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Abstract

As a key regulator of bone homeostasis, sclerostin has garnered a lot of interest over 
the last two decades. Although sclerostin is primarily expressed by osteocytes and is 
well known for its role in bone formation and remodelling, it is also expressed by a 
number of other cells and potentially plays a role in other organs. Herein, we aim to 
bring together recent sclerostin research and discuss the effect of sclerostin on bone, 
cartilage, muscle, liver, kidney and the cardiovascular and immune systems. Particular 
focus is placed on its role in diseases, such as osteoporosis and myeloma bone disease, 
and the novel development of sclerostin as a therapeutic target. Anti-sclerostin 
antibodies have recently been approved for the treatment of osteoporosis. However, 
a cardiovascular signal was observed, prompting extensive research into the role of 
sclerostin in vascular and bone tissue crosstalk. The study of sclerostin expression 
in chronic kidney disease was followed by the investigation of its role in liver–lipid–
bone interactions, and the recent discovery of sclerostin as a myokine prompted new 
research into sclerostin within the bone–muscle relationship. Potentially, the effects of 
sclerostin reach beyond that of bone alone. We further summarise recent developments 
in the use of sclerostin as a potential therapeutic for osteoarthritis, osteosarcoma and 
sclerosteosis. Overall, these new treatments and discoveries illustrate progress within 
the field, however, also highlight remaining gaps in our knowledge.

Introduction

Sclerostin is a 22 kDa secreted glycoprotein encoded by 
the SOST gene. It is primarily expressed by osteocytes 
and plays a major role in bone homeostasis, affecting 
bone formation and bone remodelling through its role 
as a negative regulator of the Wnt/β-catenin signalling 
pathway (reviewed by Holdsworth  et  al. 2019). Sclerostin 
achieves this through inhibition of wingless-related 
integration site (Wnt)–ligand interaction with low-
density lipoprotein receptor protein 4/5/6 (LRP4/5/6) Wnt 
co-receptors (Leupin  et  al. 2011, Holdsworth  et  al. 2012). 
Changes in sclerostin expression mediates its function as a 
negative regulator of bone formation: SOST overexpression 

results in decreased bone formation, mass and strength, 
whereas disruption of sclerostin function or expression 
results in high bone mass conditions (Balemans et al. 2001, 
Van Wesenbeeck et al. 2003, Winkler et al. 2003, Loots et al. 
2005, Niziolek  et  al. 2015, Zhang  et  al. 2016, Kim  et  al. 
2017a). Thus, it is crucial that we continue to investigate 
this fascinating protein to better understand its biology 
and to provide future therapeutic options for disease 
modification.

The current review examines recent literature and 
expands on the earlier Holdsworth et  al. (2019) review, 
which examined the structure and biological function  
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of sclerostin as well as its role in disease (Holdsworth et al. 
2019). We explore recent progress made in our under-
standing of both sclerostin biology and its mechanism 
of action in the skeleton and beyond (Fig. 1). We also 
examine recent evidence for its potential as a therapeutic 
and highlight areas where further research could expand 
our current understanding of this protein.

The Wnt/β-catenin signalling pathway

Wnt inhibitors such as sclerostin and Dickkopf-related 
protein 1 (DKK1) elicit their biological effects through 
interaction with the Wnt/β-catenin signalling pathway, 
which has been reviewed extensively and will not be 
discussed in depth herein (Ke et al. 2012, Nusse & Clevers 
2017). Briefly, canonical Wnt signalling occurs via an 
autocrine or paracrine fashion presenting in either an 
on or off state (Fig. 2). The signalling cascade is activated 
when extracellular Wnt interacts with LRP5/6 and frizzled 
family (FZD) cell surface receptors, forming a ternary 
complex. This results in phosphorylation of the LRP5/6 
cytoplasmic domain and subsequent translocation via 
recruitment of the destruction complex consisting of 
axin, dishevelled (DVL), adenomatous polyposis coli 
(APC), glycogen synthase kinase 3β (GSK3β) and casein 
kinase 1 (CK1). Localisation to the cellular membrane 
disrupts the destruction complex activity, allowing 
non-phosphorylated β-catenin to accumulate in the 
cytoplasm. Here it is translocated to the nucleus to initiate 

transcription of Wnt target genes through interaction 
with TCF/LEF transcription factors (Ke et al. 2012, Nusse & 
Clevers 2017). The Wnt signalling pathway is switched to 
its off state when Wnt antagonists such as sclerostin and 
DKK1 interact with LRP5/6 surface receptors, preventing 
Wnt LRP5/6 interaction and subsequent formation of 
the Wnt/FZD/LRP5/6 ternary complex (Semënov  et  al. 
2001, Ai et al. 2005,  Balemans et al. 2008, Choi et al. 2009,  
Holdsworth et al. 2012,  Ke et al. 2012, Bullock et al. 2019). 
The destruction complex remains active and ubiquitinates 
cytoplasmic phosphorylated β-catenin for degradation 
by the proteasome. β-catenin does not translocate to the 
nucleus, and Wnt target gene transcription is repressed due 
to the association of Groucho instead of β-catenin with 
TCF/LEF (Nusse & Clevers 2017).

Sclerostin and bone

Activation of the Wnt/β-catenin signalling pathway 
promotes mesenchymal cell differentiation into 
preosteoblasts and subsequent osteoblasts, which lay 
down an organic matrix that is mineralised to form bone 
(reviewed by Holdsworth  et  al. 2019). Osteoblasts either 
remain on the bone surface as quiescent bone lining cells, 
undergo apoptosis or become embedded in the bone 
matrix to eventually become osteocytes, the primary 
source of sclerostin in the adult skeleton (Poole  et  al. 
2005, Capulli  et  al. 2014). In addition to negatively 
regulating the above processes, sclerostin contributes to 

