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Abstract 

 

Avian influenza virus subtype H9N2 is endemic in Bangladesh's poultry population. The subtype 

affects poultry production and poses a potential zoonotic risk. Insufficient understanding of how the 

poultry trading network shapes the dissemination of avian influenza viruses has hindered the design 

of targeted interventions to reduce their spread. Here, we use phylodynamic analyses of 

haemagglutinin (HA) sequences to investigate the spatial spread and dispersal patterns of H9N2 

viruses in Bangladesh’s poultry population, focusing on its two largest cities (Dhaka and Chattogram) 

and their poultry production and distribution networks. Our analyses suggest that H9N2 subtype 

avian influenza virus lineage movement occurs relatively less frequently between Bangladesh’s two 

largest cities than within each city. H9N2 viruses detected in single markets are often more closely 

related to viruses from other markets in the same city than to each other, consistent with close 

epidemiological connectivity between markets. Our analyses also suggest that H9N2 viruses may 

spread more frequently between chickens of the three most commonly sold types (sunali - a cross-

bred of Fayoumi hen and Rhode Island Red cock, deshi - local indigenous, and exotic broiler) in Dhaka 

than in Chattogram. Overall, this study improves our understanding of how Bangladesh’s poultry 

trading system impacts avian influenza virus spread and should contribute to the design of tailored 

surveillance that accommodates local heterogeneity in virus dispersal patterns. 

 

Key Words: Avian influenza virus, Bangladesh, H9N2, Phylodynamics, value chain, live bird market 
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Introduction 

 

The endemic circulation of avian influenza viruses (AIVs) in Bangladesh’s poultry populations poses a 

threat to animal and human health (Marinova-Petkova et al. 2016; Turner et al. 2017). Low 

pathogenic AIV (LPAIV) subtype H9N2 was first detected in Bangladesh in 2006 (Marinova-Petkova et 

al. 2016; Rimi et al. 2019; Shanmuganatham et al. 2014), and is known to cause reduced egg-laying 

and hatching (Kariithi et al. 2020; Ripa et al. 2021). Viruses from this subtype are now common within 

Bangladesh at live bird markets (LBMs) where most consumers purchase poultry, and are often 

detected at relatively lower prevalence in poultry farms or backyard rearing sites (Gerloff et al. 2016; 

Gupta et al. 2021; Kim et al. 2018; Moyen et al. 2021; Parvin et al. 2020; Turner et al. 2017). Close and 

frequent contact between birds and humans in these locations increases the risk of zoonotic spillover 

(Bi et al. 2022; El-Shesheny et al. 2020; Parvin et al. 2020). Reducing virus spread is therefore 

particularly important for minimising pandemic emergence risk and protecting avian health (Bi et al. 

2022; El-Shesheny et al. 2020; Parvin et al. 2020). 

 

Live poultry trading is known to contribute to AIV spread (Wu & Perrings 2018; Q. Yang et al. 2020). 

Previous studies have identified broad associations between growth in poultry trade volumes and the 

likelihood of establishment and persistence of several infectious diseases (Wu & Perrings 2018). 

However, we often lack a more detailed understanding of the complexity of bird production and 

distribution networks, and how these networks may influence AIV maintenance and spread (Gerloff et 

al. 2016; Moyen et al. 2021; Parvin et al. 2020). In many countries where AIVs are endemic in poultry, 

knowledge of viral prevalence is too limited to adequately explore how trading practices might impact 

circulation from infection data alone (Chattopadhyay et al. 2018; Gupta et al. 2021; Moyen et al. 

2021; Parvin et al. 2020; Ripa et al. 2021). Even when surveillance is routinely conducted, LPAIV H9N2 

can easily be missed because it rarely causes severe disease (Parvin et al. 2020).  
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Phylodynamics can reveal in-depth information about virus dynamics from virus genome sequences,  

including how an outbreak changes size over time, how a virus lineage spreads spatially, and what 

factors may influence viral dispersal patterns (Kwon et al. 2020; Lu et al. 2017; J. Yang et al. 2019). For 

example, phylodynamic studies have demonstrated that live poultry trade networks shape AIV 

movement over large spatial scales in movement in China (H5N1, H7N9, and H5N6) (Q. Yang et al. 

2020) and that restricting duck transport and culling can suppress HPAIV H5N1 movement between 

regions in France (Chakraborty et al. 2022). Phylodynamic approaches, however, have rarely been 

applied to studying AIV in a disease-endemic poultry production system at high resolution (Q. Yang et 

al. 2020). Within Bangladesh specifically, the few published studies on the molecular epidemiology of 

AIVs have either relied on small numbers of samples (e.g., (Gerloff et al. 2016; Ripa et al. 2021)) or 

have not incorporated information on the precise sampling location or type of chicken (e.g. 

(Marinova-Petkova et al. 2016; Parvin et al. 2019, 2020)). Hence, they do not permit full exploration 

of how the virus dispersal patterns vary between different components of the poultry system 

(Marinova-Petkova et al. 2016; Parvin et al. 2019, 2020). 

