could sustain GRFs expected during bipedal locomotion and how the body postures
influenced the resulting muscle activations and pitch moments around the COM, several simulations and
musculoskeletal models were set up. To cover the full breadth of possible bipedal body postures, the
trunk and tail angles were each rotated by 0°, 25°, 50° and 75° (from horizontal to almost vertical),
resulting in 16 simulations with varying combinations of trunk and tail angles (see [49]).

The models each had 16 active degrees of freedom, three rotational (pitch, yaw and roll) and three
translational d.f. in the pelvis, three rotational d.f. (flexion/extension, abduction/adduction and long-axis
rotation) in the hip and one d.f. (flexion/extension) each in the knee, ankle and metatarsophalangeal
joints, and two d.f. (pitch and yaw) in both the proximal and mid-tail joints. Additionally, there were a
total of three fixed (locked) d.f. per model: one d.f. (pitch) each in the trunk, neck and head joints.

To test the sensitivity of the architectural muscle parameters on the simulation results, four OPENSIM
[64] (https://simtk.org/projects/opensim) musculoskeletal models were created using different
estimation methods for muscle parameters (maximal isometric force Fmax and optimal fibre length lo):
Model 1, alpha shape centroid; Model 2, convex hull centroid; and Model 3, arithmetic centroid; all
following Bishop et al. [50] using previously published saurian muscle architectural data [55,65–67]
representing the EPB [56,57]. Model 4 was generated from three-dimensional volumetric muscle models
following Demuth et al. [55] (see electronic supplementary material, informations S1 and S2 for all
muscle parameters). The muscle parameters were normalized and scaled by body mass [67–69], rather
than segment or muscle tendon unit length [50], for data comparability. For the 16 static inverse
simulations in OPENSIM 3.3 [64], the magnitude of the GRF was systematically increased for each pose
until the static optimization algorithm could no longer find a solution to achieve static equilibrium for
any combination of muscle activations (am), while minimizing the sum of squared activations (see [50]),

min
XN
m¼1

a2m þ
XQ
q¼1

a2q

 !
, ð2:1Þ

subject to
Xn
i¼1

Fi � ri,k þMr,k ¼ Mk ð2:2Þ

and Fi ¼ ai � Fmax,i, ð2:3Þ

for each degree of freedom k (=16). TherewereN = 36muscles (electronic supplementarymaterial, figure S2
and information S2) and Q = 5 reserve actuators in each model (one at the metatarsophalangeal joint

https://simtk.org/projects/opensim
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(flexion/extension) and two each in the proximal and mid-tail joints (roll and yaw)). The maximal torques
of these reserve actuators are inconsequential as long as they are sufficiently large enough to never be fully
activated [45,50]. Muscle force Fi was modelled as the product of activation and Fmax, while ignoring any
intrinsic force–length–velocity relationships [50] (electronic supplementary material, information S2). The
moment each muscle produced about a given degree of freedom was the product of its force Fi and its
moment arm ri,k. In total, 64 static simulations were computed, each testing a combination of the four
different joint poses for both the tail and body and the different muscle parameter estimation methods
in the four models.

The resulting muscle activations were interpolated at 1° intervals between the four different body
postures per model, using cubic spline interpolation in MATLAB 2020a (The MathWorks, Inc., Natick,
MA, USA; https://www.mathworks.com/products/matlab.html) to produce full coverage of the
simulation space. Tail orientation had no influence on muscle activation and was, therefore, omitted.

2.3. COM moment calculations
The pitching moments around the COM were determined using the geometric definition of the moment
arm as being the shortest perpendicular distance between a force’s line of action and a centre of rotation
[70], i.e. the COM position. Each moment was calculated as the shortest distance between two skew lines:
the GRF vector from the COP in the foot and the unit vectors from the COM position representing its
principal axes (figure 1c,d ), and scaled by the two-dimensional projection of that distance onto each
axis’s plane of rotation [71], i.e. using its vector components (electronic supplementary material,
information S3). The COM moments τ were then calculated as the cross product of the moment arm r
and the GRF F with a magnitude of 2 body weights (BWs),

t ¼ r � F: ð2:4Þ

The moments around the COM were interpolated at 1° intervals between the 16 different simulations
using cubic spline interpolation in MATLAB 2020a to cover the full range of tested postures.

The body segment orientations of six extant lizard species during bipedal locomotion were
qualitatively compared with Euparkeria to relate their postural diversity to the pitching moments
computed for Euparkeria. Data for lizards were gathered from Olberding et al. [63] for Aspidoscelis
sexlineata, Irschick & Jayne [61] for Callisaurus draconoides, Cnemidophorus tigris, Dipsosaurus dorsalis and
Uma scoparia, and van Wassenbergh & Aerts [49] for Ctenophorus cristatus.