Figure 1
Current knowledge on the role of sclerostin in the 
body. Primary research article searches of 
sclerostin and tissue type published between 
2001 and 2022 were carried out on PubMed with 
review articles excluded. The number of hits were 
converted into log base 2 to generate a scale, with 
hits for each tissue highlighted on the scale. 
Arrows in the tissue detail boxes indicate 
direction of altered sclerostin levels in disease 
with colour of box reflecting the volume of data 
published based on the scale generated. The 
number of studies per tissue excluding review 
articles: bone (2312), kidney (282), cardiovascular 
(213), muscle (115), cartilage (88), immune system 
(61) and liver (44). Created with https://www.
biorender.com/.
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maintaining the bone lining cells in a quiescent state and 
inhibits differentiation of late osteoblasts into osteocytes 
via inhibition of canonical Wnt signalling (Atkins  et  al. 
2011, Kim  et  al. 2017b, Hong  et  al. 2022). Sclerostin also 
plays an important role in the regulation of bone marrow 
adiposity and bone marrow adipose tissue (reviewed by  
Holdsworth et al. 2019). Furthermore, sclerostin indirectly 
affects bone resorption by upregulating osteocyte-
expressed receptor activator of nuclear factor-κB ligand 
(RANKL), an essential cytokine for osteoclast development 
and activity, and decreasing expression of osteoprotegerin 
(OPG), a decoy receptor for RANKL, in mature osteoblasts 
and osteocytes, thereby increasing osteoclastogenesis 
(Simonet et al. 1997, Glass et al. 2005, Nakashima et al. 2011, 
Wijenayaka  et  al. 2011). Indeed, administration of anti-
sclerostin antibodies to oestrogen-deficient osteocytes 
decreases osteoclastogenesis and resorption, highlighting 

the importance of sclerostin in the upregulated pro-
osteoclastogenic signalling between osteocytes and 
osteoclasts in the absence of oestrogen (Allison et al. 2020). 
Moreover, the presence of osteoclasts in trabecular bone 
reduces sclerostin expression in osteocytes, suggesting 
that osteoclast-mediated reduction in sclerostin facilitates 
trabecular bone formation (Koide  et  al. 2020). Overall, 
these results demonstrate the importance of sclerostin in 
modulating the RANKL/OPG ratio, a major determinant 
of bone mass and strength (reviewed by Holdsworth et al. 
2019).

Osteoporosis

Postmenopausal (type I) osteoporosis is the most common 
form of the disease and is characterised by increased bone 
fragility and susceptibility to fractures. These symptoms 

Figure 2
Wnt/β-catenin signalling pathway. During the ‘on’ state of the pathway, Wnt binds to LRP5/6, resulting in localisation of the destruction complex to the 
membrane and disruption of destruction complex activity. Non-phosphorylated β-catenin accumulates in the cytoplasm and is translocated to the 
nucleus where it interacts with TCF/LEF to initiate transcription of Wnt target genes. During the ‘off’ state, sclerostin (Scl) binds to LRP4/5/6 and DKK1 
interacts with LRP5/6 and Kremen, preventing Wnt from interacting with the Wnt receptors. Phosphorylated β-catenin is ubiquitinated by the destruction 
complex for degradation by the proteasome, resulting in repression of Wnt target gene expression. Created with https://www.biorender.com/.
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result from low bone mass and reduced bone structural 
integrity caused by aging and menopause-related decrease 
in oestrogen levels, which has been shown to increase 
sclerostin expression (Dobbs  et  al. 1999). Despite this 
link, studies have shown serum and bone sclerostin levels 
to be positively correlated with bone mineral density 
(BMD) in osteoporosis, which may be explained by the 
decreased osteocyte number in low BMD disorders such as  
osteoporosis (Ueland  et  al. 2019, Gorter  et  al. 2022). 
Osteoporosis is treated with either antiresorptive 
or bone-anabolic drugs. The major antiresorptives 
are bisphosphonates and denosumab, a humanised 
monoclonal anti-RANKL antibody (Storm  et  al. 1990, 
Pols  et  al. 1999, McClung  et  al. 2006, Brown  et  al. 2009, 
Baron  et  al. 2011). The anabolic agents teriparatide 
(parathyroid hormone (PTH) 1-34) and abaloparatide 
(parathyroid hormone-related protein (PTHrP) 1-34) 
are used in patients with more severe and established 
osteoporosis (Yu et al. 2014, Leder et al. 2015, Eastell et al. 
2019). In 2019, an additional anabolic agent, romosozumab 
(EVENITY™), was approved by the United States Food and 
Drug Administration (FDA) and the European Medicines 
Agency (EMA) for treating postmenopausal women at 
a high risk of osteoporotic fractures. Romosozumab, a 
humanised monoclonal anti-sclerostin antibody, blocks 
sclerostin-mediated Wnt inhibition, resulting in increased 
bone formation whilst inhibiting bone resorption. Phase 
III clinical trials have shown therapeutic effectiveness 
in reducing fractures in elderly osteoporotic patients 
(Cosman et al. 2016, Saag et al. 2017, Lewiecki et al. 2018). 
However, there are concerns regarding the effect of 
romosozumab on the cardiovascular system (discussed in 
more detail later in this review). Alternative anti-sclerostin 
antibodies are also in various stages of development 
including setrusumab, a sclerostin neutralising human 
IgG2λ monoclonal antibody which is being investigated 
for the treatment of moderate osteogenesis imperfecta 
and hypophosphatasia (Glorieux et al. 2017, Seefried et al. 
2017). Additionally, blosozumab, a recombinant 
humanised antibody, has shown promising results as a 
potential treatment for postmenopausal osteoporosis  
and is currently in phase I clinical trials in China 
(Recker et al. 2015).