 

Within Bangladesh’s poultry production and distribution network, mobile poultry traders 

(“middlemen”’) collect and transport poultry from farms in rural and peri-urban areas to LBM vendors 

within urban areas. Here, poultry is either sold directly to end-users or may be traded further 

between market vendors before sale (Høg et al. 2021; Moyen et al. 2018; Moyen 2019; Moyen et al. 

2021). The most commonly sold poultry types are broiler (exotic, industrial chicken breeds), sunali 

(chicken crossbreed of Rhode Island Red cocks and Fayoumi hens), deshi (indigenous chicken breeds), 

and ducks (Gupta et al. 2021; Moyen et al. 2018). Broilers and sunalis are raised on commercial farms, 

whereas deshis and ducks are raised in a traditional scavenging system (“backyard”) (Moyen et al. 

2018). Recent studies show that poultry trading practices vary substantially across the network 

(Moyen 2019; Moyen et al. 2018, 2021). The two largest cities in Bangladesh, Dhaka and Chattogram, 

contain numerous LBMs where AIV infections have been consistently reported, and receive poultry 
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from largely non-overlapping regions of Bangladesh (henceforth, “production areas”) (Moyen et al. 

2018). Trade practices differ greatly between these cities, with more frequent inter-market trading of 

birds in Dhaka than Chattogram (Kim et al. 2018; Moyen et al. 2018). Broiler chickens are typically 

sold in LBMs close to the farm, whereas ducks and deshi chickens are generally moved over longer 

distances by more intermediaries (Moyen 2019; Moyen et al. 2018). Typical distance travelled from 

farm to market, level of intra-market trade, and the number of middlemen varies between LBMs (Kim 

et al. 2018; Moyen et al. 2018).  

 

This study investigates the spatial spread and dispersal patterns of H9N2 viruses among poultry 

marketed in Dhaka and Chattogram cities and their respective supply networks. Unlike previous 

studies in Bangladesh, we curated and analysed high-resolution data on the location of sampling and 

type of chicken, enabling the first phylogenetic insights into how the complexities of poultry trading 

practices influence AIV dispersal there (Marinova-Petkova et al. 2016; Parvin et al. 2019, 2020). We 

use phylodynamic analyses of the rapidly evolving haemagglutinin (HA) gene segment to examine the 

dispersal of H9N2 virus lineages between cities and stages of the production chain. We explore the 

hypothesis that H9N2 virus genetic diversity is randomly distributed across LBMs. Furthermore, we 

query how often H9N2 lineages spread between chicken types or locations, and whether observed 

patterns of dispersal are driven by the overlap between chicken type production areas. Finally, to 

investigate if AIVs with different subtypes in Bangladesh may have similar dispersal patterns to those 

of H9N2 in the country, we perform similar molecular clock phylogenetic analyses on Bangladeshi 

highly pathogenic AIV (HPAIV) H5NX sequences. 
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Materials and Methods 

 

Bangladeshi AIV sequences 

 

Our study focuses on a dataset of AIV H9 HA segment sequences sampled between 2003-2019. The 

dataset includes 82 newly generated H9N2 HA sequences and H9 HA sequences for which only the HA 

segment was generated, but that are assumed henceforth to be from H9N2 infected birds 

(justification of this assumption is provided in Results and Discussion) (study sources in Table 1, 

accessions provided in Table S1). The dataset also includes 216 previously published sequences from 

both the GISAID (Shu & McCauley 2017) epiFLU database (www.gisaid.org) (n = 211, Table S2) and 

from Ripa et al. (2021) (n = 5) (Ripa et al. 2021). Newly generated sequences were sampled through 

observational studies and routine surveillance in Dhaka and Chattogram from 2016 to 2018 (details in 

Table 1), one of which has been previously described (Kim et al. 2018).  

 

Whilst we focus on HA here, sequences from other segments were generated for a subset of our 

H9N2 samples. NA gene sequences from Ripa et al., (2021) (Ripa et al. 2021) were combined with NA 

sequences from GISAID (Shu & McCauley 2017) epiFLU database (H9N2; n = 200) corresponding to 

those viruses for which HA was available (Table S2), and used for a subset of analyses. 

 

Associated information on species, location (either market- or farm-level) and sampling date was 

available for all newly generated sequences (Table 1). The type of chicken (either broiler, deshi, or 

sunali) was also available for 70 newly reported H9N2 virus genome sequences generated through a 

cross-sectional study of Dhaka and Chattogram’s LBMs during February-March 2016 (henceforth, the 

“cross-sectional H9N2 dataset”) (Kim et al. 2018) (Table 1). For sequences accessed from public 

databases, we extracted available corresponding location metadata from the Influenza Research 

Database (IRD) (Squires et al. 2012) animal surveillance database (www.fludb.org) (Table S3). We also 
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obtained unpublished LBM characteristics for 184 of the publicly available sequences in the H9N2 HA 

dataset from Professor Richard Webby (St. Jude Research Center of Excellence for Influenza Research 

and Surveillance) (Accession numbers in Table S4). 

