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Abstract 17 

Mammals have an evolutionary history spanning hundreds of millions of years. Today, 18 

mammals represent one of the most diverse groups of tetrapod vertebrates. In particular, they 19 

present a great postural diversity. The humerus adopts different positions: small mammals have 20 

a “crouched” posture with a quasi-horizontal humerus, while in the largest species, the humerus 21 

is more vertical. Some monotremes have more transversely oriented humeri similar to those of 22 

reptiles. The forelimb of moles is also modified in relation to their burrowing lifestyle. This 23 

postural diversity is accompanied by an important microanatomical disparity. Indeed, the bones 24 

of the appendicular skeleton support the weight of the body and are subjected to various forces 25 

that partly shape their external and internal morphology. We show here how geometric and 26 

microanatomical parameters measured in cross-section such as the polar section modulus or the 27 

position of the medullo-cortical transition can be related to posture. Using statistical methods 28 

that take phylogeny into account, we develop a postural model from a sample of humerus cross-29 

sections belonging to 41 species of extant mammals. Our model can be used by palaeontologists 30 

to infer the posture of extinct synapsids. As an example, we infer the posture of two emblematic 31 

taxa: Dimetrodon natalis and Peratherium cuvieri. The results of the analysis indicate a 32 

sprawling posture for Dimetrodon and a crouched posture for Peratherium. This work 33 

contributes to unravel the complex interaction between phylogeny, humeral microanatomy and 34 

geometry, body mass, lifestyle and posture in mammals.35 



Introduction 36 

Mammals are a highly successful group of tetrapod vertebrates with a long evolutionary history. 37 

Their earliest stem members, i.e. the first synapsids (the term “stem mammal” is used 38 

throughout this study to refer to any taxon that is more closely related to Mammalia than to 39 

Reptilia but that does not belong to the mammalian crown group), originated in the 40 

Carboniferous, about 330 million years ago, with the emergence of the first amniotes (Didier 41 

and Laurin 2020), and have undergone several episodes of diversification ever since. The Late 42 

Carboniferous and Early Permian is dominated by eupelycosaurs. These are followed by  43 

therapsids by the middle Permian; they comprised medium-sized herbivorous and carnivorous 44 

taxa that became extinct by the end of the Triassic, except for cynodonts, which gave rise to the 45 

Mammaliaformes during the Triassic (Kemp 2005; Brocklehurst et al. 2013). It is generally 46 

thought that most Mesozoic mammals were small, nocturnal creatures with more or less 47 

burrowing habits and a generalised insectivory (Jenkins and Parrington 1976; Kielan-48 

Jaworowska et al. 2004; Gerkema et al. 2013; but see Hu et al. 2005; Gill et al. 2014; Meng 49 

2014; Debuysschere 2015). The K-Pg extinction event was the starting point for the Cenozoic 50 

radiation of mammals which led them to colonise the ecological niches left empty by non-avian 51 

dinosaurs (Rose 2006; but see Wilson et al. 2012). Today, mammals are extremely diverse, both 52 

taxonomically and ecologically. With over 5,000 currently recognised extant species (Upham 53 

et al. 2019), they are found all over the world, at all levels of the trophic network, on land, in 54 

the seas and in the air (Vaughan et al. 2015). They range in size from the bumblebee bat, which 55 

weighs only a few grams, to the blue whale (the largest animal on the planet), which weighs 56 

more than 100 tons, the weight of a few dozen elephants. Mammals are also particularly diverse 57 

in their posture: small mammals like rodents have a “crouched” posture, with a quasi-horizontal 58 

humerus (Jenkins 1971), while in the cursorial and graviportal taxa, such as artiodactyls and 59 

proboscideans, the humerus is more vertical (Gregory 1912). Some monotremes have more 60 

transversely oriented humeri (Pridmore 1985). The forelimb of moles is also modified in 61 

relation to their burrowing lifestyle (Lin et al. 2019). 62 

The shape of biological structures is determined by at least three types of constraints 63 

that can be positioned at the three vertices of an abstract triangle in the framework of 64 

constructional morphology (Seilacher 1970). These are phylogenetic (heredity), structural 65 

(development), and adaptive (function) constraints. The bones of the appendicular skeleton are 66 

subject to these different constraints, especially functional constraints relative to posture. 67 

Indeed, limb bones support the weight of the body and are affected by various forces that partly 68 



shape their external and internal morphology. While many studies have already identified the 69 

link between lifestyle (from aquatic to terrestrial) and bone microanatomy, including using 70 

multivariate quantitative methods that take phylogeny into account (Germain and Laurin 2005; 71 

Kriloff et al. 2008; Canoville and Laurin 2009, 2010; Laurin et al. 2011; Quemeneur et al. 2013; 72 

Amson et al. 2014; Ibrahim et al. 2014; Nakajima et al. 2014; Cooper et al. 2016; Houssaye et 73 

al. 2016a; Klein et al. 2016; Houssaye and Botton-Divet 2018; Kilbourne and Hutchinson 2019; 74 

Canoville et al. 2021; Fabbri et al. 2022), fewer have attempted to link the geometric and 75 

microanatomical properties of limb bones to posture (Houssaye et al. 2016b; Bishop et al. 76 

2018a, 2018b, 2018c; Plasse et al. 2019; Main et al. 2021; Wagstaffe et al. 2022). 77 

Although it is accepted that mammals, like reptiles such as dinosaurs and 78 

pseudosuchians (Hutchinson 2006), experienced a postural transition from approximately 79 

transversely-oriented to more parasagittally-oriented limbs, the timing of this transition has 80 

been widely debated without reaching a consensus. Some authors (Jenkins 1973; Pridmore 81 

1985; Sereno 2006) have argued that early mammals had already acquired a parasagittal limb 82 

posture and gait by the Late Triassic/Early Jurassic, while others (Gambaryan and Kielan-83 

Jaworowska 1997; Kielan-Jaworowska and Hurum 2006) favoured the hypothesis of a later 84 

acquisition in early therians. Even today, posture in mammals and in older stem taxa such as 85 

Dimetrodon, raises many questions that triggered numerous studies that enrich our knowledge 86 

of the evolution of locomotion in mammals (Abbott 2019; Regnault et al. 2020; Jones et al. 87 