Idiopathic scoliosis

Idiopathic scoliosis (IS) is a low bone mass disorder often 
characterised by spinal deformities (Cheng  et  al. 2007). 
Zhang et  al. reported lower SOST gene expression and 
serum sclerostin levels that were negatively correlated 

with plasma miRNA-145 in adolescent IS (AIS), the most 
common type of scoliosis (Zhang  et  al. 2018). Moreover, 
osteocyte secretion of sclerostin was reduced in AIS patients 
due to reduced osteocyte numbers as well as augmented 
osteocyte function caused by aberrant miRNA-145/β-
catenin expression. Overactive canonical Wnt signalling 
in IS inhibits osteoblast differentiation to osteocytes and 
negatively affects matrix mineralisation in AIS instead 
of yielding the expected high bone mass phenotype 
(Rodda & McMahon 2006, Regard et al. 2011). This defect 
in mineralisation results in inferior bone mechanical 
properties which might increase the susceptibility of bone  
to asymmetrical forces, leading to spinal column  
deformities (Vasiliadis  et  al. 2021). Vasiliadis  et  al. 
hypothesised that stimulating osteocyte sclerostin 
secretion and restoring normal function of the Wnt/β-
catenin signalling pathway during growth could, in 
theory, increase bone strength and prevent deterioration 
of the scoliotic deformity. However, Zhang et  al. noted 
that further study of osteoclastogenesis and osteoclast 
resorption activity is required to give a more comprehensive 
picture of bone remodelling in AIS (Zhang  et  al. 2018). 
Further investigation of miRNA-145 effects on osteoblast 
and osteocyte development and function may provide 
clarity on AIS-related changes in SOST expression.

Myeloma bone disease

Myeloma bone disease (MBD) is characterised by a 
plasma cell malignancy that forms in the bone marrow, 
often leading to severe bone destruction, pathological 
fractures, osteolytic bone lesions and debilitating bone 
pain (Delgado-Calle  et al. 2014, Paton‐Hough  et al. 2019). 
The condition is caused by imbalance and uncoupling 
of the bone-remodelling process, whereby sclerostin is 
suggested to contribute to increased osteoclast-mediated 
bone resorption and decreased osteoblast-mediated 
bone formation (Paton‐Hough  et  al. 2019). Indeed, MBD 
patients have increased serum sclerostin, correlating with 
disease stage and degree of bone destruction (Eda  et  al. 
2016). The source of this sclerostin is contentious, with 
multiple studies reporting that multiple myeloma (MM) 
cells secrete sclerostin with other osteoclast activating 
factors and osteoblast inhibitory factors, including DKK1 
in the bone marrow micro-environment (Tian et al. 2003, 
Brunetti  et al. 2011, Colucci  et al. 2011, Habibi  et al. 2013, 
Eda  et  al. 2016). Conversely, McDonald et  al. reported 
that SOST was not expressed in MM cells isolated from 
myeloma patients or in numerous myeloma cell lines 
(McDonald et al. 2017). However, MM cancer cells have been 
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shown to alter osteocyte (the primary source of sclerostin) 
viability and gene expression (Atkinson & Delgado‐Calle 
2019). Liu et  al. showed that sclerostin is upregulated 
by histone acetyltransferase major histocompatibility 
complex (MHC) class II transactivator (CIITA) expressed in 
osteocytes, resulting in decreased osteoblastogenesis and 
increased osteoclastogenesis (Liu et al. 2022). Furthermore, 
MM cells increase osteocyte death through upregulation 
of activated Notch signalling-mediated apoptosis and 
autophagy, which triggers osteoclast formation and 
activity (Giuliani  et  al. 2012, Delgado-Calle  et  al. 2016,  
Toscani  et  al. 2018). Notably, Mabille et  al. showed that 
DKK1 and sclerostin are increased 4 months prior to relapse 
from treatment (Mabille et al. 2018).

There is a positive correlation between circulating 
sclerostin and osteolytic fractures, disease stage and bone 
remodelling markers in MBD patients, with mounting 
evidence for the benefit of bone anabolic agents in 
treatment of MBD (Gau  et  al. 2022). Mice injected with 
myeloma cells showed significant bone loss (Lawson et al. 
2015). Interestingly, Sost deletion or treatment with 
anti-sclerostin antibodies increased osteoblastogenesis 
and bone formation rate. Additionally, anti-sclerostin 
antibodies prevented myeloma-induced bone loss, 
increased fracture resistance and decreased osteolytic 
bone lesions without interfering with MM chemotherapy 
(Delgado-Calle  et  al. 2017). Co-treatment with the 
antiresorptive agent zoledronic acid (Zol) increased bone 
mass and fracture resistance when compared with Zol 
alone in preclinical models of myeloma and may prevent 
the onset of MBD whilst increasing resistance to fractures 
(McDonald et al. 2017). Furthermore, combined inhibition 
of sclerostin and DKK1 (DKK1 levels are elevated in MM 
cells and rodents treated with anti-sclerostin antibodies) 
with a bi-specific antibody or a combination of anti-
sclerostin and anti-DKK1 antibodies has a synergistic effect 
on increased bone formation and bone strength in mice 
and might be a potential therapeutic strategy for treating 
MBD (Stolina et al. 2014, Nioi et al. 2015, Florio et al. 2016, 
Taylor  et  al. 2016, Holdsworth  et  al. 2018, Witcher  et  al. 
2018).

Sclerosteosis

In contrast to osteoporosis and IS, sclerosteosis is a high 
bone mass condition. It is autosomal recessive and is caused 
by loss of function mutations in SOST and LRP4, the latter 
causing sclerosteosis 2 (Beighton 1988, Balemans  et  al. 
2001, Balemans  et  al. 2002, Fijalkowski  et  al. 2016). This 
condition is associated with increased bone formation and 

has been studied intensively in Sost–/− mice, a mouse model 
of sclerosteosis (Li et al. 2008). It has recently been shown 
that due to lack of sclerostin-mediated upregulation of 
RANKL expression, remodelling-based bone formation 
likely accounts for two-thirds of bone formed in 12-week-
old Sost-deficient mice (Koide  et  al. 2022). Importantly, 
sclerosteosis has no pharmacological treatment with 
symptoms managed through surgery. However, efforts 
have been made to develop potential new treatments 
through protein replacement therapy (Dreyer et al. 2021).