 

In addition to the H9N2 data described above, H5NX sequences were generated via next-generation 

sequencing through two of the three surveillance studies in Table 1. HA sequences (n = 29) and 

available corresponding NA gene segment sequences (n = 15) (Table 1) were combined into datasets 

with previously published H5NX sequences from GISAID epiFLU (HA; n = 175, NA; n = 172) (Table S2) 

and Ripa et al., (2021) (Ripa et al. 2021). 

 

Table 1. Study source of newly reported AIV HA (H9; n = 82, H5; n = 29) and NA (H5; n = 15) segment 

sequences.  

 

Sequence alignments and clade selection 

 

We aligned sequences using MAFFT (Katoh et al. 2002) v7.453. We removed sequences from the 

alignment that either were duplicated, short (< 70% of the total sequence length), or indicative of 

containing sequencing or assembly errors. 

 

We used an alignment of all H9NX sequences available on GISAID and our newly generated sequences 

to estimated preliminary phylogenies with Fasttree v2.1.11 (Price et al. 2010). All but seven HA H9 

sequences from Bangladesh, including all sequences generated in this study, fell within a 

monophyletic clade containing H9N2 virus sequences sampled from poultry in India and Bangladesh 

(n = 333). We retained sequences from that monophyletic clade where exact sampling dates and at 

least district-level location data were known, resulting in 298 HA sequences in the H9N2 virus 

alignment (Bangladesh: n = 284; India: n = 14). We confirmed the presence of an appropriate 
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temporal signal for both subtypes using TempEst (Rambaut et al. 2016) v1.5.3 (Figures S1 & S2). 

Finally, for the respective available NA sequence dataset (H9N2; n = 205, H5N1; n = 191), we repeated 

all alignment and temporal signal checks as detailed above. 

 

Molecular clock phylogenies 

 

We investigated the introduction date of H9N2 to sampled locations using the Bayesian phylogenetic 

package BEAST (Drummond & Rambaut 2007; Suchard et al. 2018) v1.10.4. First, we compared four 

possible models: pairwise combinations of two molecular clock models (uncorrelated lognormal 

relaxed clock (Drummond et al. 2006) and strict clock (Marco A. R. Ferreira 2008)) and two coalescent 

models (constant size (Griffiths & Tavaré 1994; Kingman 1982), and Bayesian skygrid (Gill et al. 2013)), 

all using an SRD06 substitution model (Shapiro et al. 2006). We executed multiple MCMC chains 

comprising 100 million steps and sampling every 10,000 steps. As identified using path-sampling 

(Lartillot & Philippe 2006) and stepping-stone-sampling analyses (Fan et al. 2011; Xie et al. 2011), the 

best model used the uncorrelated relaxed clock (Drummond et al. 2006) and a Bayesian skygrid 

coalescent prior (Gill et al. 2013). The posterior tree distributions for H9N2 and H5NX HA alignments 

were each obtained from two parallel MCMC chains with 250 million steps, sampling every 25,000 

steps. We assessed the convergence of each run using Tracer (Rambaut et al. 2018) v1.7.1 

(http://tree.bio.ed.ac.uk/software/tracer/), and confirmed the presence of appropriate parameter 

convergence by visually inspecting and then log combining multiple parallel runs. We summarised the 

information on maximum clade credibility (MCC) trees using TreeAnnotator (Drummond & Rambaut 

2007) v1.10.4, with the first 10% discarded as burn-in. We repeated all BEAST analyses for the NA 

sequence alignments using similar methods and parameters.  

 

We used a generalised linear model (GLM) extension of the skygrid coalescent model (Dellicour et al. 

2020; Gill et al. 2016) (henceforth, “skygrid-GLM”) to determine whether the effective population size 
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(Ne) of the H9N2 HA lineage was associated with the tonnage of chicken or duck meat production in 

Bangladesh. Data were available yearly for each predictor from FAOSTAT (Food and Agriculture 

Organization of the United Nations n.d.) statistical database. To provide correspondence with the 

estimation of virus effective population size at two-month intervals, we used the “zoo” package 

(Zeileis & Grothendieck 2005) in R (RStudio Team 2020) v4.1.2 to estimate values for each predictor 

every two months between 2000 and 2020 using linear interpolation. We then conducted the same 

analysis for the H5 HA dataset.  

 

AIV transmission dynamics in live bird markets 

 

We investigated whether individual H9N2 virus clades tend to be either randomly distributed across 

LBMs in a city or associated with specific markets. First, we identified genetically diverse “clusters” 

(henceforth known as “clades”) in the HA H9N2 MCC tree using Clusterpicker (Ragonnet-Cronin et al. 