2021; Brocklehurst et al. 2022). 88 

Our study is a logical extension of these works. Using generalised least squares, we 89 

investigate the relationship between humeral posture and geometric and microanatomical data 90 

collected from humeral bone cross-sections belonging to 41 extant mammalian species, while 91 

taking phylogeny into account. Body mass and lifestyle were also included in our models as 92 

both are known to be related to posture and/or bone microanatomy, e.g. large taxa tend to have 93 

greater bone compactness and more upright limbs (Biewener 1989b; Houssaye et al. 2016b); 94 

fossorial talpids have greater extension of the medullo-cortical transition compared to terrestrial 95 

talpids (Meier et al. 2013). We use the collected data to generate a phylogenetically informed 96 

postural inference model capable of generating postural predictions in extinct taxa. We apply 97 

the model to two taxa: Dimetrodon natalis (a small Dimetrodon species) and Peratherium 98 

cuvieri (“Cuvier’s Sarigue”). While Dimetrodon is a stem mammal, Peratherium is a putative 99 

marsupialiform. Dimetrodon and Peratherium lived in the Early Permian and Late Eocene, 100 

respectively, well before and well after the Mesozoic postural transition in mammals. The 101 



posture of Dimetrodon has been extensively studied since its discovery in the second half of the 102 

19th century. The recent interpretation indicates a more or less sprawling posture. In 103 

comparison, Peratherium has been the subject of less work, but its younger geological age and 104 

general anatomy are compatible with a more crouched posture. These two taxa are therefore 105 

perfect candidates to test our method. 106 

Materials and Methods 107 

BIOLOGICAL SAMPLE 108 

To train our statistical model, we compiled a set of geometric and microanatomical data 109 

collected on humeral mid-diaphyseal cross-sections from a large number of mammalian taxa 110 

with a known posture. The dataset included 43 individuals from 41 extant species (Table 1; 111 

Online Resource 1). We built our dataset to be as taxonomically exhaustive as possible and to 112 

maximise coverage of the postural diversity of Mammalia. We used our postural models to infer 113 

the posture of two extinct taxa of interest: the Early Permian stem mammal Dimetrodon natalis 114 

(IPBSH-4) and the Late Eocene herpetotheriid Peratherium cuvieri (MNHN-F-GY679b); see 115 

Online Resource 1. 116 

POSTURAL DEFINITIONS 117 

Most non-flying mammals are obligate quadrupeds, that is, they move exclusively on four limbs 118 

(Vaughan et al. 2015). A few taxa, especially among rodents, marsupials and primates, are 119 

known to be facultatively bipedal or quadrupedal, meaning that they alternate between 120 

bipedalism and quadrupedalism (D’Août et al. 2004; Russo and Kirk 2017). Some pangolins 121 

(Smutsia temminckii) are also able to move on their hind limbs for some distance (Pietersen et 122 

al. 2020). Obligate bipedalism is restricted to humans (Niemitz 2010). 123 

Yet, mammals show great diversity in limb posture, especially regarding the humerus 124 

(Fig. 1). During normal walking, the specialised “erect” (or upright) forelimb posture of 125 

mammals exhibits fairly low humeral abduction (less than 10 degrees to the parasagittal plane; 126 

Jenkins 1971). The humerus is oblique with the elbow always functioning below the shoulder 127 

joint between approximately 30 and 75 degrees from the horizontal. Erect limbs are found in 128 

“hoofed” mammals such as artiodactyls and proboscideans (Gregory 1912), in carnivorans 129 

(Blob 2000) and in cursorial and graviportal mammals in general (Gregory 1912; Jenkins 1971; 130 

but see Stein and Casinos 1997; Carrano 1999). Taxa with more generalised locomotor 131 

adaptations, such as rodents, have a so-called “crouched” posture (Jenkins 1971). The humerus  132 



Table 1 List of the mammalian taxa included in this study. Taxa are presented in alphabetical 133 

order. Body mass is rounded to the nearest gram. *Data collected on 134 

https://www.morphosource.org. Abbreviations: Aq, semi-aquatic; Ar, arboreal; C, crouched; E, 135 

erect; Fo, fossorial; M, modified; S, sprawling; Te, terrestrial. Institutional abbreviations: 136 

IPBSH/STIPB, Steinmann-Institut, Universität Bonn, Germany; MNHN, Muséum national 137 

d’Histoire naturelle, Paris, France; NHMUK, Natural History Museum, London, United 138 

Kingdom; UFGK, Ur- und Frühgeschichte Köln, Cologne, Germany; UMZC, Cambridge 139 

University Museum of Zoology, Cambridge, United Kingdom 140 

Taxon Collection number Humeral 

posture 

Lifestyle Body mass 

(g) 