Sclerostin and cartilage

Chondrocytes produce and maintain the cartilage 
extracellular matrix (ECM) present on the articular 
surface for healthy joint function (reviewed by Akkiraju 
& Nohe 2015). These stable, mature chondrocytes are 
derived from mesenchymal cells that differentiate down 
the chondrogenic lineage. Differentiation is halted once 
the mature chondrocyte stage is reached and cells remain 
in a steady state, maintaining cartilage homeostasis. In 
contrast, during endochondral ossification (observed 
during long bone growth and fracture repair), mature 
chondrocytes undergo hypertrophic differentiation 
leading to the catabolism of ECM components. This 
degeneration of the cartilage ECM includes mineral 
deposition and paves the way for subsequent bone 
formation (Goldring 2012). Sclerostin has been shown 
to be expressed in chondrocytes in vitro, facilitating early 
chondrogenic differentiation through suppression of 
Wnt/β-catenin signalling (Yamaguchi  et  al. 2018). This 
expression is lost during hypertrophic differentiation 
resulting in high levels of Wnt/β-catenin signalling 
(Ma et al. 2013, Yamaguchi et al. 2018). Interestingly, Pinch2 
knockout mice have been shown to express high levels of 
sclerostin in their hypertrophic zone chondrocytes and 
phenotypically display low bone mass and shortened 
limbs, providing further evidence that sclerostin may be a 
negative regulator of endochondral ossification (Lei  et al. 
2020).

Osteoarthritis

Osteoarthritis (OA) is a degenerative joint disease 
characterised by progressive loss of articular cartilage, in 
addition to subchondral bone exposure and remodelling, 
synovial inflammation and osteophyte formation. 
During OA development, mature chondrocytes continue 
to differentiate into a hypertrophic and catabolic state 
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which leads to degeneration of the cartilage matrix 
(Goldring 2012). Sclerostin expression is elevated in 
articular chondrocytes following surgically induced OA 
and is reduced in subchondral bone in association with 
bone sclerosis, suggesting that sclerostin might play a role 
in preventing articular cartilage degradation (Chan  et  al. 
2011). Additionally, an increase in miRNA-218-5p, a SOST 
inhibitor, was reported to be upregulated in moderate to 
severe human OA and has been suggested as a potential 
therapeutic target (Lu et al. 2017). During OA development 
sclerostin expression is reduced in human subchondral 
bone from OA subjects undergoing total knee arthroplasty 
(Wu et al. 2016). This has been replicated in vivo with Sost-
deficient mice displaying increased subchondral bone 
sclerosis and subsequent OA development (Li et al. 2019a). 
It is suggested that OA osteoclasts secrete higher levels of the 
sclerostin-negative regulator, leukaemia inhibitory factor 
(LIF), resulting in increased Wnt/β-catenin signalling. 
This leads to subsequent abnormal bone remodelling, 
further exacerbating cartilage destruction. Interestingly, 
inhibition of osteoclasts with alendronate attenuates LIF 
expression and cartilage degeneration (Zhao  et  al. 2022). 
These data suggest that sclerostin depletion may play a role 
in OA development and is therefore a plausible therapeutic 
target for targeting early to moderate OA as a means to 
prevent disease progression.

Sclerostin and the cardiovascular system

Increasing data suggests a role for Wnt signalling in 
the pathophysiology of vascular diseases and ageing 
(Catalano  et  al. 2020). Wnt signalling also interacts with 
endothelial dysfunction, affecting both the proliferation 
and migration of vascular smooth muscle cells (VSMCs) 
and intimal thickening.

Atherosclerosis

Atherosclerosis is a chronic inflammatory disease of the 
arterial wall (Libby  et  al. 2019). Research suggests that 
sclerostin is linked to subclinical atherosclerosis and is 
inversely associated with carotid intima-media thickness 
(CIMT) in postmenopausal woman with type II diabetes 
mellitus (Morales-Santana  et al. 2013, Gaudio  et al. 2014). 
Leto  et  al. reported SOST expression at the vascular 
level in humans. Sclerostin production was identified 
in atherosclerotic plaques of patients that had carotid 
endarterectomy, with significantly greater quantities in 
the media compared to intima. Vascular smooth muscle 

cells (VSMCs) also displayed higher sclerostin levels 
than infiltrating macrophages (Leto  et  al. 2019). Excess 
sclerostin has been shown to be protective against the 
progression of both atherosclerosis and inflammation in 
the Apolipoprotein E (ApoE) mouse model (Krishna  et al. 
2017). Decreased sclerostin may therefore be related to 
higher susceptibility to atheroprogression. Turk  et  al. 
further evaluated the relationship between sclerostin and 
atheroprogression with nonclinical toxicology and safety 
packages and found no significant correlation between 
sclerostin inhibition and atheroprogression in two ApoE 
models (Turk  et  al. 2020). Similarly, Holdsworth  et  al. 
observed little or no sclerostin in human plaques. Sclerostin 
intensity was decreased compared to normal aorta and was 
found in deeper areas of the plaque and aorta wall, but 
not in regions known to be relevant to plaque stability, 
such as the fibrous cap and the endothelium. These data 
indicate little association of sclerostin involvement with 
the stability of an atherosclerotic plaque (Holdsworth et al. 
2021).

Vascular calcification

Sclerostin has been discovered in the aorta of patients 
undergoing aortic valve replacement and found to be 
increased in both calcified vascular plaques and calcifying 
VSMCs (Didangelos et al. 2011, Zhu et al. 2011, Koos et al. 
2013). Sclerostin serum levels were positively correlated 
with the presence of thoracic aorta calcification and 
positive SOST expression in the vascular system (Li  et  al. 
2019b). Evidence also exists that sclerostin could 
differentially affect vascular calcification (VC) in distinct 
vascular beds. Sclerostin was linked to an increased risk 
(1.61×) of coronary artery calcification (CAC) whilst there 
was no link to aortic artery calcification (AAC) in recent 
work performed by Kuipers et al. (2015). However, calcified 
aorta in rats with chronic kidney disease (CKD) secreted 
increased amounts of sclerostin and displayed impaired 
bone metabolism (Mace  et  al. 2021). Further in vitro 
analysis with calcified aorta rings co-incubated with UMR-
106 osteoblast‐like cells showed detrimental effects of the 
calcified aorta on bone mineralisation, suggesting crosstalk 
between vascular and bone tissue (Mace et al. 2022). De Maré 
et al. showed that SOST−/− mice with adenine diet-induced 
CKD had significantly higher calcium content in their 
aorta compared to wild type (De Maré et al. 2022). DBA/2J 
mice on a warfarin diet were treated with an anti-sclerostin 
antibody and displayed significantly more calcification in 
both the aorta and renal arteries, suggesting that sclerostin 
offers a protective role during the development of vascular 
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calcifications (De Maré  et  al. 2022). The bone–vascular 
axis should thus be a key consideration when developing 
new therapeutics for vascular calcification and augmented 
bone metabolism (De Maré et al. 2019a).

