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Abstract 18 

Derangements in mineral metabolism are one of the main entities in chronic kidney 19 

disease-mineral and bone disorder (CKD-MBD). This is the second of a two-part review of 20 

the physiology and pathophysiology of calcium homeostasis in feline CKD-MBD. While 21 

dysregulation in calcium homeostasis is known to contribute to the development of vascular 22 

calcification in CKD, evidence characterising the relationship between serum calcium 23 

concentration and nephrocalcinosis and nephrolithiasis is limited. Recently, fibroblast growth 24 

factor 23 (FGF23) and α-Klotho have gained increased research interest and been shown to 25 

be important biomarkers for the prediction of CKD progression in human patients. However, 26 

conflicting evidence exists on their role in calcium homeostasis and vascular and soft tissue 27 

calcification. This review details the pathophysiology of calcium disorders associated with 28 

CKD-MBD and its implications on vascular and soft tissue mineralisation in human and 29 

feline patients. Further prospective studies investigating the clinical consequences of calcium 30 

disturbances in cats with CKD are warranted and this may provide additional insight into the 31 

pathophysiology of feline CKD-MBD.  32 
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Introduction 36 

 Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a phenomenon that 37 

has originated from human medicine that characterises the disturbances in mineral and bone 38 

metabolism resulting from chronic kidney disease (CKD) (Moe et al., 2006). Calcium 39 

homeostasis is tightly regulated by the actions of various hormones, including parathyroid 40 

hormone (PTH), calcitriol (a.k.a. 1,25 dihydroxycholecalciferol or 1,25 dihydroxyvitamin 41 

D3), fibroblast growth factor 23 (FGF23), α-Klotho, and calcitonin (Rodriguez et al., 1991; 42 

Lu et al., 2008; Khuituan et al., 2012). Metabolism of these hormones is altered in CKD 43 

patients due to phosphate retention (Tanaka and Deluca, 1973; Larsson et al., 2003; Centeno 44 

et al., 2019), and, in turn, these changes exert influence over calcium homeostasis. 45 

Extraosseous calcification is a common complication in human patients with advanced CKD, 46 

attributable, at least in part, to derangements in mineral and hormonal metabolism (Yamada 47 

et al., 2007). In this review, we aim to summarise the published evidence of calcium and 48 

hormonal disturbances associated with CKD in humans and cats and propose areas where 49 

additional research is needed to advance our knowledge of feline CKD-MBD.  50 

 51 

Mineral and hormonal disturbances in CKD-MBD 52 

Secondary renal hyperparathyroidism in humans 53 

In CKD, phosphate retention occurs secondary to a reduction in glomerular filtration 54 

rate (GFR) as the number of functioning nephrons declines (Slatopolsky, 2011). Phosphate 55 

retention stimulates secretion of phosphaturic hormones PTH and FGF23 both directly and 56 

indirectly via inhibition of renal calcitriol production (Slatopolsky et al., 1996; Liu et al., 2006; 57 

Centeno et al., 2019). In the early stages of CKD excess production of FGF23 maintains 58 

physiological phosphate concentrations (Gutierrez et al., 2005). As CKD progresses, secondary 59 

renal hyperparathyroidism (SRHP) develops (Almaden et al., 1998), with increased serum PTH 60 
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concentrations being an indicator of advanced disease (Gutierrez et al., 2005). A large cohort 61 

study demonstrated increasing prevalence of hyperparathyroidism with declining GFR (Levin 62 

et al., 2007); with increases in PTH beginning to occur before significant calcium and 63 

phosphate derangements (i.e. hypocalcaemia and hyperphosphataemia) are observed in human 64 

CKD patients. As GFR continues to decline, compensatory mechanisms no longer maintain 65 

physiological serum phosphate concentrations, leading to hyperphosphataemia. By the law of 66 

mass action, this lowers extracellular ionised calcium (Forman and Lorenzo, 1991) and further 67 

stimulates PTH secretion. Over time, down-regulation of parathyroid Vitamin D receptor 68 

(VDR) and calcium sensing receptor (CaSR) occurs; driven, at least partly, by calcitriol 69 

reduction (Lee et al., 2018; Uchiyama et al., 2020). This further attenuates the response of the 70 

parathyroid glands to the inhibitory actions of calcitriol and ionised calcium and contributes to 71 

the pathogenesis of SRHP (Korkor, 1987; Brown et al., 1989; Gogusev et al., 1997). Alterations 72 

in calcitrophic hormones levels, namely PTH, calcitriol and FGF23 continues to have an effect 73 

on calcium homeostasis (Fig. 1). Elevation in PTH results in increased renal phosphate 74 

excretion and enhanced renal and intestinal calcium (re)absorption, and bone resorption of 75 

calcium, resulting in elevated plasma calcium (see part 1 for further details).  76 