Afrosoricida Chrysochloridae Chrysochloris asiatica MNHN-ZM-MO-1991-626 C Fo 37 

Artiodactyla Bovidae Cephalophus silvicultor NHMUK ZD 1961.8.9.80-1 E Te 62,007 

  Rupicapra rupicapra STIPB M1639 E Te 35,383 

  Syncerus caffer NHMUK ZD 1874.11.2.4 E Te 646,333 

 Cervidae Alces americanus UMZC H.17,691 E Te 368,500 

  Cervus elaphus MNHN unnumbered specimen E Te 160,167 

  Rangifer tarandus STIPB M47 E Te 101,250 

 Suidae Sus scrofa MNHN unnumbered specimen E Te 135,000 

  Sus scrofa STIPB M56 E Te 135,000 

Carnivora Canidae Vulpes vulpes STIPB M12 E Te 4,580 

 Felidae Felis silvestris UFGK unnumbered specimen E Te 5,037 

  Panthera leo MNHN-ZM-AC-1912-398 E Te 149,062 

 Mustelidae Martes martes STIPB unnumbered specimen C Ar 1,300 

  Mustela putorius STIPB unnumbered specimen C Te 809 

 Ursidae Ursus americanus MNHN-ZM-MO-1902-1415 E Te 132,405 

Cingulata Dasypodidae Dasypus novemcinctus MNHN-ZM-MO-2001-1317 C Te 3,949 

Diprotodontia Macropodidae Macropus giganteus MNHN-ZM-AC-A10098 C Te 41,455 

  Thylogale stigmatica umzc:vertebrates:a12.44/1* C Te 4,306 

 Potoroidae Aepyprymnus rufescens msu:mr:mr.4680* C Fo 2,820 

 Vombatidae Vombatus ursinus MNHN-ZM-AC-A3289 C Fo 25,750 

Eulipotyphla Erinaceidae Erinaceus europaeus STIPB unnumbered specimen C Te 778 

https://www.morphosource.org/


 Solenodontidae Solenodon paradoxus MNHN-ZM-MO-1980-237 C Fo 900 

 Talpidae Euroscaptor micrura MNHN-ZM-MO-1959-1795 M Fo 60 

  Talpa europaea MNHN-ZM-MO-1953-829 M Fo 110 

  Talpa europaea STIPB unnumbered specimen M Fo 110 

Monotremata Ornithorhynchidae Ornithorhynchus 

anatinus 

MNHN-ZM-AC-1906-484 S Aq 1,225 

 Tachyglossidae Tachyglossus aculeatus MNHN-ZM-AC-1884-1125 S Fo 3,170 

Pholidota Manidae Smutsia temminckii MNHN-ZM-AC-1897-134 C Te 9,587 

Primates Cercopithecidae Chlorocebus aethiops MNHN-ZM-AC-1909-262 E Ar 5,104 

  Macaca radiata MNHN-ZM-AC-1845-271 E Ar 5,132 

 Hominidae Pan paniscus amnh:mammals:m-202870* E Ar 35,120 

 Lemuridae Lemur catta MNHN-ZM-AC-1910-101 C Ar 2,555 

Rodentia Dipodidae Allactaga elater UF:mammal:30045* C Fo 59 

  Dipodomys ordii MNHN-ZM-MO-1958-294 C Fo 50 

  Zapus princeps uwbm:mammal specimens:74482* C Te 28 

  Zapus trinotatus uwbm:mammal specimens:OG-

7813* 

C Te 27 

 Hystricidae Hystrix cristata MNHN-ZM-AC-1922-386 C Fo 19,167 

 Muridae Gerbillus campestris MNHN-ZM-MO-1990-10 C Fo 28 

  Meriones libycus MNHN-ZM-MO-1981-619 C Fo 91 

 Pedetidae Pedetes capensis MNHN-ZM-AC-1883-1640 C Fo 2,775 

 Sciuridae Marmota marmota STIPB unnumbered specimen C Fo 3,500 

Scandentia Tupaiidae Tupaia belangeri STIPB unnumbered specimen C Ar 200 

Tubulidentata Orycteropodidae Orycteropus afer MNHN-ZM-AC-1919-19 C Fo 56,175 

 141 

is more abducted than in erect mammals (between 15 and 30 degrees relative to the parasagittal 142 

plane; Jenkins 1971); and the humerus is also more horizontal, with the elbow oscillating from 143 

about 20 degrees above the shoulder joint to 45 degrees below it. Both erect and crouched taxa 144 

belong to the same morpho-functional continuum, with graviportal and cursorial taxa 145 

representing the two extreme morphologies (Carrano 1999). 146 

Besides this general pattern, some taxa have atypical humeral postures. The monotremes 147 

Tachyglossus and Ornithorhynchus have more “sprawling” humeri, akin to what exists in extant 148 



Fig. 1 Humeral excursion at the shoulder joint in lateral (left) and dorsal (right) views in several 149 

mammals with different postures (Jenkins 1971; Pridmore 1985; Lin et al. 2019). The scapula 150 

and humerus are shown in lateral view, but the scapula is not shown in dorsal view for better 151 

visibility of the humerus. a. erect humerus in Felis domestica; b. crouched humerus in Rattus 152 

norvegicus;c. sprawling humerus in Ornithorhynchus (left and hatched area on right) and 153 



Tachyglossus (right); d. modified humerus in Scalopus aquaticus. Abbreviations: HP, 154 

horizontal plane; PP, parasagittal plane. Silhouettes come from phylopic.org 155 

ectothermic reptiles (Bakker 1971; but see Pridmore 1985; Gambaryan and Kuznetsov 2013). 156 

In Tachyglossus, the humerus is completely horizontal. The elbow oscillates laterally between 157 

80 and 100 degrees from the parasagittal plane (Jenkins 1971; Pridmore 1985). In 158 

Ornithorhynchus, the humerus is abducted between 40 and 75 degrees from the parasagittal 159 

plane, with the elbow operating above the shoulder joint up to 45 degrees from the horizontal 160 

(Pridmore 1985). The forelimb of moles (Talpidae) is also highly modified in relation to their 161 

burrowing behaviour. The humerus is slightly abducted (less than 20 degrees from the 162 

parasagittal plane). The elbow oscillates cranially relative to the shoulder joint, rising 40 to 65 163 

degrees from the horizontal plane (Lin et al. 2019). 164 

DATA ACQUISITION 165 

We measured various geometric and microanatomical parameters that have been previously 166 

associated in the literature with locomotion and posture, and more generally with lifestyle in 167 

amniotes (Canoville and Laurin 2009, 2010; Amson et al. 2014; Houssaye et al. 2016b; 168 

Houssaye and Botton-Divet 2018; Scheidt et al. 2019). This was done on cross-sections of 169 

mammalian humeral shafts obtained mainly from CT data retrieved from the literature and from 170 

morphosource.org. We scanned some of the specimens on the AST-RX platform of the Muséum 171 

national d’histoire naturelle and on the MRI platform of the Université de Montpellier. We 172 

extracted a cross-section from the CT data where the perimeter of the shaft was the smallest 173 

because this is an area where mechanical stresses generally are important (Beck et al. 1996; 174 

Tommasini et al. 2005; Campione and Evans 2012), resulting in more or less mid-diaphyseal 175 

cross-sections. We also incorporated into our data mid-diaphyseal traditional histological 176 

sections (unpublished data from Quemeneur et al. 2013). Mixing sections with slightly different 177 

reference planes in comparative studies is not considered a problem as long as the species of 178 

interest does not show excessive longitudinal microanatomical variation (Amson and Kolb 179 

2016; Houssaye et al. 2018). The scans were processed in ImageJ (Abràmoff et al. 2004) and 180 

MorphoDig (Lebrun 2018). Each bone was oriented so that the section plane was as 181 

perpendicular as possible to the long axis of the diaphysis. Data for all left humeri were 182 

symmetrised so that the sample consisted of right side bones only. We binarised the cross-183 

sections before taking our geometric and microanatomical measurements in ImageJ with the 184 

BoneJ plugin (Doube et al. 2010) and in R (R Core Team 2013) with the BoneProfileR package 185 