Romosozumab and cardiovascular events

Romosozumab has been compared to alendronate, an oral 
bisphosphonate that effectively suppresses osteoclast-
mediated bone resorption and lowers fracture risk in 
postmenopausal women with osteoporosis (Schenk  et  al. 
1986, Liberman et al. 1995, Chavassieux et al. 1997, Saag et al. 
2017). Moreover, bisphosphonates have previously been 
linked to cardioprotection; however, a recent review 
by Fuggle et  al. suggests that this might not be the case 
(Kim et al. 2015, Kranenburg et al. 2016, Fuggle et al. 2020).

Data collected from BRIDGE (placebo-controlled 
double-blind study evaluating the efficacy and safety of 
romosozumab in treating men with osteoporosis) and 
ARCH (active-controlled fracture study in postmenopausal 
women with osteoporosis at high risk) phase III randomised 
control trials (RCTs) using romosozumab showed a 
disproportionate occurrence in serious cardiovascular 
events (CVEs) (Saag  et  al. 2017, Lewiecki  et  al. 2018). This 
caused regulatory bodies to issue warnings on the product 
labels for the increased risk of heart attack, stroke and 
cardiovascular deaths. As such, romosozumab is not 
indicated for patients who have suffered such an event in 
the past year.

The increased adverse CVEs observed when comparing 
romosozumab to alendronate (2.5% vs 1.9%) during the 
ARCH phase III RCT could not be explained by baseline 
cardiovascular risk or concurrent use of cardiovascular 
medication (Saag  et al. 2017). The FRAME (fracture study 
in post-menopausal women with osteoporosis) study 
did not produce similar results; however, this trial did 
enrol a study population with different criteria and was 
placebo controlled (Cosman et al. 2016). A meta-analysis 
by Lv et al. showed that romosozumab treatment was not 
associated with an increased risk of a three-point major 
adverse cardiovascular event composite (cardiovascular 
death or death, myocardial infarction and stroke), 
composite cardiovascular outcomes (including stroke, 
atrial fibrillation, heart failure and coronary heart disease) 
or any specific cardiovascular outcomes in patients 
with osteoporosis (Lv  et  al. 2020). However, there was 
a significant increase in the risk of four-point major  
adverse cardiovascular event composite (cardiovascular 
death, myocardial infarction, stroke and heart failure) 
with romosozumab treatment. Results from another  

meta-analyses of both published and unpublished 
(FRAME data made available to the U.S. FDA Drugs 
Advisory Committee) cardiovascular outcome trial 
data from romosozumab suggested that SOST genetic 
variants were also at a higher risk of myocardial infarction 
and/or coronary revascularisation and major adverse 
cardiovascular events, and concluded that sclerostin 
inhibition could elevate the risk of cardiovascular disease 
(CVD), necessitating a review of the cardiovascular safety 
of anti-sclerostin therapies (Bovijn et al. 2020).

However, the meta-analyses received criticism from 
Holm  et  al. who found fault with both the analysis and 
interpretation of the results (Holm et al. 2021). This study 
indicated that the analysis used a non-suitable significance 
threshold and use of the suggested P-value would require 
significant backing by data, which was not provided. The 
meta-analysis of all the RCTs also showed no association 
with cardiovascular incidences. It was also noted that 
coronary artery disease had been examined extensively 
within genome-wide association studies (GWAS), 
yet no SOST variants were seen (Buniello  et  al. 2019). 
Furthermore, there was disagreement with reporting 
the P-values of the combined markers when these are 
not independent, thus exaggerating the significance 
(Holm  et  al. 2021). Holm et  al. noted that any potential 
relationship between the SOST BMD variant and CV risk 
has not been established as a driver by Bovijn et al. There are 
other SOST variants found in these vascular regions, thus 
making it impossible to undertake colocalisation analyses 
with the CVD phenotype (Holm  et al. 2021). Bovijn et al. 
rebutted the comments, cautioning that the data from 
the RCTs of romosozumab did not show any relationship 
determined by their choice of P-value (Buniello et al. 2019). 
Additionally, the scale of a GWAS variant is not a correct 
illustration of the magnitude of biological effect seen when 
augmenting the protein produced by the same gene with 
a therapeutic agent (Bovijn et al. 2021). Regardless, despite 
contradictory data or the lack of evidence that inhibiting 
sclerostin has a detrimental effect upon the cardiovascular 
system, it is recommended that romosozumab should be 
carefully prescribed, weighing up the cardiovascular risk to 
the patient (Langdahl et al. 2021).

Work conducted by Yu et  al. examined the role of 
sclerostin in cardiovascular protection as well as bone 
formation by targeting different loops of the sclerostin 
structure. In vitro and in vivo studies demonstrated 
that loop 3 deficiency, either by pharmacologically 
targeting loop 3 with Apc001PE or by genetic truncation, 
maintained protective features on the cardiovascular 
system. Interestingly, both loop 2 and loop 3 targeting 
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in MC3T3-E1 cells diminished the inhibition of bone 
formation by sclerostin, which was mirrored in vivo in 
mice. Of note, the authors did not provide comparative 
data to sclerostin neutralisation through the use of an 
approved therapeutic antibody. As such, the decrease 
in cardiovascular risk could not be entirely quantified. 
Nevertheless, these data could inform on the creation of 
novel sclerostin inhibitors for future bone therapeutics 
coupled with decreased cardiovascular risk (Yu et al. 2022).