2.4. Ancestral state reconstruction
The evolution of bipedalism within Archosauria was further investigated based upon two hypotheses
regarding their interrelationship: the first phylogenetic tree, termed ‘Nesbitt tree’ followed work by
Nesbitt [72], Nesbitt et al. [73], von Baczko et al. [74], Ezcurra et al. [75] and Foffa et al. [31], and the
second, alternative tree, termed ‘Ezcurra tree’ was based on recent work by Ezcurra [76], Garcia et al.
[77] and Müller & Garcia [78]. The phylogenetic trees were computed in the open-source software R
[79] using the function ‘DatePhylo’ in the ‘strap’ package [80] and ancestral states were computed
using different maximum-likelihood models, following Grinham et al. [9] in the R packages ‘ape’ [81]
and ‘phytools’ [82]. The character states of the individual taxa were defined following [10,50]. The tips
for the ambiguous taxa, i.e. Hesperosuchus, Pterosauria, Lagerpetidae, Scleromochlus and Silesauridae,
were additionally estimated using the different models with their priors set to 0.5 for two character
states (quadrupedal, bipedal) and 0.333 for the models with three character states (quadrupedal,
facultatively bipedal, bipedal). For the latter, the transition matrices were manually set to ensure that
the character states were ordered (from quadrupedal to facultatively bipedal to bipedal and vice
versa). The most likely model was then chosen based on the Akaike information criterion (AIC) [83].
See electronic supplementary material, data for the R code and data.
3. Results
3.1. Pitch moments
Most of Euparkeria’s mass was concentrated in front of the hips, and the effects of changes in the
static, plausible tail angles on the pitch moment mostly were negligible (s.d. ± 0.014 Nm; figure 2),

https://www.mathworks.com/products/matlab.html
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whereas increase of the body angle shifted the COM towards the hips and substantially influenced the
pitch moments (s.d. ± 0.175 Nm; figure 2). The magnitude of the negative pitching moment (nose-down)
decreased with increasing body angle, until it switched sign, approximately at a body angle of 60°, and
then subsequently increased again. The calculated pitch moments ranged from −0.363 Nm in the posture
with a 0° body angle and 75° tail angle, forcing the COM cranially (nose-down), to 0.246 Nm where the
body and tail angles were 75° and 25°, respectively, forcing the COM caudally and dorsally (nose-up;
figure 2). The six extant bipedal lizards all occupied postures with a large negative pitch moment for
Euparkeria (figure 2). Only the posture of Ctenophorus cristatus, which has a more inclined body,
approached a more neutral pitch moment; albeit still negative.

Sensitivity testing the modelling assumptions for the COM calculations, modifying the body
segment shapes by ±20% [52,53,84] and pushing the segment masses and their COM to implausible
extremes [84], did not substantially influence our results (electronic supplementary material, figure S3
and information S3). The pitch moment around the COM stayed positive only for the implausible
maximally caudal hull throughout the different body and tail orientations (electronic supplementary
material, figure S3 and information S3). The overall mean across all hulls for the sensitivity analysis
was consistent with the optimal hull, with a mean difference of the pitching moments of only 4.85%
(electronic supplementary material, information S3), indicating that the optimal hull (as presented in
figure 2) best represented the body proportions and mass properties of Euparkeria.
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FMTE, M. femorotibialis externus; FMTI, M. femorotibialis internus; FTE, M. flexor tibialis externus, FTI1–3, M. flexor tibialis internus 1–3;
ILFB, M. iliofibularis; FDL, M. flexor digitorum longus; FHL, M. flexor hallucis longus; GL, M. gastrocnemius lateralis; GM, M. gastrocnemius
medialis; PL, M. peroneus (fibularis) longus; PP, M. pronator profundus; EDL, M. extensor digitorum longus; PB, M. peroneus (fibularis)
brevis; TC, M. tibialis cranialis; FDBP, M. flexor digitorum brevis profundus; FDBS, M. flexor digitorum brevis superficialis; AHD, M. adductor
hallucis dorsalis; EDB, M. extensor digitorum brevis.
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3.2. Muscle activation
The patterns in hindlimb muscle activations at peak GRF were roughly similar between the different
simulations (figure 3; table 2; electronic supplementary material, figure S4). These muscle activation
patterns generally fall within predicted ranges (see [50]). Muscles that counteract gravitational forces, e.g.
the ankle plantarflexors, the knee extensors, the hip extensors and to some degree the hip adductors,
were highly activated, while the antagonistic flexor muscles remained mostly inactive. The variation and
discrepancy between the different simulations were highest among the pelvic muscles (figure 3b), mainly
caused by Model 4, which had very high muscle activations in the adductor muscle group at low body
angles, and additionally high activation in the hip flexor muscles, which were mostly inactive in the
other models. Those activations were far less pronounced in the other simulations (table 2; electronic
supplementary material, figure S4). In addition to the ankle plantarflexor muscles, the knee extensor
muscles were also maximally recruited in Model 3, even surpassing the muscle activation of the ankle
plantarflexors. Overall, the highest activations were observed in the ankle plantarflexor group, which
was the ‘weak link’ in the simulations (figure 3a). A further increase of the GRF by 0.1 BW resulted in
failure of those muscles and the collapse of the ankle joint in all simulations (see electronic
supplementary material, table S1 for hind limb joint moments).