2013) v1.2.3. These clades (n = 32) were identified according to a clade support threshold (0.7 

posterior probability) which is consistent with values chosen in previous AIV phylogenetic clustering 

analyses (Gerloff et al. 2013; Lee et al. 2018), and a maximum sequence identity threshold (4.5% 

genetic distance) that provided a consistent aggregation of closely-related sequences (i.e., with most 

sequences into a specific well-supported clade). Next, to quantify lineage diversity within and 

between markets, we used the adjusted Rand index (Rand 1971) by means of the “phyclust” package 

(Chen 2011) in R (RStudio Team 2020) v4.1.2 to determine the similarity of clustering by market and 

clade in the cross-sectional H9N2 dataset. To determine if there was a significant difference in the 

observed clustering pattern to that expected based on random viral movement, we compared the 

estimated median adjusted Rand index with a median adjusted Rand index calculated by permuting 

the market location 10,000 times while controlling for the city. We further generated binary 

adjacency networks in R (RStudio Team 2020) v4.1.2, in which edges linked market nodes if they 

shared a genetically-defined clade. To further test whether AIV clades are randomly distributed across 
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markets, we determined the density of the observed network using the “sna” package (Butts 2008) in 

R (RStudio Team 2020) v4.1.2 and subsequently compared it to the density value from permuting (n = 

10,000) market location with respect to city. This density metric is the ratio of observed edges to the 

number of possible edges for the given network.  

 

H9N2 dispersal between different chicken types 

 

To determine whether H9N2 virus genetic diversity is structured according to Bangladesh’s three 

main chicken types (broiler, sunali, deshi) and two main cities (Dhaka, Chattogram), we used Bayesian 

Tip-association Significance Testing (BaTS) (Parker et al. 2008) v1.0. We removed tips in each tree in 

the HA H9N2 posterior tree distribution when tip information on either chicken type and sampling 

city was unavailable, using the R (RStudio Team 2020) v4.1.2 library, ‘ape’ (Paradis & Schliep 2019) 

package. This generated a distribution of downsampled posterior trees each containing 70 tips, 

corresponding to those sequences in the cross-sectional dataset (Table 1). The first BaTS analyses we 

performed assessed if sequences tended to cluster based on the sampling city (Dhaka, Chattogram). 

The second set of BaTS analyses determined if sequences tended to cluster by chicken type (broiler, 

sunali, deshi); these analyses were conducted separately for each city because significant clustering of 

sequences by the city was observed in the first BaTS analysis. For each BaTS analysis, we computed 

median empirical values for each BaTS statistic (association index; AI, the parsimony score; PS) (Parker 

et al. 2008) using 1000 subsampled post-burn in posterior trees from the respective phylogeny. We 

calculated p values by permuting the market location within each city 1000 times to determine if 

empirical estimates significantly differed from the null expectation (based on random viral 

movement). 

 

We also used a generalised linear model (GLM) extension of a phylogeographic discrete trait analysis 

(DTA) in BEAST v1.10.4 (Drummond & Rambaut 2007; Faria et al. 2013; Suchard et al. 2018) to 
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determine whether covariates of the trading network predicted the H9N2 viral lineage movement. 

We used the six pairwise combinations of chicken types (sunali, deshi, broiler) sold in Dhaka and 

Chattogram as the six discrete traits. The GLM predictors included: (i) the number of sequences 

associated with each of the six categories as a proxy for sampling effort (both origin and destination), 

(ii) the weekly estimated sales at LBMs for all six categories (both origin and destination) as detailed in 

Moyen (2019) (Moyen 2019) and Moyen et al., (2021) (Moyen et al. 2021) (iii) a binary chicken type 

similarity index of the six discrete traits (i.e., same chicken type = 1, different chicken type = 0), iv) an 

equivalent city similarity index, and (v) the extent of overlap between production areas from which 

birds are sourced (1 – [Pianka index]) between each discrete trait. These production areas are the set 

of Upazilas (sub-district) where farms supplying markets within a city are located, which were 

previously computed from reconstructed transaction networks based on traders’ interviews as 

described in Moyen et al. (2021) (Moyen et al. 2021). Descriptions for all GLM predictors included are 

summarised in greater detail in Table S5. We completed four separate MCMC analyses of 100 million 

steps sampling every 10,000 steps using the HA H9N2 empirical tree distribution downsampled to tips 

from the cross-sectional dataset (i.e., those tips with all appropriate metadata). The first model, 

termed model A, used all covariates except the chicken type and city similarity matrices. Models B and 

C were the same as model A, but excluded the number of sequences or the weekly sales number, 

respectively. Model D used all five predictors. Model D was ran to check whether results obtained 

regarding the importance of production catchment area from models A-C were sensitive to the 

inclusion of chicken type and city similarity matrices, as these are somewhat correlated with 

production area matrices (Moyen et al. 2021). For each run, the presence of appropriate parameter 

convergence was confirmed visually in Tracer (Rambaut et al. 2018) v1.7.1 and multiple parallel runs 

for each MCMC analysis compared.  
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Results 

 

Dynamics of avian influenza virus in Bangladesh  

 

All but seven H9N2 sequences from Bangladesh (of which six were sampled from ducks) fell within a 

H9NX monophyletic clade containing virus sequences sampled from poultry in India and Bangladesh, 

and this clade (n = 298 sequences with appropriate metadata) was therefore selected for further 

analysis. All sequences in this clade that had a respective NA sequence were identified as being H9N2 

subtype, thus strongly indicating that any HA-only sequences (i.e., cross-sectional dataset) were also 

H9N2 (Price et al. 2010). The TMRCA of all Bangladeshi HA sequences in this major H9N2 clade was 

estimated around October 2005 (December 2004 - July 2006: 95% HPD) (Figure 1A), concurrent with 

the countries’ first reported H9N2 cases in early 2006 (Marinova-Petkova et al. 2016). The 95% HPD 

interval of root dates for the Bangladeshi sequences in the NA MCC tree (November 2003 – 

November 2005) (Figure 1B) overlaps with the respective distribution in the HA MCC trees (Figure 1A).  