 77 

Secondary renal hyperparathyroidism in cats 78 

In one cross-sectional study of 80 cats at various stages of CKD hyperparathyroidism 79 

prevalence was documented to be 84%, with all ‘end-stage’ CKD cats (i.e. clinically 80 

dehydrated, anorexic, and with survival times of less than 21 days following diagnosis) having 81 

evidence of SRHP (Barber and Elliott, 1998). SRHP is also found in cats prior to the 82 

development of azotaemia, even in the absence of mineral derangement (Finch et al., 2012). 83 

However, a more recent retrospective cross-sectional study of 79 cats with CKD found that a 84 

large proportion of cats with International Renal Interest Society (IRIS) Stage 2 CKD had 85 
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normal PTH concentrations and cats with IRIS Stage 4 CKD had significantly higher PTH 86 

concentrations compared to non-azotaemic age-matched control cats (Geddes et al., 2013).  87 

 88 

FGF23-α-Klotho endocrine axis in humans with CKD 89 

Increasing FGF23 is associated with declining renal function (Larsson et al., 2003; 90 

Marsell et al., 2008). In early CKD, FGF23 increases prior to the onset of increased phosphate 91 

and PTH (Isakova et al., 2011). Although the phosphaturic function of FGF23 initially 92 

maintains plasma phosphate balance, it is implicated in the development of SRHP as a 93 

consequence of the FGF23-induced reduction in calcitriol, an important negative regulator of 94 

PTH synthesis (Shigematsu et al., 2004; Gutierrez et al., 2005; Hasegawa et al., 2010; Van 95 

Husen et al., 2010). However, FGF23 also exerts direct and indirect, via local activation of 96 

vitamin D, inhibitory effects on PTH synthesis and secretion (Ben-Dov et al., 2007; Krajisnik 97 

et al., 2007). The inhibitory effects of FGF23 are attenuated in hyperplastic parathyroid glands, 98 

through downregulation of the FGF23 receptor and its co-receptor, α-Klotho (Fig. 1) (Canalejo 99 

et al., 2010; Galitzer et al., 2010; Komaba et al., 2010). This phenomenon may underlie SRHP 100 

pathogenesis and may explain the concomitant increases in both FGF23 and PTH 101 

concentrations in CKD patients.  102 

 103 

In contrast to FGF23, soluble α-Klotho protein (s-Klotho) serum concentrations are 104 

lower in human CKD patients compared to healthy controls (El Saeeda et al., 2018). Studies 105 

support an incremental reduction in s-Klotho with advancing CKD stage (Rotondi et al., 2015; 106 

El Saeeda et al., 2018). Reductions occur even in early stage disease (Shimamura et al., 2012) 107 

and higher s-Klotho concentrations are associated with lower risk of decline in renal function 108 

(Drew et al., 2017), suggesting that s-Klotho may be useful to predict CKD progression from 109 

its early stages (Shimamura et al., 2012). An early onset of α-Klotho deficiency may contribute 110 
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to the development of FGF23 resistance and a maladaptive increase in FGF23 production 111 

(Olauson et al., 2012; Sakan et al., 2014). In support of this, several prospective studies 112 

identified a low baseline s-Klotho concentration as an independent risk factor for an adverse 113 

kidney disease outcome in CKD patients (Kim et al., 2013; Liu et al., 2018). However, using 114 

the same assay methodology as previously described (Yamazaki et al., 2010), Seiler et al. (2013) 115 

found no association between declining kidney function and plasma s-Klotho, while Sugiura 116 

et al. (2011) identified increasing s-Klotho with decreasing GFR. The complex interplay 117 

between FGF23 and α-Klotho in CKD remains to be further elucidated.  118 

 119 

FGF23-α-Klotho endocrine axis in cats with CKD 120 

Over the last decade, there has been increased interest in the feline FGF23-α-Klotho 121 

axis. Plasma FGF23 concentrations were increased in cats with early-stage non-azotaemic 122 

CKD (plasma creatinine <177  mol/L; with progression to azotaemic CKD within 12 months), 123 

suggesting FGF23 may be a useful predictor of development of azotaemia, although there was 124 

marked overlap in FGF-23 measurements between groups (Finch et al., 2013). A positive 125 

relationship between plasma FGF23 and PTH concentrations was also identified (Finch et al., 126 

2013). In geriatric cats, plasma FGF23 levels increase in parallel with increasing IRIS stage, a 127 

surrogate for decreasing renal function (Geddes et al., 2013), comparable to findings in dogs 128 