(Girondot and Laurin 2003; Gônet et al. 2022). A sample of the mammalian cross-sections used 186 

in this study are presented in Fig. 2. 187 

We measured six geometric parameters with BoneJ (Fig. 3): Pemin, the minimum 188 

perimeter of the shaft; BCSA, the area occupied by the bone on the section; TCSA, the total 189 

area of the section; Ecc, the eccentricity of the section corresponding to the ratio of the area 190 

moments of inertia (I) around the major and minor axes (Imax/Imin); SR, the slenderness ratio (a 191 

high SR indicates a slender bone, while a low SR indicates a more robust bone; see Eq. 1); Zpol, 192 

the polar section modulus reflecting the resistance of the shaft to torsion (the higher Zpol, the 193 

more resistant the bone will be to torsion). Although Zpol can be used with subcircular cross-194 

sections, which is the case for most taxa, it is ideally used with circular cross-sections. 195 

Slenderness ratio =  
Bone length

√
Imin

TCSA

 (1) 196 

We used BoneProfileR to measure seven microanatomical parameters (Fig. 3). We set 197 

BoneProfileR to determine the position of the centre of unmineralisation, i.e. the centre of the 198 

unmineralised spaces in the bone section, and segment the cross-section into 100 concentric 199 

circles. Bone compactness (measured by the number of bone pixels relative to the total number 200 

of pixels) was measured in each circle from the centre of the medulla to the edge of the cross-201 

section. We extracted several parameters from the resulting compactness profiles: P, the 202 

distance of the medullo-cortical transition from the centre of the cross-section (a high P 203 

generally reflects low bone compactness); S, the inverse of the asymptote of the slope at point 204 

P (a high S corresponds to a gradual transition between the medulla and the cortex, as in the 205 

case of cancellous bone, while a low S reflects an abrupt transition). BoneProfileR also 206 

computes an observed global compactness value, Cobs. In addition, we performed a radial 207 

analysis to extract the radial component of the parameters P and S: the cross-section is 208 

segmented into 60 slices of 6 degrees and a compactness profile is drawn for each slice. The 209 

radial component of P (RP) and S (RS) is the average of the P and S of all slices. The standard 210 

deviation associated with RP and RS is RPSD and RSSD, respectively. When a species in our 211 

sample was represented by more than one individual, we calculated the mean value for each 212 

microanatomical parameter. 213 

BUILDING REFERENCE PHYLOGENIES 214 

We constructed a set of 100 reference trees of mammals to include phylogenetic uncertainty in 215 

our statistical analyses (Fig. 2). The trees were manipulated in R using the packages phytools 216 



Fig. 2 Tree 1 of our set of 100 time-calibrated composite phylogenies displaying the 217 

evolutionary relationships among the extant and extinct species included in this study, with 218 

some of the humeral cross-sections analysed. a. Peratherium cuvieri† (Late Eocene) MNHN-219 

F-GY679b (unknown); b. Aepyprymnus rufescens MorphoSource: msu:mr:mr.4680 220 

(crouched); c. Meriones libycus MNHN-ZM-MO-1981-619 (crouched); d. Marmota marmota 221 

STIPB unnumbered specimen (crouched); e. Macaca radiata MNHN-ZM-AC-1845-271 222 

(crouched); f. Syncerus caffer NHMUK ZD 1874.11.2.4 (erect); g. Felis silvestris UFGK 223 

unnumbered specimen (erect); h. Talpa europaea MNHN-ZM-MO-1953-829 (modified); i. 224 

Euroscaptor micrura MNHN-ZM-MO-1959-1795 (modified); j. Tachyglossus aculeatus 225 



MNHN-ZM-AC-1884-1125 (sprawling); k. Ornithorhynchus anatinus MNHN-ZM-AC-1906-226 

484 (sprawling); l. Dimetrodon natalis† (Early Permian) IPBSH-4 (unknown). The cross-227 

sections are anatomically oriented (anterior to the top and lateral to the right) except for 228 

Dimetrodon. Trees were compiled in R using the work of Selva (2017), Upham et al. (2019), 229 

and Didier and Laurin (2020) 230 

(Revell 2012) and TreePar (Stadler 2011). We extracted 100 trees with only the species of 231 

interest from a distribution of 10 000 Bayesian supertrees of mammals calibrated in time (node-232 

dating, 5911 species) from the publication of Upham et al. (2019) and available on vertlife.org. 233 

The statistical analyses in this study required reference trees that included the taxa for which 234 

we wanted to infer posture. Therefore, Dimetrodon natalis (Sphenacodontidae) was branched 235 

at 313 Ma based on Didier and Laurin (2020). We followed Selva (2017) in considering 236 

Peratherium cuvieri an herpetotheriid and set the age of divergence between Herpetotheriidae 237 

and Marsupialia at approximately 85 Ma. The trees in Newick tree format are provided in 238 

Online Resource 2 239 

BODY MASS ESTIMATES AND LIFESTYLE 240 

Body mass affects posture and bone microanatomy. Indeed, among mammals, the largest taxa 241 

tend to have more erect/upright limbs and greater bone compactness (Biewener 1989b, 2005; 242 

Hutchinson 2021). We therefore collected body mass estimates from the literature for each 243 

taxon in our sample (Table 1; Online Resource 1). We relied entirely on the database of 244 

Myhrvold et al. (2015), which compiles median body mass for a large number of extant 245 

amniotes (we rounded values to the nearest gram). 246 

Lifestyle is also known to be related to bone microanatomy, e.g., fossorial talpids have 247 

greater extension of the medullo-cortical transition compared to terrestrial talpids (Meier et al. 248 

2013). Thus, we defined four lifestyle categories based on limb use (semi-aquatic, terrestrial, 249 

fossorial, and arboreal) to explore the potential relationship between lifestyle and posture (Table 250 

1; Online Resource 1). 251 

STATISTICAL TREATMENT IN A PHYLOGENETIC FRAMEWORK 252 

Phylogenetic signal‒We used the phylosig function from the R package phytools (Revell 2012) 253 

to estimate the phylogenetic signal in each geometric and microanatomical parameters. The 254 

phylosig function computes the K-statistic of Blomberg et al. (2003). A K-statistic greater than 255 

1 indicates that closely related species in the tree show more similarity between them than what 256 



Fig. 3 All the geometric and compactness parameters measured in this study, illustrated here 257 

with a humerus of Marmota marmota (STIPB unnumbered specimen). The section on the 258 

compactness profile is divided into 30 concentric circles and 20 slices for better readability, but 259 

more were used in the analyses (100 and 60, respectively) 260 

would be expected with a Brownian model of evolution, suggesting the existence of a 261 

substantial phylogenetic signal in the data. Conversely, a K-statistic lower than 1 implies that 262 



closely related species are more different than expected highlighting evolutionary convergence 263 

or higher variance between clades rather than within them. 264 

We used the delta-statistic (Borges et al. 2019), which was designed for categorical 265 

traits, to estimate the phylogenetic signal in posture. The delta-statistic depends on the 266 

uncertainty associated with the inference of ancestral states: low uncertainty implies low 267 

entropy (Shannon 1948) and a high delta-statistic. The higher the delta, the stronger the 268 

phylogenetic signal. 269 

A P-value is obtained by randomisation, i.e. a redistribution of the measured traits 270 

among terminal branches. K and delta are computed 1000 and 100 times, respectively, with a 271 

random distribution, then the pool of values obtained is compared to the K and delta with the 272 

actual distribution. This was done for each tree in our phylogenetic tree sample. 273 