 

Bayesian skygrid reconstructions from the HA segment (Figure 3A & S3B) indicate that the effective 

population size of H9N2 may have increased in Bangladesh since it was first detected, but neither 

chicken meat nor duck meat production was found to be a significant predictor of the effective 

population size (Figure S3C & S3D). 

 

Figure 1. The estimated time-scaled MCC phylogenies of (A) HA H9N2 and (B) NA H9N2. Tips are 

coloured by the sampling location as indicated on the map, and shaped by host type. Numbered 

labels (1-7) in the HA tree (left) designate clades of intermixing of Dhaka- and Chattogram- sampled 

sequences. 
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Several clades in the HA H9N2 tree contain sequences from only Dhaka or from only Chattogram, 

suggesting that LPAIV transmission might occur preferentially between birds sold in each city (Figure 

1A). However, there are seven instances where sequence(s) from one of the cities fall within a clade 

where the basal sequence(s) to the clade were sampled in the other city (Figure 1A). This is consistent 

with recurrent sharing of virus lineages between Dhaka and Chattogram, or their introduction from 

the same source. The NA phylogeny contains very few sequences sampled in Chattogram (H9N2; 

Chattogram n = 4), making it difficult to assess whether H9N2 virus NA lineages are similarly 

structured between the two cities (Figure 1B). 

 

Only around 3% of H9N2 HA sequences (8/298) were recorded as being sampled from farms. Farms 

have been sampled less intensively than LBMs in Bangladesh, in part because lower AIV prevalence 

and greater distance from urban research laboratories makes surveillance more challenging that at 

LBMs (Kim et al. 2018; Moyen et al. 2021; Parvin et al. 2020; Ripa et al. 2021). The farm-sampled HA 

sequences fall throughout the phylogeny (Figure 1A), sometimes within clades containing sequences 

from both farms and markets sampled within similar time periods (Figure S4). Farm sampled genomes 

are too rare here to make robust conclusions regarding the direction of viral dispersal between farms 

and markets.  

 

To begin to explore whether AIVs of different subtypes may show similar patterns to those of H9N2, 

we attempted similar analyses on highly pathogenic AIV (HPAIV) H5NX. The 95% HPD interval of root 

dates for the H5 Bangladeshi sequences in the both the HA and NA MCC trees overlap (Figure S5). H5 

HA sequences are proportionally less well sampled in Chattogram than in Dhaka (Chattogram; n = 6, 

Dhaka; n = 185) (Figure S5A & S6). However, the six H5 sequences sampled in the Chattogram fall into 

three different clades (Figure S5A). Only 2% of H5NX HA sequences were sampled from farms, but 

again these fell throughout the respective trees (Figure S5A). Neither chicken nor duck meat 

production was a significant predictor of the effective population size of H5NX (Figure S3). Whilst 
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these results are extremely limited, there is therefore no clear indication from currently available data 

that H5 HPAIV exhibits strongly different patterns to H9N2.  

 

Distribution of virus clades across LBMs 

 

We investigated whether individual H9N2 HA clades tended to be randomly distributed across LBMs 

in a city or associated with specific markets. We quantified the diversity of viruses within and between 

markets in a city by employing the adjusted Rand index to measure the similarity of clustering by 

market and virus clade for the cross-sectional H9N2 dataset. We found no significant difference (p = 

0.993) between the median adjusted Rand index calculated from the empirical and permuted data 

(Table S6). Therefore, differences in viral genetic diversity between and within markets were not 

significantly different. The binary adjacency network analysis on the same cross-sectional H9N2 

dataset found no significant difference (p = 0.881) between the median network density estimated 

from the permuted data and the median network density calculated from the empirical data (Table S7 

& Figure 2). Therefore, we found no significant difference in the sharing of clades between markets in 

a city.  

 

Figure 2. Binary adjacency network of Dhaka and Chattogram markets in the cross-sectional H9N2 

dataset. Nodes represent markets, each containing a unique market ID number in white text. Nodes 

are linked if samples from those markets occur in the same genetically defined cluster. Nodes are 

coloured by city, with purple nodes markets in Chattogram and grey nodes markets in Dhaka. 

 

Phylogenetic clustering by city and chicken types 

 

To identify possible subnational differences in AIV dynamics between different major cities, we 

investigated whether HA H9N2 virus sequences sampled from Dhaka and Chattogram 

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/advance-article/doi/10.1093/ve/vead014/7057897 by guest on 27 February 2023



 

 
 

 

 

 
  

 15 

phylogenetically clustered by city and chicken type (deshi, sunali, broiler) with BaTs (Parker et al. 