(Harjes et al., 2017; Miyakawa et al., 2020). Furthermore, when comparing cats with the same 129 

IRIS stage of azotaemic kidney disease, cats with hyperphosphataemia had significantly higher 130 

FGF23 concentrations than those with normophosphataemia (Geddes et al., 2013). Similar to 131 

findings in humans, increased FGF23 concentrations are independently associated with higher 132 

risks of disease progression and death in CKD cats (Geddes et al., 2015).  133 

 134 
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Renal expression of α-Klotho by immunocytochemistry in the normal feline kidney was 135 

recently reported, with strong expression detected in distal tubules and moderate expression 136 

detected in proximal tubules. No α-Klotho expression was detected in the glomeruli (Lawson 137 

et al., 2018). As in humans, gene expression of α-Klotho in renal tissue was significantly 138 

decreased in cats with more advanced CKD (van den Broek, 2018). Nevertheless, no 139 

association between plasma s-Klotho concentrations and renal function was found in cats 140 

(Sargent et al., 2020). 141 

 142 

Vitamin D deficiency in humans with CKD 143 

Decreased serum vitamin D concentrations (i.e. calcidiol and calcitriol) are commonly 144 

observed among CKD patients, with an increased prevalence in end-stage renal disease (ESRD) 145 

(Del Valle et al., 2007; Wolf et al., 2007; Kim et al., 2014), although it may be documented as 146 

early as Stage 2. (Levin et al., 2007). Progressive reduction in calcitriol is attributable, initially, 147 

to the inhibitory effects of increasing FGF23 and hyperphosphataemia and, latterly, to 148 

declining functional renal mass (Gutierrez et al., 2005). FGF23 exerts dual effects upon 149 

calcitriol production; in a Klotho-dependent manner, it downregulates 1α-hydroxylase whilst 150 

stimulating renal expression of 24-hydroxylase (see part 1 for further details). Therefore, as 151 

GFR progressively declines, calcitriol concentrations decrease thereby contributing to SRHP. 152 

This occurs directly because of diminished inhibitory genomic actions of calcitriol on PTH 153 

transcription and synthesis, as well as indirectly via the decrease in circulating ionised calcium 154 

secondary to a reduction in calcitriol-mediated intestinal calcium absorption. CKD is also 155 

characterised by calcitriol-resistance due to parathyroid gland VDR loss, further contributing 156 

to SRHP progression (Fig. 1) (Fukuda et al., 1993).  157 

 158 
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Low serum vitamin D concentrations often associate with high bone turnover and 159 

decreased bone mineral density in human patients with CKD (Tomida et al., 2009; Lee et al., 160 

2014). Patients with low serum calcidiol concentrations also have markedly increased serum 161 

PTH levels, suggesting a contribution of hyperparathyroidism in the alterations of bone density 162 

and development of renal osteodystrophy (Lee et al., 2014). Vitamin D is essential in the 163 

maintenance of bone health, in part through PTH suppression. 164 

 165 

Vitamin D deficiency in cats with CKD 166 

When uraemic cats and those with ‘end-stage’ CKD were compared to non-azotaemic 167 

control cats serum calcitriol concentrations were significantly lower (Barber and Elliott, 1998); 168 

with 80% of ‘end-stage’ CKD cats demonstrating calcitriol deficiency (calcitriol <9 pg/mL). 169 

Ionised hypocalcaemia (<1.18 mmol/L) was also identified in a significant proportion (56%) 170 

of these cats with end-stage disease, and all had concurrent hyperparathyroidism (PTH >25.5 171 

pg/mL) (Barber and Elliott, 1998). These findings suggested diminished synthesis of calcitriol 172 

in cats with advanced CKD, despite the stimulatory actions from high PTH levels, resulting in 173 

ionised hypocalcaemia; although this may also be partly attributable to the concurrent severe 174 

hyperphosphataemia.  175 

 176 

Hypercalcaemia in cats with CKD 177 

Hypercalcaemia is a co-morbidity observed in cats with CKD. A recent study showed 178 

that CKD cats had higher risk of developing total hypercalcaemia (van den Broek et al., 2017), 179 

with increasing prevalence observed in cats with advancing azotaemia (Barber and Elliott, 180 

1998). In general, most hypercalcaemic cats have no identifiable underlying aetiology for 181 

increased calcium concentrations (Midkiff et al., 2000). It is unclear what role, if any, the 182 

presence of hypercalcaemia has in the development or progression of CKD in cats. 183 
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 184 

 Dietary phosphate restriction is recognised as a fundamental component of the management 185 

of CKD in humans (Lou et al., 2012). Dietary phosphate restriction is also recommended in 186 

the management of CKD in cats (Elliott et al., 2000; Plantinga et al., 2005; Ross et al., 2006). 187 