Changes in body angle mainly influenced the hip adductor and hip extensor muscle group
activations. Alongside an increased body angle, the COM was located more caudally towards the
pelvis, reducing its moment arm about the hip joint and thus becoming less demanding on those two
muscle groups. Interestingly, an increase in the body angle shifted the muscle activation in the hip
flexor group from PIFI1 to PIFI2 in all simulations; however, their activations remained relatively low
overall (figure 3; electronic supplementary material, figure S4).

Due to the larger estimated muscle masses based on the three-dimensional models (electronic
supplementary material, information S2) and the resultant associated Fmax in Model 4, the sustained
GRF was between 130% and 145% greater than in the other three models (table 2), for which the
muscle parameters were solely estimated using scaled architectural muscle data from extant Sauria.
3.3. Evolution of bipedalism within Archosauria
The ancestral state reconstructions for both tree topologies were very similar (figure 4) and the results
were thus relatively robust to differing hypotheses about their interrelationships or uncertainties in the
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Figure 4. Evolution of bipedalism within Archosauria. Ancestral state reconstruction for the time-calibrated ‘Nesbitt tree’ (a) and
‘Ezcurra tree’ (b); see methods for sources of tree topologies; see electronic supplementary material, figures S5–S8 for individual
time-calibrated trees. Red circles indicate bipedalism and blue circles indicate quadrupedalism; black outlined circles in (b) represent
the bold clades in (a). Clades: 1, Archosauriformes; 2, Eucrocopoda; 3, Archosauria; 4, Pseudosuchia; 5, Paracrocodylomorpha; 6,
Poposauroidea; 7, Loricata; 8, Crocodylomorpha; 9, Avemetatarsalia; 10, Ornithodira; 11, Pterosauromorpha; 12, Lagerpetidae; 13,
Dinosauromorpha; 14, Dinosauriformes; 15, Dracohors; 16, Dinosauria; 17, Ornithischia; 18, Neornithischia; 19, Saurischia; 20,
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tree topologies. Two character states with an ‘equal rates’ model were considered to be the most likely
based on AIC values (49.69 for the ‘Nesbitt tree’ and 49.71 for the ‘Ezcurra tree’). For three character
states an ‘unequal rates’ model with all rates different would have been the most likely (AIC 63.91 for
the ‘Nesbitt tree’ and 63.54 for the ‘Ezcurra tree’); however, the models with three character states
were all less likely than the models with only two character states (lower log-likelihood and larger
AIC values; see electronic supplementary material, table S2).

Overall, Archosauria was consistently reconstructed as quadrupedal, and Pseudosuchia might have
evolved bipedalism up to three times (perhaps twice in poposaurids; once in Postosuchus), all within the
Ladinian–Carnian stages (Middle–Late Triassic). The estimation of Crocodylomorpha as ancestrally
bipedal, however, might be an artefact of the short branch length leading to Postosuchus sp. In
Avemetatarsalia, the emergence of bipedalism is somewhat ambiguous. It arose in the Olenekian, but
there were some differences in the maximum likelihoods for its exact occurrence depending on the tree.
Bipedalism arose once at the base of Dinosauriformes in the ‘Ezcurra tree’. Contrastingly, however, in the
‘Nesbitt tree’ it potentially emerged twice; firstly, in Dracohors, on the line leading to dinosaurs, and
secondly, in parallel, in Lagosuchidae. Lagerpetids and pterosaurs consistently were estimated as
quadrupedal, while the ambiguous Silesauridae was consistently estimated as ancestrally bipedal.