2008) v 1.0 (Figure S7). The analyses demonstrate significant clustering of sequences by city based on 

association index (AI) and parsimony score (PS) statistics (p < 0.001) (Table S8). The AI statistic 

suggested sequences clustered significantly by chicken types in Chattogram (p = 0.036) but not in 

Dhaka (p = 0.278) (Table S9). In contrast to the respective AI statistic, the PS statistic did not 

significantly support clustering by chicken type in Chattogram (p = 0.071) (Table S9). This discrepancy 

could reflect the lower statistical power of the PS compared to the AI test (Parker et al. 2008). 

 

A GLM extension of discrete trait phylogeography was used to determine whether different features 

of the trading network predicted HA H9N2 virus dispersal between six pairwise combinations of 

chicken type (sunali, deshi, broiler) and city (Dhaka, Chattogram). The results are summarised in 

Figure 3 & Table S10. Our initial analyses (model A; Figure 3A & Table S10A) involving all covariates bar 

the chicken type and city similarity matrices showed very strong support (Bayes factor (BF) = 27.8; 

following (Stefan et al. 2019)) for greater virus dispersal as the overlap in production areas from 

which chickens are sourced before being sold increased. This finding was consistent to subsequent 

analyses that excluded covariates for the number of sequences (model B; Figure 3B & Table S10B) or 

the weekly sales number (model C; Figure 3C & Table S10C) (BF >70 and >50, respectively). However, 

when the city and chicken type similarity matrices were also included as predictors (model D; Figure 

3D & Table S10D), the association of greater production overlap with greater virus dispersal was no 

longer observed (production area matrices; BF <1). Instead, the higher diffusion was strongly 

associated (city similarity index BF >1000; following (Stefan et al. 2019)) with the chicken presence in 

the same city. Thus, whether the bird was sampled in the same city is likely the primary predictor of 

virus dispersal of all covariates considered here (Moyen et al. 2018, 2021). 

 

Figure 3. Predictors of HA H9N2 dispersal among the six pairwise combinations of three main chicken 

types sold in Bangladesh (sunali, deshi, broiler) and the two largest cities (Dhaka, Chattogram) in four 
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separate DTA-GLM analyses (A-D). Inclusion probability is an estimate of the posterior expectation for 

the indicator variable associated with each predictor E(δ). It suggests the likelihood that the predictor 

has a meaningful impact on viral diffusion. Bayes Factor (BF) support values for predictors (when >3 

BF) are indicated by black text annotations. Coefficient (β|δ=1) represents the contribution of each 

predictor on a log scale conditional when the predictor is included in the model, with the 95% highest 

posterior density interval of the log GLM coefficients (β) represented by horizontal lines from the 

mean. Grey boxes indicate that the predictor was not included in the specific DTA-GLM analyses. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/ve/advance-article/doi/10.1093/ve/vead014/7057897 by guest on 27 February 2023



 

 
 

 

 

 
  

 17 

Discussion 

 

Controlling AIV transmission in Bangladesh is complicated by our lack of understanding of whether 

virus spread disproportionately occurs within specific components of the poultry system (for example, 

with farms, markets, or different chicken types as more important sources of infection). Here, we 

undertook a phylodynamic investigation to understand H9N2 viral spread in Bangladesh's poultry 

system, focusing on Dhaka and Chattogram markets and their respective production areas. For H9N2 

analyses, we first identified a monophyletic HA H9NX clade containing sequences sampled from 

poultry in Bangladesh and India, for which all available respective NA segment sequence were H9N2. 

Our analyses of this clade show that most H9N2 dispersal likely occurs mostly between birds within 

the same major city, but that virus lineages are shared between Dhaka and Chattogram. H9N2 viruses 

from different lineages appear to be randomly distributed across a city’s markets. We found regional 

differences in H9N2 virus spread suggesting more frequent viral transmission between chickens of 

different types in Dhaka compared to in Chattogram. 

 

Our analyses suggest that H9N2 subtype lineage movement occurs less frequently between 

Bangladesh’s two largest cities than within each city. Whilst present, virus genetic structuring by city 

appears less strong than previously hypothesised based on low levels of overlap in the geographic 

regions from which markets in Dhaka and Chattogram source birds (Moyen 2019). It is perhaps most 

likely that small overlaps in production areas allow for shared H9N2 lineage introductions to both 

cities identified here, given the frequent movement of birds from farm to markets and the relatively 

high prevalence of infection among traded chickens. However, more extensive and reliable data on 

mobile poultry traders’ movements are required to robustly rule out possible alternative explanations 

(Høg et al. 2021; Moyen 2019; Moyen et al. 2021; Ripa et al. 2021), as all current estimates for 

chicken type production areas are based on reporting data that may be subject to memory recall 

errors (Høg et al. 2019; Moyen 2019; Moyen et al. 2021). Alternative or complementary explanations 
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include; rapid, direct viral movement between Dhaka and Chattogram (perhaps associated with direct 

poultry trading between individuals in each city), and slower indirect virus spread across unsampled 

intermediate locations (Høg et al. 2019; Moyen 2019; Moyen et al. 2021). Although the lack of wild 

bird sequences in our datasets prevents any robust conclusions of the contribution of wild birds to 

H9N2 mobility here, if wild birds played an important role in such viral movements we may expect 

Bangladeshi sequences to be more frequently intermixed with samples from locations linked to the 

country via wild migration routes (e.g., China, Mongolia) (Lycett et al. 2019; Tian et al. 2015). 