Other cardiovascular events

The function of sclerostin in aortic aneurysms was 
examined in vitro as well as in mouse models and human 
specimens (Krishna  et  al. 2017). This study revealed that 
sclerostin expression in the aorta was downregulated 
in human aortic aneurysms, possibly due to epigenetic 
silencing. Interestingly, sclerostin prevented angiotensin 
II-induced aortic aneurysms in the thoracic and abdominal 
aorta in SOST transgenic ApoE−/− mice, suggesting 
a potential therapeutic strategy via upregulation of 
sclerostin (Krishna  et  al. 2017). Arterial wall stiffness is a 
hallmark of arterial ageing, and interestingly sclerostin 
has been identified as an independent marker of arterial 
stiffness in healthy adults. However, DKK1 did not show 
a similar correlation (Gaudio  et  al. 2017). These two Wnt 
signalling inhibitors have very similar roles in vascular 
cells yet show a significant difference in behaviour in this 
process, which could account for their differing expression 
throughout the body (Gaudio et al. 2014, Desjardins et al. 
2014, Hsu et al. 2016).

Interestingly, Javaheri et  al. found that bone loss 
in a mouse model of glucocorticoid excess was not 
rescued by Sost haploinsufficiency (Javaheri  et  al. 2019), 
contradicting previous studies which reported that 
genetic deletion of Sost and anti-sclerostin antibody 
treatment rescued glucocorticoid-induced low bone 
mass (Marenzana  et  al. 2011, Sato  et  al. 2016, Yao  et  al. 
2016, Javaheri  et  al. 2019). However, sclerostin deficiency 
combined with glucocorticoid excess resulted in sporadic, 
sudden, unprovoked and nonconvulsive death caused by 
peracute hemopericardium and cardiac tamponade. The 
authors speculate that glucocorticoid excess may also 
result in increased cardiac risk in situations of sclerostin 
suppression. They suggest that the developmental effect 
of excessive glucocorticoids and Sost haploinsufficiency, 
as well as differences in experimental design and analysis, 
could be potential reasons for the inconsistency between 
this study and studies that rescue glucocorticoid induced 
bone loss through Sost deletion and antisclerostin 

antibody treatment (Javaheri et al. 2019). However, a link 
from this preclinical study to the clinical situation has not 
been demonstrated.

Sclerostin and the immune system

Many signalling pathways, including the Wnt/β-catenin 
pathway, contribute to regulation of haematopoiesis in 
adults (Geest & Coffer 2009, Luis  et  al. 2011, Huang  et  al. 
2012). Sclerostin depletion has been shown to affect 
B-lymphopoiesis and myelopoiesis, as well as other 
changes within the bone marrow cavity that could affect 
haematopoiesis (Donham  et  al. 2021, Sun  et  al. 2021). 
Furthermore, lack of sclerostin results in increased B-cell 
apoptosis and decreased CXCL12 (an important B-cell 
growth stimulating factor) expression (Cain  et  al. 2012). 
Impaired B-lymphocyte survival causes a reduced number 
of B-lymphocytes in Sost−/− (MGI:3797839) bone marrow, an 
effect that is mediated in an indirect cell-extrinsic manner. 
Conversely, B-lymphocyte development was not affected 
by deletion of Sost (using Dmp1-Cre) in osteocytes; however, 
decreased B-cell precursors and immature B-cell subsets 
were observed when Sost was deleted (using Prx1-Cre) in 
mesenchymal stem cells (MSCs) (Yee et al. 2018). However, 
this decrease was not as pronounced as in global Sost−/− 
mice, suggesting that another sclerostin expressing cell is 
involved in B-cell development (Cain et al. 2012, Yee et al. 
2018). You et al. demonstrated that sclerostin is necessary 
for inducing T helper 17 (Th17) cell differentiation, which 
are responsible for bone resorption by promoting the 
levels of interleukin (IL)-6 and transforming growth factor 
(TGF)-β. In addition, it has been shown that sclerostin 
inhibits the differentiation of regulatory T (Treg) cells by 
reducing the expression of IL-10 and Foxp3, which play 
essential roles in Treg cell development (You  et  al. 2018). 
These findings suggest that further research is warranted 
to determine whether sclerostin-depleting therapies could 
result in similar alterations in B-cell dynamics.

Sclerostin and other organs

Muscle

Muscle and bone are both endocrine target tissues and 
endocrine organs (Brunetti  et  al. 2017, Giudice & Taylor 
2017). Previously it was believed that locomotion was the 
singular method of crosstalk between muscle and bone. 
However, crosstalk also occurs when muscle and bone 
interact with each other through paracrine and endocrine 
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signals, which play key roles in modulation of their 
mutual development and function (Brotto & Bonewald 
2015, Tagliaferri  et  al. 2015). Many tissue-specific factors 
released by osteoblasts and osteocytes, such as osteocalcin 
and insulin-like growth factor 1 (IGF1), appear to have a 
potential impact on skeletal muscle. Similarly, a number 
of factors released by muscle with bone-modulating 
properties have been identified (Magarò et al. 2021). Skeletal 
muscle cells (myocytes) release myokines, a panel of 
proteins and cytokines which exert paracrine or endocrine 
regulatory functions on bone, among other distant organs 
and tissues (Gomarasca et al. 2020). Myogenic media from 
differentiating C2C12 myoblast cells altered the functional 
maturation of osteoblasts and was shown to have 
inhibitory effects on bone cell differentiation. Sclerostin 
was identified as a myokine expressed by C2C12 muscle 
cells and primary murine myoblasts (from C57BL/6J 
mice) in all stages of differentiation and was dynamically 
secreted in the myogenic medium during myogenic lineage 
progression (Magarò et al. 2021). It appears that myoblast 
sclerostin secretion does not affect circulating sclerostin 
levels and myokines may affect adjacent bones through 
a paracrine mechanism, relying on their diffusion across 
muscle and bone tissues. This suggests that sclerostin 
released by bone might synergise with sclerostin released 
by skeletal muscle to inhibit osteogenesis (Magarò  et  al. 
2021). Magarò et al. showed that both muscle- and bone-
secreted sclerostin reduce bone formation. Overexpression 
of sclerostin by myocytes induced trabecular bone loss, but 
did not influence cortical bone parameters. Interestingly, 
sclerostin has been found to be expressed by metastatic 
breast cancer cells. Treating cancer bearing mice with 
anti-sclerostin (setrusumab) decreased osteolytic bone 
destruction and muscle weakness (Hesse  et  al. 2019). 
Muscle fibre atrophy was reversed by inhibiting the 
osteoclast-mediated increase in TGF-β1, suggesting cross 
talk between bone and muscle (Hesse et al. 2019). Although 
existing evidence shows that sclerostin secreted by both 
bone and skeletal muscles regulates bone homeostasis, 
further research is required to fully uncover the processes 
underlying sclerostin-mediated regulation of bone–muscle 
interaction. Understanding of these processes could be 
used to develop innovative therapeutics for diseases such 
as osteoporosis and sarcopenia.