However, the disparity between the nutrient requirements for calcium and phosphate as 188 

recommended for adult cats by the National Research Council (revised in 2006 and adopted by 189 

the European Pet Food Industry Federation in 2018; 0.72 g and 0.64 g per 1000 kcal ME, 190 

respectively) and those recommended by the Association of American Feed Control Officials 191 

(AAFCO; 1.5g and 1.25 g per 1000 kcal ME, respectively; revised in 2014), is such that some 192 

clinical kidney-support diets previously considered to be absolutely ‘phosphate-restricted’ 193 

would now not be. For example, in one study the ‘phosphate-restricted’ kidney-support diets 194 

were reported to have phosphate levels from 0.725 g (dry) to 1.025 g (canned) per 1000 kcal 195 

ME and calcium levels from 1.375 g (dry) to 1.7 g (canned) per 1000 kcal ME (Barber et al., 196 

1999). To further complicate comparisons, not all forms of dietary phosphorus are equal, with 197 

differing apparent digestibility influenced by the forms of phosphate included and other 198 

components of the diet (Coltherd et al., 2019).  Thus, although phosphate levels in the kidney-199 

support diets are lower than standard adult maintenance diets, the beneficial effects of each 200 

particular formulation when used in the field should be determined by demonstrating their 201 

ability to reduce the markers of mineral bone disturbance (Elliott et al., 2000; Ross et al., 2006). 202 

Feeding of clinical renal diets may also contribute to hypercalcaemia in some azotaemic cats. 203 

This phenomenon was first documented in a prospective study in which two of 15 CKD cats 204 

developed total and ionised hypercalcaemia following feeding of a clinical renal diet (described 205 

above); subsequent feeding of the cat’s regular diet resolved the total hypercalcaemia, although 206 

the effect on ionised calcium was not reported (Barber et al., 1999). In another study of 10 cats 207 

that developed ionised hypercalcaemia whilst being fed a phosphate-restricted clinical renal 208 
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diet (0.8 g per 1000 kcal ME), attenuation of the degree of dietary phosphate restriction (i.e. 209 

feeding of a moderately protein- and phosphate-restricted senior diet with 1.5 g per 1000 kcal 210 

ME) restored ionised normocalcaemia after a median of 2.2 months in eight, whilst the 211 

remaining two had improving calcium concentrations and only short-term follow-up (Geddes 212 

et al., 2021). Interestingly, a higher proportion of healthy senior cats (≥9 years) developed 213 

ionised hypercalcaemia after initiation of a moderately protein- and phosphate-restricted diet 214 

with 1.6 g per 1000 kcal ME (5/26 cats) compared to those eating a control diet (1/28 cats) 215 

with >60% higher dietary phosphate content (2.6 g per 1000 kcal ME) (Geddes et al., 2016). 216 

However, development of ionised hypercalcaemia was not reported in similar dietary trials 217 

among healthy young adult cats (≤8 years), with minimal changes in total or ionised calcium 218 

concentrations observed over time (Kienzle et al., 1998; Alexander et al., 2019). The 219 

discrepancy between these studies remains uncertain. When comparing a group of CKD cats 220 

that had increased total plasma calcium concentrations during the first 200 days following 221 

transition to a phosphate-restricted diet (0.7–1.1 g per 1000 kcal ME) to those that maintained 222 

their plasma calcium concentrations, only the group with increasing total plasma calcium also 223 

had increases in ionised calcium, FGF23, phosphate, creatinine and SDMA, suggesting an 224 

association between increasing plasma calcium concentration and progression of kidney 225 

disease (Tang et al., 2021); however, the clinical significance of these changes was not 226 

evaluated and evaluation over a longer timeframe is necessary.  227 

 228 

Extraosseous calcification  229 

Vascular and soft tissue calcification 230 

 One of the mechanisms by which hypercalcaemia and hyperphosphataemia may be 231 

detrimental to CKD patients is through development of vascular and renal mineralisation (Fig. 232 

2) – a hypothesis which remains to be proven. 233 



 11 

 234 

Vascular calcification (VC) is a common consequence of CKD in humans characterised 235 

by deposition of calcium-phosphate salts in the vessel wall (tunica intima and tunica media), 236 

with medial calcification being more specific to CKD-MBD (London et al., 2003; Fox et al., 237 

2006; Shroff et al., 2008). It is a pathological process facilitated by the osteochondrogenic 238 

differentiation of vascular smooth muscle cells (VSMCs), VSMC apoptosis and elastin 239 

degradation (Proudfoot et al., 2000; Shroff et al., 2008, 2010). VC is highly prevalence in 240 