 

H9N2 viruses detected within one market are often interspersed phylogenetically with those from 

other markets, and genetically-different viruses from this subtype appear randomly distributed across 

markets. This may indicate strong epidemiological connections between these markets leading to 

frequent virus spread between them or from shared sources, as suggested by the highly-connected 

trading network captured by Moyen et al. (2018) (Moyen et al. 2018). Our observations suggest that 

viral genetic diversity within a given LBM might not be hugely dissimilar to viral genetic diversity 

across all markets in a city, meaning surveillance of only a few markets within a city may be sufficient 

to capture viral diversity. This pattern could be generated in several ways, including frequent 

introduction of viral clades to LBMs (as suggested by (Moyen et al. 2021)) followed by limited intra-

market persistence. However, we could not test this or other hypotheses regarding lineage 

introduction and persistence here because many markets in our dataset were represented by only 

one sequence.  

 

Our analyses indicate that the H9N2 viruses generally cluster more frequently by chicken type in 

Chattogram than in Dhaka, suggesting that it may be necessary to consider sub-national variation in 

production and trading processes when evaluating AIV dispersal. This finding could be consistent with 

several non-exclusive scenarios. In the first scenario, farms in different geographic regions might 

harbour geographically distinct viruses, which are then imported regularly to LBMs (Ripa et al. 2021). 
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In that case, more significant overlap in the production areas from which different bird types are 

typically sourced could lead to greater mixing of viruses between those bird types. Weak evidence 

that H9N2 dispersal between different bird types in each city is associated with their degree of 

production area overlap somewhat supports this hypothesis. However, this finding is not robust to 

the inclusion of additional predictors. In the second scenario, our finding may result from differences 

in the trading practices between cities. Specifically, in Chattogram middlemen typically sell poultry 

directly to stallholders (retailers or wholesaler), whereas in Dhaka inter-market transactions are 

relatively more common (Moyen 2019; Moyen et al. 2021). As middlemen rarely supply more than 

one chicken type, there is less opportunity for direct viral transmission between chicken types during 

middlemen-facilitated transport to Chattogram’s LBMs. In contrast, LBMs often sell multiple chicken 

types, so higher rates of market-to-market trading in Dhaka may increase opportunities for AIV 

dispersal between different bird types (Moyen 2019; Moyen et al. 2021).  

 

Patterns of AIV dispersal identified here via H9N2 analyses may be different for non-H9N2 subtypes. 

For instance, HPAIV lineages may be relatively more detectable by poultry traders as host infections 

would often be more symptomatic (Parvin et al. 2018; Ripa et al. 2021). This could result in 

contrasting management practices for birds infected with LPAI and HPAI viruses, and subsequently 

differing viral dispersal patterns (Rimi et al. 2019). Although our limited analyses of H5NX Bangladeshi 

sequences did suggest that similar patterns of intermixing of viral lineages between cities to those 

observed for H9N2 may exist, we could not repeat all analyses for H5 as for H9 due to a lack of 

available sequences and chicken-type level metadata for the former subtype. Equally, while our H9N2 

analyses focus mainly on sequences obtained from chickens, which are the hosts that H9N2 is more 

commonly found in and are the poultry-type that accounts for more than 97% of poultry moving 

through Dhaka and Chattogram’s market stalls, HPAIV lineages such as H5N1 are relatively more 

frequently detected in ducks (Kim et al. 2018; Kwon et al. 2020). Differences in trading patterns 
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between chickens and ducks may, therefore, result in possible divergent virus transmission dynamics 

between such AIV lineages (Moyen 2019; Moyen et al. 2018, 2021). 

 

Our study has several limitations. First, virus genomic surveillance in Bangladesh is likely biased 

relative to infection distribution. Few sequences are available before 2013 in Dhaka or before 2016 in 

Chattogram, and change in genomic surveillance over time may therefore bias our results. There is a 

lack of AIV sequences from farms. Whilst this may be partly a true reflection of higher AIV prevalence 

at LBMs than at farms (Gupta et al. 2021; Ripa et al. 2021), this may also reflect surveillance bias 

towards LBMs which are often in easier-to-reach locations than farms and where AIV is easier to 

detect. Finally, genomic sampling of H9N2 in Bangladesh is heavily biased towards Dhaka, and to a 

lesser extent, Chattogram, and therefore possible important sources and sinks of infection outside of 

these regions may be missed. Although H9 and H5 subtypes have been repeatedly detected in LBMs 

in both Dhaka and Chattogram (Biswas et al. 2018; Hassan et al. 2020; Kim et al. 2018; Rimi et al. 