Generalised least squares‒We used the gls function from the R package nlme (Pinheiro et al. 274 

2021) to model the relationship between each geometric and microanatomical parameter and 275 

postural groups while accounting for phylogeny, body mass and lifestyle. The gls function fits 276 

a linear model using least squares to optimise coefficients and allows a covariance structure to 277 

be set between observations. Here, the expected covariance of a given trait (or a relationship 278 

between traits) between two taxa corresponds to its evolution under a Brownian motion during 279 

the time from the root to their last common ancestor. 280 

Phylogenetic flexible discriminant analysis‒We used phylogenetic flexible discriminant 281 

analysis (PFDA) to explain posture in our sample of extant mammals and to predict humeral 282 

posture in Dimetrodon and Peratherium based on geometric and microanatomical 283 

measurements taken from humeral cross-sections while accounting for phylogeny. PFDA is a 284 

classification model based on a combination of linear regressions. It is derived from flexible 285 

discriminant analysis (FDA; Hastie et al. 1994) and corresponds to its phylogenetically 286 

informed version (Motani and Schmitz 2011). In practice, PFDA corresponds to a gls where 287 

categories are split in dummy variables and treated as continuous variables while phylogeny is 288 

incorporated as a phylogenetic covariance matrix whose terms are multiplied by lambda to 289 

make phylogenetic inertia variable through model optimisation (Pagel 1999). Lambda is 290 

assigned a value between 0 and 1 that minimises the model error, that is, the share of variance 291 

explained by phylogeny: 0 indicating that phylogeny does not explain the distribution of the 292 

trait on the tree; 1 indicating that phylogeny explains as much variance in the trait as is expected 293 

under a Brownian model of evolution. 294 



Overfitting occurs when a model becomes overly complex by including too many 295 

parameters (Everitt and Skrondal 2010). An overfitted model will perform well in explaining 296 

initial data (training) but will perform poorly with new data or predictions (testing). The key to 297 

preventing overfitting lies in optimising the choice of parameters to include in the model in 298 

order to minimise test error. We chose the percentage of correct classification (PCC) obtained 299 

through leave-one-out cross-validation (CV; Stone 1974) as our selection criterion. The higher 300 

the PCC, the better the model performed under test conditions. Prior to performing CV 301 

procedures, we generated a dissimilarity matrix from the correlation coefficients of the 302 

geometric and microanatomical parameters before performing a hierarchical cluster analysis to 303 

identify and eliminate highly correlated variables (correlation coefficient > 0.95) in order to 304 

avoid subsequent complications related to the existence of singular variance-covariance 305 

matrices. Pemin, BCSA, TCSA and Zpol were all inter-correlated. We decided to keep only the 306 

parameter Pemin which, in a paleobiological inference context, is the easiest to measure and least 307 

likely to be impacted by taphonomy. The parameters P and RP were also correlated. We kept 308 

the former and removed the latter from our data set. CV was performed with all possible 309 

combinations of the remaining parameters (Pemin, Ecc, SR, Cobs, P, S, RS, RPSD and RSSD) 310 

and for each of the 100 phylogenetic trees for a total of more than 50,000 CV. In the end, only 311 

three parameters out of the original 13 were retained for our humerus inference model (Pemin, 312 

SR and P). The R script and associated R environment allowing to replicate the postural 313 

inferences presented in the results of this study and allowing new inferences to be produced in 314 

other extinct synapsids from our dataset are available in Online Resources 3 and 4, respectively.  315 

We then designed linear models in R to examine the association of the coordinates of 316 

the sampled taxa on the first and second axis of the PFDA model with body mass and lifestyle. 317 

When lifestyle was significant, we performed pairwise post-hoc tests with false discovery rate 318 

(FDR) correction using the emmeans_test function in the R package rstatix (Alboukadel 2021). 319 

Results 320 

PHYLOGENETIC SIGNAL IN THE DATA 321 

All geometric parameters except for cross-sectional eccentricity (Ecc) were significantly 322 

associated with phylogeny (Table 2). For Pemin, BCSA, TCSA and Zpol, the K-statistic was 323 

below 1, indicating that intra-clade variation is greater than inter-clade variation and suggesting 324 

patterns of evolutionary convergence. However, K was close to 1 for the slenderness ratio (SR), 325 

implying that the distribution of this trait on the phylogeny is consistent with what would be 326 



expected under a Brownian model of evolution and therefore reflects a phylogenetic signal. S 327 

and RPSD were the only microanatomical parameters to be significantly associated with 328 

phylogeny (Table 2). K was lower than 1 in each case, highlighting convergences. Posture also 329 

contained a substantial phylogenetic signal (P-value < 0.01), with the delta-statistic ranging 330 

from 3.194 to 21.471 (mean = 11.982; see Table 2). 331 

Table 2 Phylogenetic signal in the data. Values reported in the table are means obtain from 100 332 

phylogenetic trees. The P-values for K (Blomberg et al. 2003) and delta (Borges et al. 2019) 333 

are obtained from 1000 and 100 randomisations, respectively. Minimum and maximum values 334 

obtained from our distribution of 100 phylogenetic trees are given in parentheses. All geometric 335 

and microanatomical parameters, except ratios, were log-transformed in R 336 

Parameter K-statistic Delta-statistic P-value 

Pemin 0.58 (0.506–0.706)  0.001** (0.001–0.003) 

BCSA 0.616 (0.536–0.745)  0.001** (0.001–0.003) 

TCSA 0.593 (0.517–0.72)  0.001** (0.001–0.002) 

Ecc 0.185 (0.1-0.251)  0.403 (0.194–0.63) 

Zpol 0.611 (0.531–0.742)  0.001** (0.001–0.002) 

SR 0.915 (0.796–1.069)  0.001** (0.001–0.001) 

P 0.237 (0.15–0.298)  0.151 (0.051–0.334) 

S 0.392 (0.339–0.472)  0.007** (0.002–0.017) 