ESRD patients (Raggi et al., 2002; Kraus et al., 2015). Medial wall calcification increases 241 

vessel stiffness, resulting in elevated pulse pressure and left ventricular hypertrophy, associated 242 

with increased risk of cardiovascular events and mortality (Klassen et al., 2002; London et al., 243 

2003; Go et al., 2004; Paoletti et al., 2016). 244 

 245 

Ectopic calcification has traditionally been explained by the precipitation of calcium 246 

and phosphate salts from supersaturated fluid when the calcium and phosphate product (Ca x 247 

P) exceeds the solubility product. Increased calcium and phosphate concentrations are 248 

associated with hydroxyapatite deposition (Fig. 2) (Villa-Bellosta et al., 2011). However, it has 249 

become clear that soft tissue calcification is a multifaceted and complex process, regulated by 250 

various inducers and inhibitors (Lomashvili et al., 2004, 2006; Babler et al., 2020). Several 251 

factors have been implicated in the inhibition of soft tissue mineral deposition, such as Fetuin-252 

A, magnesium, osteoprotegerin, matrix Gla protein, pyrophosphate, and bone morphogenic 253 

protein 7. Reductions in these physiological calcification inhibitors are believed to provide a 254 

pro-calcific environment and accelerate mineralisation (Lomashvili et al., 2004; Shroff et al., 255 

2008).  256 

 257 

Roles of calcium in VC in humans 258 
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 As detailed above, mineral metabolism disturbances occur even at early stages of CKD 259 

and are usually characterised by increased FGF23, α-Klotho, and PTH, and calcitriol deficiency. 260 

Increased serum calcium concentrations and the development and progression of VC are 261 

closely associated in the CKD population (West et al., 2010). Synergism between calcium and 262 

phosphate was found in mediating VSMC calcification, by promoting osteochrondrogenic 263 

differentiation of VSMCs, formation of apoptotic bodies, and release and deposition of matrix 264 

vesicles (Reynolds et al., 2004; Shroff et al., 2010). In vitro, extracellular calcium 265 

concentrations were positively correlated with the mineralisation of human VSMCs under 266 

controlled phosphate conditions (Reynolds et al., 2004; Yang et al., 2004), with increased 267 

extracellular calcium capable of inducing VSMC calcification independent of, as well as 268 

synergistically with, phosphate (Reynolds et al., 2004). Clinically, progressive arterial 269 

calcification has been associated with CKD in haemodialysis patients receiving calcium-based 270 

phosphate binders (Chertow et al., 2004); whereas this pathology was less prevalent, together 271 

with a decreased risk of all-cause mortality, in those treated with non-calcium-based phosphate 272 

binders (Chertow et al., 2002; Asmus et al., 2005; Jamal et al., 2013). It is apparent that 273 

dysregulation in calcium homeostasis promotes VC in CKD, most likely in synergy with 274 

phosphate.  275 

 276 

Roles of FGF23 and α-Klotho in VC in humans and other species 277 

FGF23 and α-Klotho, in addition to their homeostatic roles maintaining calcium and 278 

phosphate balance, are emerging factors in VC within CKD-MBD (Alexander et al., 2009; Lim 279 

et al., 2012; Jimbo et al., 2014). Despite the well-recognised correlation between elevated 280 

FGF23 levels and renal dysfunction, FGF23’s roles in VC of CKD remains controversial. 281 

Several studies identified no association between serum FGF23 and the prevalence or the 282 

severity of coronary arterial calcification (CAC) in CKD patients of varying stages (Gutiérrez 283 
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et al., 2009; Scialla et al., 2013). However, not all studies agree. Human patient cohort studies 284 

(with and without CKD) have found serum FGF23 levels to be independently associated with 285 

VC (Nasrallah et al., 2010; Desjardins et al., 2012; Donate-Correa et al., 2019). Haemodialysis 286 

patients with increased serum FGF23 concentrations were at greater risk to develop progressive 287 

CAC within a one year period (Ozkok et al., 2013). This is further supported by experimental 288 

studies indicating that FGF23 potentiates phosphate-induced VC in Klotho-overexpressing 289 

VSMCs and rat aortae (Jimbo et al., 2014). In contrast, a direct protective effect of FGF23 on 290 

calcifying mouse VSMC has also been demonstrated (Zhu et al., 2013). This is consistent with 291 

the findings that FGF23, in an α-Klotho-dependent manner, inhibited human aortic VSMC 292 

extracellular matrix calcification (Lim et al., 2012). Based on conflicting evidence from the 293 

literature, further investigation is required to fully understand under what circumstances FGF23 294 

exerts a protective or detrimental role in VC. 295 

 296 

 There is substantial evidence from various species showing the inhibitory effects of α-297 