Liver

Increasing evidence exists concerning the relationship 
between liver and bone metabolism. Sclerostin is known 
to be involved in metabolic abnormalities and is possibly 

increased in patients with impaired glucose regulation, 
correlating with insulin resistance in skeletal muscle, 
adipose tissue and the liver (Daniele et al. 2015). Remarkably, 
higher sclerostin levels are seen in type II diabetes as well 
as in men with excessive alcohol use (Gennari et al. 2012, 
Napoli et al. 2018, Martín González et al. 2022). Circulating 
sclerostin levels were lower in non-alcoholic fatty liver 
disease (NAFLD) patients and were negatively correlated 
with multiple metabolic parameters whilst showing no 
significant correlation to controls (Zou et al. 2020). Evidence 
suggests that NAFLD is a multisystem disease that affects 
several organ systems other than the liver and interacts 
with the regulation of multiple metabolic, endocrine, 
and pro-inflammatory pathways (Younossi  et  al. 2018). 
Significant differences in whole-body or lumbar BMD Z 
scores between children or adolescents with and without 
NAFLD have been described, suggesting that liver–bone 
interaction and the underlying mechanism should be 
further investigated (Mantovani  et  al. 2019). Zhou et  al. 
observed reduced bone mass as well as lower sclerostin 
expression levels in the bone and liver tissues of mice fed 
on a high-fat diet. These results suggest that liver–lipid–
bone interactions may play a key role in the abnormal bone 
metabolism in NAFLD (Zhou  et  al. 2021). These studies 
focused primarily on serum sclerostin levels, sclerostin 
mRNA expression and changes to bone parameters, thus 
further research is needed to clarify any effects of sclerostin 
on liver biology and function and to understand the link 
between liver and bone cells.

Kidney

Serum sclerostin is increased in patients with chronic 
kidney disease (CKD), with sclerostin hypothesised to 
originate from the skeleton and vasculature (Zhu  et  al. 
2011, Brandenburg  et al. 2019). The increase in sclerostin 
with CKD progression is most notable in stage 3 CKD, 
indicating that sclerostin is inversely proportional to 
glomerular filtration rate (Pelletier  et  al. 2015). The 
heightened sclerostin expression seen in CKD patients is 
thought to be a result of many factors, including sclerostin 
renal retention (Sabbagh et al. 2012, Bruzzese et al. 2016). 
However, it has been reported that urinary sclerostin 
excretion increases simultaneously with declining 
estimated glomerular filtration rate (eGFR) and increasing 
sclerostin secretion from osteocytes (Sabbagh  et al. 2012, 
Bruzzese  et  al. 2016). The importance of sclerostin for 
cardiovascular and bone health in CKD patients is not 
fully understood. Studies have shown that CKD patients 
are at a higher risk of CVEs. Additionally, sclerostin is 
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expressed within their vasculature with highly active 
vascular calcification processes. Within this patient 
population, anti-sclerostin antibody treatments have a 
weakened efficacy on bone, coupled with an increased rate 
of hypocalcaemia (Cejka 2021). The function of sclerostin 
in the uremic arteries is unknown; however, it may be 
postulated that its expression within the vasculature 
could be a marker for uremic damage (Marchand  et  al. 
2011). In patients undergoing peritoneal dialysis, low 
serum sclerostin was related to an increased survival 
rate as well as a lower chance of a CVE. This relationship 
does not correlate with haemodialysis patients (Zou et al. 
2020). Sclerostin may have utility as a clinically relevant 
marker of disturbed bone metabolism in end-stage kidney 
disease patients (De Maré et al. 2019b). However, further in 
vitro and in vivo cause–effect studies are required to better 
understand the role of sclerostin in the kidney and how it 
relates to both bone and vasculature.

Sclerostin as a therapeutic

An increased understanding of sclerostin and its function 
in bone biology has resulted in the investigation of 
sclerostin as a therapeutic. Here, we focus on the latest 
advances in sclerostin as a treatment for sclerosteosis, OA 
and osteosarcoma.

Sclerosteosis

Sclerostin replacement therapy has recently been 
investigated as a potential treatment for sclerosteosis by 
replacing absent sclerostin with recombinant wildtype 
or sclerostin fusion constructs (Dreyer et al. 2021). Dreyer 
et  al. demonstrated that wildtype murine sclerostin, 
sclerostin human immunoglobulin G1 (IgG1) fragment 
crystallisable (Fc) fusion protein (mScl-hFc) and sclerostin 
human Fc fusion with a bone targeting C-terminal poly-
aspartate motif (mScl-hFc-PD) bound with high affinity 
to the extracellular domain of the LRP6 Wnt co-receptor 
and inhibited mineralisation in a murine osteoblast-like 
cell line. Fusing sclerostin with IgG1 human Fc increased 
protein half-life from minutes to longer than a day in 
WT and Sost–/– mice. Modest but significant reductions 
in trabecular volumetric bone mineral density (vBMD) 
and bone volume fraction (BV/TV) of 20% and 15%, 
respectively, were observed after 6 weeks in Sost–/– mice 
treated with mScl-hFc-PD. It is thus possible that the bone-
targeting moiety may have been beneficial. Cortical bone 
and bone formation markers remained unchanged and 
anti-sclerostin antibodies were observed. Although these 

antibodies are the most likely cause of modest efficacy, 
increased DKK1 concentrations have been reported in 
mice and rats treated with anti-sclerostin antibodies 
(Taylor  et  al. 2016, Holdsworth  et  al. 2018). It is possible 
that increased DKK1 levels are also present in the Sost–/– 
mice and potentially contributed to the modest effects 
from sclerostin constructs (Dreyer  et al. 2021). This study 
indicates that a protein replacement approach might not 
be effective for long-term use and alternatives, such as 
small molecules, should be considered.