Cobs 0.169 (0.078–0.254)  0.52 (0.177–0.781) 

RP 0.225 (0.144–0.279)  0.186 (0.092–0.359) 

RS 0.272 (0.237–0.332)  0.059 (0.03–0.105) 

RPSD 0.697 (0.586–0.813)  0.001** (0.001–0.003) 

RSSD 0.234 (0.2-0.274)  0.159 (0.081–0.278) 

Posture  11.982 (3.194–21.471) < 0.001*** (< 0.001–0.01) 

 337 

GEOMETRIC AND MICROANATOMICAL COMPARISON OF POSTURAL GROUPS 338 

The microanatomical parameter S and the geometric parameters Pemin, BCSA, TCSA, Zpol and 339 

SR are all significantly associated with posture (Table 3). They were also always significantly 340 

related to body mass and never to lifestyle except for SR and S, which are significantly 341 

associated with both body mass and lifestyle. RPSD was significantly associated only with 342 



Table 3 Effect of posture, body mass and functional ecology/lifestyle on the humeral geometric 343 

and microanatomical parameters. Values reported are means obtained from 100 phylogenetic 344 

trees. Minimum and maximum values obtained from our distribution of 100 phylogenetic trees 345 

are given in parentheses. Body mass and all geometric and microanatomical parameters, except 346 

ratios, were log-transformed in R. Abbreviations: BM, body mass; LS, lifestyle; POS, posture 347 

GLS model formula Independent variables Chi-square values P-values 

Pemin ~ BM + LS + POS POS 14.653 (10.196–18.37) 0.003** (< 0.001–0.017) 

 BM 536.358 (366.969-653.646) < 0.001*** 

 LS 3.311 (2.21–4.439) 0.35 (0.218–0.53) 

BCSA ~ BM + LS + POS POS 13.884 (12.008–15.852) 0.003** (0.001–0.007) 

 BM 551.749 (509.506-597.076) < 0.001*** 

 LS 4.869 (4.208–5.937) 0.184 (0.115–0.24) 

TCSA ~ BM + LS + POS POS 18.178 (13.67-22.052) < 0.001*** (< 0.001–0.003) 

 BM 645.451 (478.171-755.691) < 0.001*** 

 LS 4.688 (3.44–6.266) 0.2 (0.099–0.329) 

Ecc ~ BM + LS + POS POS 0.55 (0.274–0.987) 0.907 (0.804–0.965) 

 BM 0.02 (< 0.001–0.161) 0.912 (0.689–0.999) 

 LS 3.645 (2.009–5.04) 0.311 (0.169–0.571) 

Zpol ~ BM + LS + POS POS 20.982 (18.529–23.534) < 0.001*** 

 BM 794.205 (735.737-861.524) < 0.001*** 

 LS 7.175 (5.93–8.665) 0.069 (0.034–0.115) 

SR ~ BM + LS + POS POS 15.664 (13.844–17.459) 0.001** (0.001–0.003) 

 BM 13.869 (11.131–16.525) < 0.001*** (< 0.001–0.001) 

 LS 8.718 (7.529–10.025) 0.034* (0.018–0.057) 

P ~ BM + LS + POS POS 1.071 (0.614–1.524) 0.784 (0.677–0.893) 

 BM 0.088 (0.003–0.248) 0.778 (0.619–0.956) 

 LS 1.318 (0.848–1.788) 0.725 (0.617–0.838) 

S ~ BM + LS + POS POS 12.697 (11.016–14.076) 0.006** (0.003–0.012) 

 BM 7.031 (6.033–8.012) 0.008** (0.005–0.014) 

 LS 11.017 (9.13-13.989) 0.013* (0.003–0.028) 

Cobs ~ BM + LS + POS POS 1.288 (0.51–2.173) 0.733 (0.537–0.917) 



 BM 0.063 (0.002–0.183) 0.812 (0.668–0.961) 

 LS 2.529 (1.128–4.161) 0.478 (0.245–0.77) 

RP ~ BM + LS + POS POS 1.404 (0.826–1.963) 0.705 (0.58–0.843) 

 BM 0.025 (< 0.001–0.134) 0.895 (0.714–0.999) 

 LS 2.234 (1.449–2.94) 0.527 (0.401–0.694) 

RS ~ BM + LS + POS POS 4.919 (4.157–6.171) 0.18 (0.104–0.245) 

 BM 9.705 (8.243–11.851) 0.002** (0.001–0.004) 

 LS 6.89 (5.721–8.036) 0.077 (0.045–0.126) 

RPSD ~ BM + LS + POS POS 5.334 (4.365–6.047) 0.151 (0.109–0.225) 

 BM 1.048 (0.373–2.005) 0.317 (0.157–0.541) 

 LS 9.671 (8.443–11.623) 0.022* (0.009–0.038) 

RSSD ~ BM + LS + POS POS 2.482 (2.011–3.219) 0.48 (0.359–0.57) 

 BM 5.234 (4.379–6.227) 0.023* (0.013–0.036) 

 LS 3.955 (3.268–4.565) 0.268 (0.207–0.352) 

 348 

lifestyle, RS and RSSD only with body mass. 349 

PHYLOGENETIC DISCRIMINATION OF POSTURAL GROUPS 350 

The PFDA model was very successful in discriminating between postural groups (Fig. 4). 351 

Indeed, the mean training PCC reached 88% (88-90%). Most of the time, crouched taxa were 352 

correctly classified at 83% (19 out of 23 taxa). The rest of the time (5% of the phylogenetic 353 

trees), they reached 87% (20 out of 23 taxa). With all tree hypotheses, the erect taxa were 354 

correctly classified at 93% (13 out of 14 taxa) while the two monotremes (sprawling) and the 355 

two talpids (modified) both achieved 100% of correct classifications. Dimetrodon and 356 

Peratherium were always inferred as sprawling and crouched, respectively. Lambda ranged 357 

from 0.04 to 0.17 (mean = 0.099), indicating a present but low influence of the phylogeny. 358 

Body mass was significantly associated with the taxon coordinates on the first and 359 

second PFDA axes (Table 4). Lifestyle was significantly associated with the taxon coordinates 360 

on the first PFDA axis but not on the second, although the P-values were close to the 361 

significance level. The results of the post-hoc tests with the first PFDA axis revealed that 362 

arboreal taxa were significantly different from semi-aquatic, terrestrial and fossorial taxa, and 363 

that fossorial taxa were significantly different from terrestrial taxa (Table 5). 364 