Klotho on VC, although conflicting results also exist. VC appeared to be a direct effect of α-298 

Klotho deficiency in a mouse CKD model, whilst s-Klotho was found to suppress sodium-299 

dependent phosphate transport and directly inhibit phosphate-induced calcification in rat 300 

VSMCs (Hu et al., 2011). α-Klotho also maintained the VSMC phenotype by abrogating the 301 

changes in osteochrondrogenic differentiation transcription factors (i.e. decreases in Pit1, Pit2, 302 

and Runx2 mRNA and an increase in SM22 mRNA) (Hu et al., 2011). Similarly, α-Klotho 303 

suppressed phosphate-induced calcium deposition in bovine aortic VSMCs, and ex vivo data 304 

from murine aortic rings suggested that inhibition of mammalian target of rapamycin (MTOR)-305 

signalling ameliorated VC through α-Klotho upregulation (Zhao et al., 2015). Reduction of 306 

hyperphosphataemia-associated VC in response to stable delivery of circulating s-Klotho was 307 

also demonstrated in α-Klotho-null mice (Hum et al., 2017). Additionally, mRNA and protein 308 
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expression of α-Klotho were increased in cultured VSMCs under calcifying conditions (Zhu et 309 

al., 2013) and increased expression of α-Klotho protein was observed in calcified aortae from 310 

a mouse model of VC (Enpp1-/-; resulting in reduced levels of the mineralisation inhibitor 311 

pyrophosphate) (Zhu et al., 2013). Despite the increasing research interest, it has not been 312 

confirmed whether α-Klotho is expressed endogenously in the vasculature; an elegant review 313 

by Mencke and Hillebrands on behalf of the NIGRAM consortium summarised the conflicting 314 

evidence of α-Klotho expression in the vasculature (Mencke et al., 2017).  315 

 316 

 The discordant findings regarding both FGF23 and α-Klotho on VC may be attributed 317 

to the differences in species, methodologies and detection techniques among studies, including 318 

the types of cultured cells and the application of different antibodies. Better understanding of 319 

the roles of FGF23 and α-Klotho in the pathophysiology of VC may reveal their potential as 320 

novel therapeutic targets in CKD-MBD. 321 

 322 

Nephrocalcinosis and nephrolithiasis associated with CKD in humans 323 

Although the relationship between VC and CKD-MBD is well documented in human 324 

patients this is not the case for nephrocalcinosis and CKD-MBD. Nephrocalcinosis is 325 

characterised by deposition of calcium-phosphate or calcium-oxalate within tubulointerstitial 326 

regions, with medullary nephrocalcinosis being the pattern seen in 98% of human cases (Wrong, 327 

2006). Calcium nephrolithiasis refers to the aggregation of calcium crystals in the kidney into 328 

visible stones. The pathophysiology of nephrocalcinosis and nephrolithiasis are intimately 329 

related; both processes begin from Randall’s plaque formation in the renal papillae which act 330 

as a nadir for progressive calcification (Randall, 1937; Evan et al., 2003). However, 331 

nephrocalcinosis is not a prerequisite for the development of nephrolithiasis, and 332 
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nephrolithiasis is not an inevitable consequence of nephrocalcinosis, suggesting distinct 333 

pathomechanisms (Wrong, 2006).  334 

 335 

 Renal calcification is prevalent in CKD patients. Evidence of renal calcium deposition 336 

was identified histologically in 72% of non-dialysis and 93% of dialysis patients (Kuzela et al., 337 

1977). This is consistent with a recent study which showed progressively increasing prevalence 338 

of nephrocalcinosis in patients with advancing CKD, with over 50% of CKD stage 5 patients 339 

and >70% of dialysis patients having evidence (Evenepoel et al., 2015). Interestingly, there are 340 

conflicting data on calcium and phosphate concentrations in patients with and without 341 

nephrocalcinosis. Some studies suggest no significant difference in serum calcium and 342 

phosphate levels between the adult and paediatric patients with and without visceral 343 

calcification (Kuzela et al., 1977; Milliner et al., 1991), which has been further supported by a 344 

histological study showing that serum calcium was not associated with renal calcium content 345 

and renal tubular calcium deposition (Gimenez et al., 1987). In another study, hypercalciuria 346 

was a risk factor for nephrocalcinosis (Rönnefarth and Misselwitz, 2000). This suggests a 347 

potential predisposing role of calcium disturbances in abnormal renal tubular mineral 348 

deposition (Evenepoel et al., 2015). Furthermore, microscopic nephrocalcinosis development 349 