Osteoarthritis

Suppression of Wnt signalling by upregulated SOST/
sclerostin in cartilage derived from biopsies of OA patients 
and elevated sclerostin in traumatic OA models suggest 
that sclerostin might play a key protective role in the 
maintenance of articular homeostasis (Karlsson  et  al. 
2010, Chan  et  al. 2011). Indeed, Chang et  al. found that 
sclerostin inhibits cartilage degradation after traumatic 
injury by downregulating catabolic enzymes/activity of 
proteolytic enzymes, such as matrix metalloproteinases 
(MMP and MMP2/3), in osteopenic SOST transgenic mice 
(Chang  et  al. 2018). MMP activity was also significantly 
decreased in both SOST transgenic and Sost knockout 
mice after intra-articular administration of recombinant 
sclerostin, immediately after joint injury. These findings 
suggest that elevated levels of sclerostin immediately 
post-injury can aid the joint in maintaining its articular 
cartilage integrity in post-traumatic settings (Chang et al. 
2018). In addition, sclerostin overexpression may protect 
OA joints from excessive osteophyte formation, whilst lack 
of sclerostin could protect the femur from bone loss that 
results from disuse or injury (Chang et al. 2018). Sclerostin 
treatment of ATDC5 cells, a well-established in vitro 
model of chondrogenesis, promoted chondrogenic gene 
expression and suppressed hypertrophic differentiation 
(Atsumi  et  al. 1990, Yamaguchi  et  al. 2018). Moreover, 
addition of sclerostin following IL-1β treatment repressed 
the upregulation of Wnt/β-catenin signalling and 
inhibited progression of chondrogenic differentiation 
and terminal calcification promoted by IL-1β addition 
to ATDC5 cells (Miyatake  et al. 2020). As with the Chang 
et  al. study, these results suggest that suppression of Wnt 
signalling by sclerostin might be key for the maintenance 
of articular homeostasis. Furthermore, treatment with the 
anti-malarial drug dihydroartemisinin has been shown to 
enhance sclerostin expression and subsequently reduce 
subchondral bone remodelling in a surgically induced 
OA mouse model (Ma et al. 2021). Interestingly, sclerostin 
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has been shown to be upregulated by OA chondrocytes 
in end-stage disease, which may be an attempt to prevent 
further destruction by slowing down Wnt-driven catabolic 
responses (Chan  et  al. 2011). There is evidence that 
sclerostin modulates cartilage homeostasis and may be 
of therapeutic benefit in early stage disease; however, 
its application as a sole therapy for advanced disease is 
likely insufficient to reverse the plethora of pathological 
structural changes observed.

Osteosarcoma

Osteosarcoma has one of the lowest survival rates of all 
paediatric cancers as it is highly resistant to treatment, 
partially due to its highly diverse and heterogeneous nature 
(Gill & Gorlick 2021). New treatments are thus urgently 
needed. The Wnt/β-catenin signalling pathway may 
play an important role in osteosarcoma tumourogenesis 
(Inagaki  et al. 2016). Indeed, Ideta et al. recently reported 
that sclerostin inhibits the Wnt/β-catenin pathway as 
well as proliferation and migration in both murine (LM8) 
and human (143B) osteosarcoma cell lines (Ideta  et  al. 
2021). Sclerostin also inhibited tumour growth in mice 
with transplanted osteosarcoma cells, extending overall 
survival rate. SOST expression was significantly decreased 
in tumour-bearing bones from 15-week-old osteoblast-
specific Wntless (Wls) loss-of-function OS mice (WlsΔOB-OS 
mice) (Matsuoka et al. 2020). These results corroborate the 
findings by Zou et al. that SOST gene silencing activates the 
Wnt/β-catenin pathway, resulting in decreased apoptosis, 
increased proliferation, and invasion and migration of 
osteosarcoma cells collected from primary tumour tissues 
of osteosarcoma patients (Zou et al. 2017). Taken together, 
these findings suggest that local treatment with drugs 
that increase local sclerostin concentration or reduce Wnt 
expression/activity by mimicking sclerostin function 
could be effective for the treatment of osteosarcoma whilst 
avoiding systemic negative impacts on bone.

Future

As discussed in this review, sclerostin has a potential role in 
regulating and maintaining homeostasis in many organs 
beyond that of the bone, with associations to the immune 
system, kidney, liver, muscle, cartilage and cardiovascular 
system. However, it is important to note that regulated 
expression is essential to ensure controlled balance of 
canonical Wnt signalling. Many reports suggest that an 
imbalance in sclerostin expression/function may be linked 

to metabolic diseases, musculoskeletal disorders and 
cardiovascular events. However, it is not yet understood 
whether dysregulation of sclerostin is a causative event in 
all these conditions, as observed in sclerosteosis, or whether 
sclerostin expression is affected during disease progression. 
Nevertheless, sclerostin levels are altered and more 
research (e.g. mechanistic in vivo) is required to underpin 
its role and aid therapeutic development. Research is well 
underway regarding the modulation of sclerostin function 
as a therapeutic approach, with romosozumab for post-
menopausal osteoporosis already approved by multiple 
regulators. However, as seen with romosozumab, changes 
in bone mineral density might become smaller following 
prolonged treatment with canonical Wnt-signalling 
pathway targeting therapeutics (McClung et al. 2018). Novel 
approaches including sclerostin replacement therapy, 
small molecule intervention, epigenetic modulation and 
aptamer targeting of sclerostin may shed light on the 
future of sclerostin-based therapeutics and offer exciting 
avenues in novel drug development approaches.
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