4. Discussion and conclusion
The hindlimb of Euparkeriawas able to sustain the GRF expected during bipedal locomotion (greater than
2 BW) in all simulations, however, due to the large negative pitch moments around the COM at maximum
GRF for most simulations, and especially in postures adopted by extant bipedal lizards (figure 2), it
appears unlikely that Euparkeria habitually adopted bipedalism. To sustain bipedal locomotion, the
angular momentum about the COM that is generated during each stride must be zero [15,47].

Temporal asymmetry in the GRF in birds and lizards, with higher forces exerted early in stance
phase, enables steady bipedal locomotion, due to a larger nose-up pitch moment, resulting from a
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larger amount of force that is applied along the resultant vector cranial to the COM during a stride
[8,15,47,48], and their COM is situated cranial to the hips. Under the assumption of such an early
skewed GRF profile, resulting in a larger nose-up pitch moment [8,48,49], the pitch moment at peak
GRF for Euparkeria should have been positive or close to zero if it were bipedal. However, this was
only possible at extreme body angles of greater than 60° in our simulations, unknown in any bipedal
saurian. Of the six extant bipedal lizard taxa for which body postures have been reported, Euparkeria
qualitatively matches the body proportions of Callisaurus draconoides, which has the most negative
pitch moments (figure 2), most closely. Euparkeria is, however, significantly larger than any of the
bipedal lizard taxa, and, unfortunately but also intriguingly, no modern analogue exists for Euparkeria.

We did not model any dynamic movement, such as forward acceleration [7,47] or rotational inertia
and angular momentum of the body and tail [1,47,48,86], which help counteract the nose-down pitch
moment caused by gravity. However, such dynamic assumptions may not change our conclusions,
which were based solely upon static simulations. In particular, an acceleration causing a positive
pitching moment that lifts the trunk and the forelimbs off the ground only occurs when speed is
increasing. As soon as the animal reaches its maximal speed, the net propulsive impulse and the
resulting pitching moment become zero [47] and gravity takes over—pushing the nose back down
(gravity-induced negative pitch; figure 2). Purely acceleration-driven bipedal locomotion is, therefore,
inherently unsustainable and cannot explain bipedal locomotion in extant lizards [7,49,63]; hence
acceleration was disregarded in this study. Dynamic simulations which incorporate angular
momentum, such as Bishop et al. [87], may provide an avenue for future investigation to decipher the
evolution of bipedal locomotor capabilities within archosaurs. Regardless, our findings are in line
with recent quantitative studies on femoral shape [10], femoral microanatomy [88] and body COM
position [30], suggesting that Euparkeria was a habitual quadruped. We further support this
conclusion from the point of view of musculoskeletal biomechanics.

Our results from the ancestral state reconstruction indicate that bipedalism evolved once, maybe
twice, somewhere within Ornithodira; but at least twice in pseudosuchians (poposaurids, Postosuchus).
While secondary quadrupedalism was common in Ornithodira; i.e. several groups of ornithischians
[5] as well as in sauropods independently evolved quadrupedalism; Pseudosuchia may or may not
have ever reverted back to quadrupedalism from a bipedal form as our results are currently
ambiguous in that regard. Further quantitative testing of bipedalism in some of the ambiguous taxa,
i.e. Hesperosuchus, Scleromochlus and/or silesaurids, is necessary to disentangle the evolution of
bipedalism within Archosauria.

Euparkeria and other early archosauriforms lacked morphological and functional specializations
related to bipedal movement, such as having a fully erect hindlimb and/or parasagittal gait [2,25,26].
Their pes was also more specialized for quadrupedal locomotion [26,89], which is unlike the
elongated and mediolaterally compressed tarsus and pes seen in bipedal taxa [29,90]. Additionally,
the femora of archosauromorphs, including both early avemetatarsalians and pseudosuchians, further
suggest that this group had a habitually quadrupedal posture prior to and initially after the split into
bird- and crocodile-line archosaurs [10]. Our functional and biomechanical analysis of the locomotor
mode of Euparkeria goes beyond these primarily morphological studies. It demonstrates, and explains
via Newtonian mechanics, that bipedalism could not be achieved with the body plan of early
archosaurs. More specifically, our analysis has allowed for the testing of the potential locomotor
behaviour of an extinct stem archosaur, pointing towards an answer to the controversy over how
Euparkeria moved. Morphological changes in the pelvis and hindlimb of later pseudosuchians and
ornithodirans facilitated a parasagittal gait, bipedalism and digitigrade foot orientation to
independently evolve at some points [10,26,27,29]. Ancestral archosaurs, therefore, did not exhibit
bipedalism (figure 4). Ornithodira and Pseudosuchia inherited a body plan from Archosauria that
subsequently was modified in the aftermath of the Permo-Triassic mass extinction, enabling novel
locomotor modes such as bipedalism to evolve independently.
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