appears to begin early in CKD and correlates with the degree of renal impairment (Gimenez et 350 

al., 1987; Evenepoel et al., 2015), suggesting a deleterious effect of nephrocalcinosis on kidney 351 

function and potential role in accelerating CKD progression.  352 

 353 

Similar to nephrocalcinosis, a recent meta-analysis showed an association between 354 

nephrolithiasis and CKD progression (Zhe and Hang, 2017). Patients with nephrolithiasis had 355 

over two times the risk (relative risk = 2.16) of developing ESRD compared to those without 356 

nephrolithiasis (Zhe and Hang, 2017). Higher urine calcium excretion is the most frequent 357 
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pathophysiological factor associated with calcium nephrolithiasis (Saponaro et al., 2020). In a 358 

study of 176 patients with primary hyperparathyroidism, patients with nephrolithiasis had 359 

increased urinary calcium excretion when compared to individuals without evidence of 360 

nephrolithiasis; however, no differences in serum total and ionised calcium were detected 361 

(Saponaro et al., 2020).  362 

 363 

Both nephrocalcinosis and nephrolithiasis are frequent pathological entities affecting 364 

the CKD population. However, evidence of an association between extracellular calcium 365 

concentration and renal mineralisation in human patients remains equivocal. Further studies 366 

are warranted to investigate whether increased serum calcium exerts any deleterious effects on 367 

renal function as a consequence of nephrocalcinosis or nephrolithiasis.  368 

 369 

Vascular and soft tissue calcification in cats with CKD 370 

Although vascular and soft tissue calcification are widely identified in human CKD 371 

patients, predominantly in those with derangements in mineral metabolism, very few studies 372 

have been undertaken to evaluate this phenomenon in feline CKD. Cases of concurrent 373 

cutaneous calcinosis and renal disease have been described (Anderson et al., 1988; Böhmer et 374 

al., 1991). At post-mortem examination, both cats had pathological changes associated with 375 

CKD, including medullary nephrocalcinosis documented in one. Interdigital and footpad 376 

calcification associated with moderate and severe CKD has also been described in two 377 

individual case reports (Jackson and Barber, 1998; Declercq and Bhatti, 2005), and a case 378 

series of five cats (Bertazzolo et al., 2003). Although serum PTH was not measured in all cases, 379 

the calcium phosphate product was greater than 5.65 mmol2/L2 (70 mg2/dL2) in all seven cats; 380 

this is suggestive of metastatic calcification. Radiographic evidence of thoracic and abdominal 381 

aorta and gastric wall mineralisation was also present in both cats and one cat, respectively, 382 
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where relevant imaging was performed (Bertazzolo et al., 2003). In a larger study, gastric 383 

mineralisation within the mucosal lamina propria was found in 14 of 37 (38%) CKD cats at 384 

post-mortem examination, with evidence of vascular mineralisation in three (Mcleland et al., 385 

2014). This gastric mineralisation was only present in cats with moderate or severe CKD. 386 

Another review of samples collected at post-mortem examination found that cats with IRIS 387 

stage 2–4 CKD were ~2.5-times more likely to have nephrocalcinosis as compared to non-388 

azotaemic geriatric control cats (prevalence of 50–58% cf. 21%) (Chakrabarti et al., 2013). 389 

However, no association between tubular mineralisation and plasma phosphate concentration 390 

was reported and plasma calcium, PTH, vitamin D metabolite, FGF-23 and α-Klotho 391 

concentrations were not given. Thus, the prevalence, pathophysiology and implications of soft 392 

tissue calcification, including nephrocalcinosis, associated with mineral metabolism 393 

disturbances in feline CKD has not been thoroughly investigated. Further studies focusing on 394 

this topic may provide an insight into the pathophysiology of feline CKD-MBD.  395 

 396 

Recently, a positive association between urolithiasis and feline CKD was identified, 397 

with a higher CKD prevalence detected among cats with urolithiasis (Cléroux et al., 2017). 398 

Serum SDMA was also shown to be increased in cats with radiological evidence of urolithiasis, 399 

as compared to healthy control cats (Hall et al., 2017). However, it remains unknown whether 400 

CKD predisposes the formation of uroliths or vice versa. Radiographic evidence of nephroliths 401 

was documented in 29% (13/45) of cats with IRIS stage 2–3 CKD (Ross et al., 2006), although 402 

in a subsequent study presence of nephroliths was not associated with disease progression and 403 

mortality (Ross et al., 2007). However, only cats with stable renal function were included in 404 

the latter study and sample size was small. Prospective studies are required to further evaluate 405 

the relationship between CKD and nephrolithiasis in cats. 406 

 407 
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Emerging factors in CKD-MBD 408 