Fig. 4 Phylogenetic discriminant space generated from PFDA (Motani and Schmitz 2011) on 365 

postural groups. Based on posterior probabilities, Dimetrodon and Peratherium are inferred as 366 

“sprawling” and “crouched”, respectively. Silhouettes come from phylopic.org 367 

Discussion 368 

CROSS-SECTIONAL CHARACTERISATION OF POSTURAL GROUPS 369 

Pemin, BCSA, TCSA were all significantly associated with posture (Table 3). This is not 370 

surprising since Pemin is related to body mass (Campione and Evans 2012), and it is well known 371 

that body mass and limb posture in mammals are related (Biewener 1989b, 2005; Houssaye et 372 

al. 2016b). Indeed, large mammals tend to have more erect (columnar) limbs that help reduce 373 

tissue stress (Gregory 1912; Biewener 1989a, Gatesy and Biewener 1991; Hutchinson 2021). 374 

This is because bone resists compression better than tension or torsion (Currey 2013). 375 

Logically, Pemin increases with increasing bone size and so do both BCSA and TCSA. The 376 

significant association between Zpol and posture is interesting, as it probably reveals a difference 377 

in torsional strength in the humerus between postures. Indeed, previous studies, including in-378 

vivo measurements, have shown that crouched taxa, just like non-avian reptiles with a 379 

sprawling posture, exhibit increased torsional stress compared to erect taxa, which are primarily 380 

loaded in bending (Biewener 1990; Blob and Biewener 1999, 2001; Butcher et al. 2008, 2011). 381 

SR and S are the only parameters to be significantly associated with both posture and lifestyle. 382 



Table 4 Effect of body mass and lifestyle on the taxon coordinates on the first and second axes 383 

of the PFDA model. Values reported are means obtained from 100 phylogenetic trees. 384 

Minimum and maximum values obtained from our distribution of 100 phylogenetic trees are 385 

indicated in parentheses. Abbreviations: BM, body mass; LS, lifestyle 386 

Linear model formula Independent variable F-value P-value 

Coordinates of the taxa on the first PFDA axis ~ BM + LS BM 53.88 (46.071–57.117) < 0.001*** 

 LS 11.807 (11.244–12.138) < 0.001*** 

Coordinates of the taxa on the second PFDA axis ~ BM + LS BM 14.499 (13.927–15.613) < 0.001*** (< 0.001–0.001) 

 LS 2.7 (2.526–2.767) 0.06 (0.056–0.073) 

 387 

Table 5 Differences in taxon coordinates on the first PFDA axis between lifestyle categories as 388 

shown by pairwise comparison. Values reported are means obtained from 100 phylogenetic 389 

trees. Minimum and maximum values obtained from our distribution of 100 phylogenetic trees 390 

are indicated in parentheses. Abbreviations: Aq, semi-aquatic; Ar, arboreal; Fo, fossorial; Te, 391 

terrestrial 392 

Pairwise comparison Adjusted P-value 

Aq vs. Ar 0.006** (0.005–0.007) 

Aq vs. Fo 0.547 (0.533–0.563) 

Aq vs. Te 0.161 (0.145–0.171) 

Ar vs. Fo < 0.001*** 

Ar vs. Te 0.001** (< 0.001–0.001) 

Fo vs. Te 0.028* (0.023–0.036) 

 393 

Monotremes and talpids have some of the most robust humeri. These taxa are also the most 394 

fossorial species in our sample. This is because burrowing habits generally go hand in hand 395 

with robust, stocky forelimbs for digging in hard substrates (Shimer 1903). Similarly, the 396 

primates in our sample have the slenderest humeri. They are also the species with the most 397 

arboreal habits. Indeed, arboreal species generally have slender, elongated forelimbs that allow 398 

them to move more efficiently in trees by increasing reach and reducing energy expenditure 399 

during vertical climbing, as longer arms allow them to lean back more, thereby increasing 400 

friction between the foot and the substrate (Preuschoft et al. 1996; Isler 2005). The talpids show 401 



the highest S values in the sample. Two reasons can explain these high S values: (1) The 402 

presence of cancellous bone considerably extending the transition between the medulla and the 403 

cortex. The corresponding compactness profile is flattened, resulting in a low slope of the 404 

asymptote at point P and thus a high S value (S = 1/slope). (2) Heterogeneity of cortical 405 

thickness. Variations in cortical thickness depending on the position within the cross-section 406 

mimic an extensive transition between the medulla and the cortex on the overall compactness 407 

profile. Talpids clearly show a thickening of the cortex antero-posteriorly (Fig. 2). An increase 408 

in mechanical stress in these regions, due to the attachment of strong muscles involved in the 409 

adduction/abduction cycle of the humerus (Rose et al. 2013), could explain these variations in 410 

cortical thickness. 411 

PHYLOGENETIC DISCRIMINANT MODEL AND PALAEOBIOLOGICAL INFERENCES 412 

Lambda was always greater than 0, indicative of a phylogenetic involvement in the PFDA, 413 

which attempts to maximise the relationships between humeral posture and the 414 

microanatomical parameters. This result is far from being surprising. Indeed, we saw that 415 

humeral posture was significantly associated with phylogeny (Table 2). Nevertheless, this 416 

confirmsour choice to use a classification method accounting for species relatedness. With a 417 

mean correct classification rate exceeding 85%, the PFDA model was very successful in 418 

discriminating the postural groups. Even monotremes and talpids, represented by only four 419 

individual taxa (Ornithorhynchus and Tachyglossus, and Euroscaptor and Talpa, respectively), 420 

are always correctly classified. 421 

The Late Eocene herpetotheriid Peratherium cuvieri was inferred to be “crouched” with 422 

all trees in our phylogenetic tree sample. Studies on herpetotheriid locomotion are very sparse. 423 

Kurz (2005) designated Amphiperatherium and another undetermined herpetotheriid as 424 

“cursorial” based on lumbar vertebral morphology and tail length. Horovitz et al. (2008) 425 

described Herpetotherium as “agile” based on femoral morphology. The literature is more 426 

abundant regarding their extant close relatives, the Didelphidae. The didelphids are commonly 427 

used as models to study the evolution of therian locomotion (Jenkins 1971; Jenkins and Weijs 428 

1979; Argot 2001; Butcher et al. 2011). Didelphids, like most small mammals, have a crouched 429 

posture (Jenkins 1971). Thus, a crouched posture in Peratherium cuvieri is deemed very 430 

plausible. 431 

The posture of permo-carboniferous synapsids (the earliest stem mammals) has been 432 

extensively studied, in comparison to that of herpetotheriids. Indeed, it is widely accepted, 433 



based on anatomical, biomechanical, and ichnological evidence, that the earliest stem mammals 434 

had sprawling limbs (Jenkins 1973; Hunt and Lucas 1998; Blob 2001; Benton 2015; Hopson 435 