2019; Sayeed et al. 2017), the relatively lower number of Chattogram sequences may somewhat 

reflect both the higher number of live birds traded in Dhaka than in Chattogram (Moyen et al. 2021) 

as well as the greater quantity of mixed bird-type markets in Dhaka than Chattogram, which are 

generally associated with higher prevalence of infection (Kim et al. 2018). Biased sampling over space 

and time is less problematic for our analyses based on the cross-sectional dataset than those based 

on all publicly available data, as the cross-sectional dataset was generated through the same 

observational study conducted in both Chattogram and Dhaka. Our results show that sub-national 

variation in production and trading processes may affect AIV dispersal between chicken types in 

Dhaka and Chattogram, and hence our results should be considered geographically specific and 

should not be extrapolated to other regions with production differences.  

 

Second, for some analyses we were limited to using only 70 sequences associated with known chicken 

types (Kim et al. 2018). This likely limited statistical power of our analyses of both market viral 
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movement analyses and of city and chicken type clustering, relative to our analyses that did not use 

chicken type. Likewise, as these 70 sequences were generated in a single cross-sectional study (Kim et 

al. 2018) spanning only two months, we could not describe and explore seasonal variations in H9N2 

infection patterns in such analyses. The dataset used for this analysis also contained only HA H9 

sequences, meaning that we could not determine whether other segments or AIV subtypes may be 

similarly shaped by poultry trading practices in Bangladesh.  

 

Improving insight into how viruses spread at a range of spatial scales could help guide improvements 

in AIV control. Our study shows the importance of recording accurate information on chicken type, 

and highlights the need for greater surveillance on farms to understand viral epidemiology in 

Bangladesh. Our results suggest that nationally uniform interventions to reduce AIV prevalence may 

be unlikely to provide optimal effectiveness. Instead, actions should be tailored to the specific local 

structural characteristics of the poultry trading network and AIV dispersal patterns, but could be 

made more efficient through targeted surveillance of a small number of key sites (Moyen et al. 2021). 

Any recommendations to improve AIV control in Bangladesh should adopt a multi-sector One Health 

approach to ensure proper consideration of health, social, and economic impacts (Chattopadhyay et 

al. 2018; Mackenzie & Jeggo 2019). 
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Data availability 

 

The datasets and BEAST XML files used in this study can be found at 

https://github.com/lorcancarnegie/H9N2_Bangladesh.git; GenBank Accession numbers for newly 

reported genetic sequence data are available under the accession numbers detailed in Table S1. 

Supplementary Data are available as separate files.  
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Table 1 

 

Dataset & study design Sequencing method Available metadata  Sequences per subtype 

Cross-sectional dataset: cross-

sectional survey into AIV 

prevalence in live bird markets 

in Dhaka and Chattogram, 

during which 60 birds and 50 

environmental sites were 

sampled at each of 40 live bird 

markets in February to March 

2016 [8]. Twenty-six of these 

markets were in Dhaka district 

and fourteen were in 

Chattogram district. Study 

previously described [8] but 

genomes not yet reported.  

RNA was extracted using 

the MagMAX RNA Isolation 

Kit (QIAGEN, Hilden, 

Germany) and RT-PCR 

conducted using the 

AgPath-ID One-Step RT-

PCR kit (ThermoFisher 

Scientific, Waltham, MA, 

USA) [8]. PCR amplicons 

spanning the HA segment 

were generated from 

positive samples using 4 

primers for HA1 and 6 for 

HA2 (HA1: F308, R308, 

F754,R754; HA2: 

F723,R723,F531,R531,F29

9,R299), and were 

sequenced using Sanger 

sequencing 

(www.dnaseq.co.uk). 

Host (species; 

chicken type 

(sonali, deshi, 

broiler)), market 

location, sampling 

date. 

H9; 70 HA sequences 

(accession numbers: 

Table S1) 

 

Longitudinal dataset: A 

longitudinal study into AIV 

prevalence in live bird markets 

in Dhaka and Chattogram, 

during which 60 live birds and 

any observed dead birds were 

sampled monthly in two 

markets (one in Dhaka and 

one in Chattogram). The study 

ran from July 2017 and July 

2018.  

RNA was extracted using 

QIAamp Viral RNA Mini Kit 

(Qiagen) [27] then reverse 

transcribed and amplified 

using RT-PCR. Positive 

samples underwent whole 

genome sequencing (WGS) 

at APHA using an Illumina 

NextSeq 500/550. 

Consensus sequences 

were assembled using 

Host species, 

market location, 

sampling date. 

 

H9N2; 11 HA 

sequences (accession 

numbers: Table S1). 

H5NX; 24 HA 

sequences (accession 

numbers: Table S1), 10 

NA sequences 

(accession numbers: 

Table S1) 
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Market surveillance dataset: A 

market surveillance study 

performed by the Bangladesh 

Livestock Research Institute 

(BLRI). Samples were collected 

during eight sampling events 

between November 2016 to 

February 2018 across 13 live 

bird markets (eight in Dhaka 

district, and five in the Gazipur 

district).  

Velvet [28] v-1.2.10 and 

SPAdes [29], following the 

pipeline 

https://github.com/ellisric

hardj/FluSeqID.   

 

H9N2; 1 HA sequence 

(accession numbers 

Table S1). H5NX; 5 HA 

sequences (accession 

numbers: Table S1), 5 

NA sequences 

(accession numbers: 

Table S1) 
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