 CKD-MBD is a constantly evolving field in both human and feline medicine. In recent 409 

years, new factors and pathways associated with CKD-MBD are being explored, including the 410 

Wnt-β-catenin signalling pathway, which may link to the pathophysiological consequences of 411 

mineral dysregulation, renal osteodystrophy and VC (Holmen et al., 2005; Surendran et al., 412 

2005; Claes et al., 2013; Ryan et al., 2013; Fang et al., 2014; Yang et al., 2015; Carrillo-López 413 

et al., 2016). However, controversies and uncertainties exist in current literature and more 414 

studies are required to better understand the roles and significance of these emerging factors in 415 

CKD-MBD. 416 

 417 

Conclusions 418 

Mineral metabolism disturbances are almost ubiquitously present in CKD patients and 419 

the severity of these debilitating complications is commonly associated with disease 420 

progression and death. During early stage CKD, circulating phosphate and calcium are often 421 

maintained within physiological limits by the adaptive responses and interactions of the major 422 

regulatory factors involved in CKD-MBD, namely PTH, calcitriol, FGF23 and α-Klotho. 423 

However, as renal function continues to decline, these responses become maladaptive and 424 

result in mineral derangements. Cats with CKD are at increased risk of developing total 425 

hypercalcaemia compared to non-azotaemic cats, but the underlying causes of hypercalcaemia 426 

remain to be determined. Increasing evidence has suggested the involvement of dietary 427 

phosphate restriction in the development of hypercalcaemia in some azotaemic cats; however, 428 

evidence is limited due to the lack of prospective controlled clinical trial data. In human 429 

medicine, hypercalcaemia is a well-established risk factor for vascular and soft tissue 430 

calcifications in CKD patients. These complications are also associated with declining renal 431 

function and increased mortality. However, the prevalence and implications of these 432 
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complications have not been thoroughly investigated in feline CKD. Advances in the 433 

knowledge of the pathophysiology and implications of calcium derangements associated with 434 

feline CKD may allow refinement of management strategies in feline CKD-MBD. 435 

 436 

In addition, progressive CKD, even at early stages, is characterised by a rise in serum 437 

FGF23 followed by a decline in α-Klotho in human patients. Although a wealth of knowledge 438 

has emanated from research into the association of FGF23 and α-Klotho with VC in human 439 

CKD patients over the last decades, this relationship has not been explored in feline CKD. 440 

Further studies are required to establish the interrelated roles of FGF23 and α-Klotho on 441 

calcium handling, as well as vascular and soft tissue calcification, in feline CKD.   442 
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Figure Legends 1029 

Fig. 1. Schematic diagram showing the roles of fibroblast growth factor 23 (FGF23), 1030 

parathyroid hormone (PTH) and calcitriol in calcium homeostasis in chronic kidney disease 1031 

(CKD). Reduction in glomerular filtration rate (GFR) leads to phosphate retention. This 1032 

stimulates the production of FGF23, which enhances urinary excretion of phosphate and 1033 

inhibits the synthesis of calcitriol in the kidney, to maintain plasma phosphate concentration 1034 

within physiological limits. As GFR continues to decline, accumulation of plasma phosphate, 1035 

together with increased FGF23, reduced plasma ionised calcium (iCa) and reduced calcitriol, 1036 

stimulates PTH production and contributes to the development of secondary renal 1037 

hyperparathyroidism. This is further exacerbated by the diminished inhibitory effects of FGF23 1038 

and iCa on PTH secretion due to the reduction in α-Klotho, fibroblast growth factor receptor 1039 

(FGFR) and calcium-sensing receptor (CaSR) in the parathyroid gland. Despite the continuous 1040 

stimulatory effect of PTH in advancing CKD, reduction in calcitriol occurs as a consequence 1041 

of the downregulation of 1α-hydroxylase due the decline in functional renal mass and the 1042 

inhibitory effects exerted by FGF23, resulting in ionised hypocalcaemia.  1043 

 1044 

Fig. 2. Schematic illustration of the cell-mediated process of vascular calcification (VC). VC 1045 

is mediated by the deposition of hydroxyapatite, composed of calcium and phosphate, in the 1046 

vasculature. Calcium and phosphate work synergistically to promote osteochrondrogenic 1047 

transdifferentiation of vascular smooth muscle cells (VCMCs) and formation of apoptotic 1048 

bodies to produce a local pro-calcifying environment for VC. Fetuin-A acts as a potent inhibitor 1049 

of VC by reversibly aggregating with calcium-phosphate precipitates to prevent 1050 

supersaturation and formation of hydroxyapatite in the blood. Fetuin-A is often downregulated 1051 

in human CKD population.  1052 
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