2015; Wright 2018; Cavanaugh 2021). Therefore, it is not surprising that Dimetrodon natalis 436 

was inferred to be a sprawler by the PFDA model, although the posturalhas not yet been clearly 437 

established. Sometimes described as “lizard-like” (Bakker 1971; Desmond 1975), the sprawling 438 

posture of monotremes may in fact be close to the ancestral condition of synapsids, yet distinct 439 

from the sprawling posture of squamates and urodeles (Gambaryan and Kuznetsov 2013; 440 

Regnault et al. 2020), or it may be derived from early mammals with parasagittal limbs 441 

(Pridmore 1985). Similarly in reptiles, Crocodylia, with their “semi-erect” limbs, were 442 

commonly considered “primitive” posturally (Bakker 1971; Charig 1972), when in fact they 443 

are descended from more erect forms (Parrish 1987; Gatesy 1991; Reilly and Elias 1998). 444 

Body mass seems to have a confounding effect on our PFDA model (Table 4). This is 445 

not surprising since the parameter Pemin was used in the model. We have already mentioned 446 

that body mass and posture in mammals are strongly intertwined. But we do not see this as a 447 

problem, on the contrary. Indeed, our goal is to build a model that can effectively discriminate 448 

between humeral postures in mammals based on easily measurable parameters, including in 449 

fossils, so that inferences can be produced for extinct taxa. If body mass is a powerful parameter 450 

to achieve this goal, we should use it by including, or rather not excluding, parameters 451 

associated with it, such as the perimeter of the cross-section. However, body mass, although 452 

useful, is not sufficient to distinguish between postures. Indeed, some species have equivalent 453 

body mass but different posture; e.g. Marmota (crouched) and Tachyglossus (sprawling). It 454 

should also be mentioned here that some ungulates with erect limbs weigh less than 10 kg, e.g. 455 

dik-diks (genus Madoqua). The case of small ungulates, although beyond the scope of this 456 

study, is worthy of further investigation. Therefore, we believe that femoral geometric and 457 

microanatomical parameters contain a functional signal that a multivariate quantitative 458 

approach such as PFDA can effectively exploit. Lifestyle was significantly associated with the 459 

first axis of the model and was close to the significance level for the second axis. This is most 460 

likely due to the presence of SR in the model. Indeed, we saw that the slenderness ratio was 461 

significantly associated with both body mass, posture, and lifestyle. 462 

Post-hoc tests revealed that virtually all lifestyle categories were significantly different 463 

on the first axis with the exception of semi-aquatic taxa (Table 5). However, the only semi-464 

aquatic taxon in our analysis was Ornithorhynchus. Therefore, this is most likely due to the 465 

small sample size, which results in a lack of statistical power. However, semi-aquatic taxa, such 466 



as otters, deserve a separate study, as they tend to show pachyostosis and/or osteosclerosis (an 467 

increase in periosteal bone deposits and widespread spongiosa, respectively), which affect 468 

buoyancy (Houssaye et al. 2016a). 469 

At first glance, it is surprising that S was not retained in the PFDA model since it seems 470 

to be significantly associated with posture unlike P (Table 3). However, the result of the cross-471 

validation with the parameters Pemin, SR and S gives only 73% of correct classification (15% 472 

less compared to the original model). Ultimately, joint use of Pemin, SR and P seems to be the 473 

best parameter configuration to discriminate mammalian posture with our sample. 474 

Conclusion 475 

Using generalised least squares, we showed that all parameters that were significantly 476 

associated with posture, i.e. minimum humeral shaft perimeter (Pemin), bone cross-sectional 477 

area (BCSA), total cross-sectional area (TCSA), polar section modulus (Zpol), slenderness ratio 478 

(SR) and the reciprocal of the slope of the asymptote at point P on the compactness profile (S), 479 

were also significantly associated with body mass. This was expected as body mass is known 480 

to have an impact on posture in mammals, with smaller species having a crouched posture and 481 

larger species having more erect limbs to minimise body weight-induced stresses. The 482 

association between Zpol and posture was also expected since Zpol corresponds to the resistance 483 

of the shaft to torsion, and previous studies have shown that in mammals (and other taxa) 484 

crouched limbs are subject to higher torsional stresses than erect limbs, which are primarily 485 

loaded in flexion. We showed that SR and S were also related to lifestyle, with burrowing taxa 486 

having more robust humeri and arboreal taxa having slender humeri, and moles exhibiting 487 

heterogeneity in cortical thickness most likely related to the attachment of strong muscles on 488 

the anterior and posterior surfaces of the humerus involved in the limb adduction/abduction 489 

cycle. 490 

A number of parameters were significantly associated with phylogeny (Pemin, BSCA, 491 

TCSA, Zpol, S and RPSD), as well as posture itself. The lambda values from the PFDA model 492 

indicated an influence of the phylogeny in the data, justifying the use of a phylogenetically 493 

informed classification method. Elimination of overly correlated parameters followed by cross-494 

validation procedures ultimately yielded a PFDA model with three variables (Pemin, SR and P) 495 

that successfully discriminated postural groups (88% average correct classification into four 496 

categories based on 100 mammalian phylogenetic trees). Despite the small sample size, the 497 

model was able to correctly classify moles (modified humeral posture) and monotremes 498 



(sprawling humeral posture). Application of the model to extinct taxa yielded plausible results. 499 

Peratherium cuvieri and Dimetrodon natalis are inferred to have had a crouched and sprawling 500 

humeral posture, respectively. The PFDA model appeared to be significantly influenced by 501 

body mass and lifestyle, but nevertheless allows quantitative postural discrimination that size 502 

or lifestyle parameters alone would not achieve, while producing plausible inferences in extinct 503 

taxa. 504 

Our study highlights the complex interplay between body mass, lifestyle, posture and 505 

the geometry and microanatomy of the humerus in mammals. Our model can be used by 506 

palaeontologists to infer the humeral posture of other extinct species based on humeral cross-507 

sections alone. Extending our method to other appendicular skeletal elements could refine the 508 

inferences produced for extinct taxa, particularly those relevant to the context of shifts in limb 509 

posture (more sprawling to more erect/parasagittal limbs) in early mammals, which tend to 510 

exhibit a mosaic of characters. 511 
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